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Abstract 
Learners may develop expertise by experiencing numerous 
different but relevant situations. Computer games and 
virtual simulations can facilitate these training 
opportunities, however, because of the relative difficulty in 
authoring new scenarios, the increasing need for new and 
different scenarios becomes a bottleneck in the learning 
process. Furthermore, a one-size-fits-all scenario may not 
address all of the abilities, needs, or goals of a particular 
learner. To address these issues we present a novel 
technique, Automated Scenario Adaptation, to automatically 
“rewrite” narrative scenario content to suit individual 
learners’ needs and abilities and to incorporate recent 
changes from real world learning needs. Scenario adaptation 
acts as problem generation for intelligent tutoring systems, 
producing greater learning opportunities that facilitate 
engagement and continued learner involvement. 

Introduction   
Research shows that expertise is gained through experience 
and reflection (Katz, Allbritton & Connelly 2003). In the 
domains of higher-order cognitive skills such as problem-
solving, decision-making, and situational awareness, 
lessons acquired through experience become tacit 
knowledge – hard to articulate, but highly effective when 
put into practice (Hedlund, Antonakis, & Sternberg 2002). 
Expertise is a consequence of exposure to a greater number 
of varied experiences from which to compile tacit 
knowledge, and practice under different circumstances is 
key to generalization of skills and knowledge.  
 Computer-based training games and simulations are an 
important part of the equation for generating more adaptive 
leaders because they can be used in informal learning 
environments (e.g., the home or in the field), affording 
more frequent learning opportunities. However, if 
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repetition under varied circumstances is key, then how can 
training scenarios be made to present these varied 
circumstances without causing scenario authoring to be 
overly tedious or difficult? Complicating the picture, 
learners may have different needs and abilities, and any 
given scenario may not be the most effective for each 
learner. Furthermore, new challenges and situations in the 
real world may arise, rendering old scenarios obsolete. 
 We address these challenges in the context of scenario-
based training, in which a learner is tasked with completing 
a mission – a simulated period of time in which situations 
arise that require the learner to recognize the need to 
perform a skill and then perform it effectively. Scenarios 
are correlated with narrative; both “narrative” and 
“scenario” are descriptions of events.  
 A typical solution to scenario creation is to deploy 
authoring tools that enable subject matter experts, trainers, 
and educators to manually construct new scenarios. 
Although some examples authoring tools have improved 
authoring of tutoring systems in non-scenario-based 
domains (e.g., Aleven et al. 2009), scenario authoring 
remains difficult, requiring pedagogical knowledge, 
domain understanding, and storytelling creativity. Manual 
scenario authoring does not scale well to individually 
personalized scenarios or to rapid events in the real world 
that produce new and modified training needs.  
 The human scenario author is the bottleneck in the 
pipeline to provide greater numbers of scenario-based 
learning experiences, more personalized learning 
experiences, and more manual scenario authoring. It is a 
bottleneck in the delivery of individualized and highly 
contextualized scenario-based training and education. By 
overcoming this bottleneck, training effectiveness can be 
increased: targeting the individual learner entails 
incorporating just-in-time information about his or her 
needs, abilities, motivational styles, and emotions to 
achieve maximal gain in the available training time. 
 Though complete automation presents an ideal solution, 
current AI does not rival human author understanding and 
creativity. Therefore, this paper proposes a hybrid human-



 

 

automation approach, Automated Scenario Adaptation. 
Automated Scenario Adaptation is a process by which an 
intelligent computational system takes a manually authored 
scenario and a set of learning objectives customized to an 
individual, and “rewrites” the scenario, personalizing the 
content of the scenario. The personalized scenario can then 
be executed in a virtual game or simulation environment 
that affords some freedom of action for the learner. 
Automated Scenario Adaptation is complimentary to 
intelligent tutoring systems that can identify new training 
needs and guide the learner through the novel scenario.  

Background and Related Work 
Individualized learning for computer-based instruction has 
been explored in the realm of Intelligent Tutoring Systems 
(ITS) (Koedinger et al. 1997). ITSs employ a model of the 
student to generate hypotheses about student proficiency. 
The general behavior of an ITS can be described as a process 
with two nested loops (VanLehn, 2006). The outer loop is one 
of task selection, determining what problem the student 
attempts next. The inner loop traces the student’s progress 
through a task and provides appropriate feedback. Automated 
Scenario Adaptation is complimentary to ITS in the sense 
that it acts as a problem generator for an individual learner. 
Scenario adaptation has the potential to increase the 
effectiveness of tutoring systems. When the scenario 
content is fixed, an ITS is limited in its ability to achieve 
beneficial change; the scenario content may not be 
sensitive to the needs. Parts of the overall scenario may be 
too easy or too difficult, unnecessary due of learner 
proficiency in certain aspects, or require skills that the 
learner has not yet acquired.  
 Because of the correlation between “narrative” and 
“scenario”, adaptation of scenario content in virtual 
environments has been explored in the context of 
interactive narratives. An interactive narrative system 
dynamically changes future events in the virtual world in 
response to real-time user actions, and techniques for 
modifying narrative content to meet authorial goals may be 
employed to modify scenario content to meet training 
goals. Riedl et al. (2005) explore the relationship between 
interactive narrative and intelligent tutoring.  
 There are several examples of interactive narrative 
systems for training. The INTERACTIVE STORY 
ARCHITECTURE FOR TRAINING (ISAT) (Magerko et al. 
2006) reactively selects the next episode in a training 
simulation based on current performance by the learner. 
Logical forms ensure causal plausibility from episode to 
episode. Episodes are continuously selected and executed 
until a complete set of skills has been practiced. ISAT 
further manipulates the behaviors of NPCs to give hints or 
to draw attention to salient aspects of the task at hand. 
Likewise, the interactive narrative aspects of CRYSTAL 
ISLAND (Mott and Lester 2008) employ probabilistic 
reasoning over future events to reinforce the learner’s use 
of the scientific method. The AUTOMATED STORY 
DIRECTOR (Riedl et al. 2008), conversely, takes an existing 

scenario and then generates branches whenever the learner 
performs an action that threatens the causal coherence of 
the remainder of the scenario. The system ensures that 
certain relevant learning situations will unfold regardless 
of how the learner chooses to go about resolving dilemmas. 
The technique described in this paper may be used to 
generate the initial story structure used by the systems 
discussed above. AEINS (Hodhod et al. 2010) opts for a 
reactive approach, using an ITS to select the next “teaching 
moment” and then employing a planner to generate 
transitions from the current state to the teaching moment.  
 Real-time story adaptation – e.g., interactive narrative – 
necessarily limits computation time and is prone to local 
maxima based on the history of events in the training 
session. Offline scenario generation may more readily 
manipulate the global structure of learning content, 
potentially achieving more optimal scenario content. 
Hullett and Mateas (2009) present an offline approach to 
constructing novel practice environments for emergency 
management. In the context of entertainment, story 
generation is the problem of producing a narrative from 
scratch. Story generation systems commonly use planning 
to select the narrative events (Lebowitz 1985; Porteous and 
Cavazza 2009; Riedl and Young 2010). The system 
described in this paper is an offline adaptation system that 
attempts to optimize a scenario based on a learner model. It 
is thus more closely aligned to story generation systems 
although, as noted above, is complimentary with many 
interactive narrative systems. 

Scenario Adaptation 
Scenario adaptation is a process designed to augment the 
ability of a single human scenario author to deliver 
personalized learning experiences to numerous individual 
learners. The key advancement is to inject automation into 
the traditional scenario-authoring pipeline. The traditional 
scenario-authoring pipeline is shown in Figure 1: a 

 
Figure 1. The traditional scenario-authoring pipeline. 

 
Figure 2. The scenario adaptation architecture. 

 



 

 

scenario is manually authored and then played by a learner 
in a virtual game or simulation environment. A tutor may 
be present to track the learner’s progress in the simulation 
and record changes to the learner’s attributes. In contrast, 
our scenario adaptation architecture is shown in Figure 2. 
The cycle from simulation to intelligent tutor to scenario 
adaptation enables a single manually authored scenario to 
be recycled by progressively adapting to the learner’s 
changing needs and abilities. 
 In this paper, we focus on the scenario adaptation 
process. By “rewriting” manually authored scenarios, our 
system leverages human intuition to create a theoretically 
exponential number of unique experiences. Leverage, in 
this case, means capitalizing on human effort to provide an 
increased number of experiential opportunities (Chen et al. 
2009). 
 Modifications to the human authored scenario may take 
the following forms: 
• Adding events and elements to provide additional 

opportunities to practice a certain skill, or to address 
an additional learning objective. 

• Removing events and elements when the learner is 
already proficient. 

• Changing the details of events to make them easier or 
harder. 

For automated scenario adaptation, we must address two 
questions: (1) how to represent scenarios, and (2) how does 
a computational system reason about and manipulate 
scenario content using knowledge about the learner? 

Scenario Representation 
Following previous approaches (Young 1999; Riedl et al. 
2008; Porteous and Cavazza 2009; Riedl and Young 2010), 
we employ plan-like representations of narrative. Plan-like 
representations capture causality and temporality of action 
and provide a formal framework built on first principles, 
such as soundness and coherence, for selecting and 
ordering events. However, unlike a plan meant for 
execution by a single entity, we use plans as descriptions 
of events expected to unfold in a virtual world. The 
original scenario must be made out of the following 
structures: 
• Events. An event is a specification of an occurrence that 

affects significant change on the world. Events have 
preconditions – conditions in the world that must be 
true for the event to occur – and effects – conditions in 
the world that are different after the event completes.  

• Learning objectives. A learning objective is an abstract 

event that, in addition to the normal event structure, 
aggregates several primitive events that relate to a 
measurable skill.  

• Temporal constraints. Temporal constraints describe a 
partial ordering over events. Events unordered with 
respect to each other may happen concurrently in the 
world. 

• Causal links. A causal link describes causal relations 
between events where the effects of one event 
establish condition in the world necessary for a 
successive event to occur. 

A simple example scenario plan for a cultural negotiation 
mission is shown in Figure 3, for decision and problem 
solving training of Non-Governmental Organization 
emergency medical personnel in civil war regions. Boxes 
represent events. Note that the actual execution of any 
event may involve several successive actions on the part of 
the learner and non-player characters. Ovals represent 
learning objectives with the encapsulation relationship 
indicating which events correspond to which learning 
objectives. Not all events need be related to a learning 
event; connective events provide narrative coherence by 
linking events in one learning objective to those in another. 
 The original scenario plan is an input to the scenario 
adaptor. Additionally, the scenario adaptor requires domain 
knowledge in the form of a domain theory. The domain 
theory describes the way in which a particular world can 
evolve. In our scenario adaptor, the domain theory consists 
of event templates for all events that could ever possibly 
happen in the world, and learning objective decomposition 
rules. Event templates make reference to variables that can 
be bound to specific instances of entities, such as 
characters, objects, or places. Learning objective 
decomposition rules are grammar-like structures that 
describe legal combinations of events for a learning 
objective and can either be very specific, enumerating an 
exact set of events that must exist in the scenario when the 
learning objective is present, or partial, describing the 
types of changes to the world state that should occur.  
Importantly, these decomposition rules provide a guarantee 
that the scenario adaptor cannot produce scenario 
structures that are not pedagogically correct. See Young 
and Pollack (1994) for the form of the rules.  
 Additionally, the domain theory must provide an initial 
state and goal situation. The initial state is everything that 
is true about the virtual world before the scenario begins, 
including declarations of characters and their roles, places, 
and objects. The closed world assumption holds for the 
initial state. The goal situation describes what the scenario, 

 
Figure 3. A simple manually authored scenario plan. 

 



 

 

in terms of changes to the world state and anticipated 
changes to the learner, achieves.  
 Formally, at the event level, a scenario is a directed 
acyclic graph (DAG). A sound scenario is one in which all 
preconditions of an event are guaranteed to be true when it 
is scheduled to execute, and all learning objectives are 
decomposed to events. In other words, a sound narrative is 
one that does not violate the physics of the world as 
defined by domain theory. A coherent scenario is one in 
which, in the DAG formed by events and causal links, 
there is a path from each event to the goal situation. Any 
event that is not part of some path to the outcome situation 
is referred to as a dead end. The concept of coherence and 
dead ends is a computational interpretation of a cognitive 
model of narrative comprehension by Trabasso and van 
den Broek (1985). 

Adaptation Algorithm 
The scenario adaptation process is a specialized plan 
refinement search algorithm. Plan refinement techniques 
search a space where each node in the space is an instance 
of a plan (partial or complete) until a plan is found that has 
no flaws, or reasons why a plan cannot be considered a 
solution. Partial-order planning (cf., Penberthy and Weld 
1992) is an example of plan refinement search that starts 
with the empty plan. For each plan visited, a flaw is 
detected and all repair strategies are invoked, each strategy 
resulting in zero or more new plans in which that flaw has 
been repaired. These new plans are successors to the 
current plan and are added to the fringe of the search space. 
A heuristic is used to determine which plan on the fringe 
visit next. Repairing a flaw may introduce new flaws. 
 Our plan refinement search algorithm receives as input 
the following components: 
• A complete scenario plan – a partially ordered, 

hierarchical plan – composed of events within and 
outside of learning objectives.  

• An initial state and goal situation. Of particular 
importance are the learner state goal conditions 
indicating skills practiced or situations familiarized. 

• A domain theory. 
The first thing to note is that there are initially no causal 
connections from the initial state to events (or learning 

objectives), nor causal links from events (or learning 
objectives) to the goal situation. Thus, although a complete 
scenario plan is provided as input, the scenario is flawed. 
 Our adaptation algorithm is shown in Figure 4. We 
implement the following flaw types: 
• Open condition: an event has a precondition not 

satisfied by any causal links from events ordered before 
or the initial state. 

• Causal threat: An event has an effect that undoes a 
condition necessary for another event to occur with no 
ordering constraints preventing the interaction. 

• Un-decomposed event: An abstract event has not been 
decomposed. 

• Dead end: An event is not on a causal path to the goal 
situation. 

Each flaw type is paired with one or more repair strategies. 
Repair strategies can be additive or subtractive.  
Additive Strategies. Additive strategies are as follows. An 
open condition flaw can be repaired by instantiating a new 
event with an effect that unifies with the open precondition 
or by extending a causal link from an existing event to the 
open precondition (Penberthy and Weld 1992). Thus 
events are added to a plan in a backward-chaining fashion. 
A causal threat can be repaired by imposing ordering 
constraints between events (Penberthy and Weld 1992). An 
un-decomposed event can be repaired by selecting and 
applying a decomposition rule, resulting in new events 
instantiated, or existing events reused, as less abstract 
children of the abstract event (Young and Pollack, 1994).  
 Dead-end flaws can be handled in an additive fashion. 
We implement two additive dead-end repair strategies. 
First, if there is another event that has an open condition 
that unifies with an effect of the dead end, we can try to 
extend a causal link from an effect of the dead end to the 
open precondition of the other event. Second, we can shift 
an existing causal link to the dead-end event. This can 
happen if the dead end has an effect that matches the 
condition of a causal link between two other events. The 
dead-end event becomes the initiating point of the causal 
link, which may make the other event a dead end unless it 
has two or more causal links emanating from it. A third 
strategy is to ignore the flaw. This is used only as a last 
resort in the case that all other repair strategies, additive or 
subtractive, have proven to lead to failures. The intuition 
behind this strategy is that dead-end events are 
aesthetically undesirable but acceptable if they may be part 
of a necessary decomposition.  
Subtractive Strategies. Subtractive strategies repair a flaw 
by deleting the source of the flaw from the plotline 
structure. Subtractive strategies are essential for plot 
adaptation because pre-existing events may interfere with 
the addition of new events, resulting in outright failure or 
awkward workarounds to achieve soundness and 
coherence. Deletion is straightforward. However, if an 
event to be deleted is part of a decomposition hierarchy, all 
siblings and children are deleted and the parent event is 

The algorithm takes a scenario plan,and  initial state and goal 
situation, and a domain theory Λ. 
function ScADAPT (plan, init, goal, Λ) returns solution or fail 
 fringe ← {plan} 
 loop do 
  if fringe = ∅ then return failure 
  plan ← POP(fringe) 
  if plan has no flaws then return plan 
  flaw ← GET-ONE-FLAW(plan) 
  newplans ← REPAIR(flaw, plan, Λ) 
  fringe ← INSERT-AND-SORT(newplans, fringe) 

Figure 4. The plotline adaptation algorithm 

 



 

 

marked as un-decomposed. This preserves the intuition 
authored into quests and decomposition rules.  
 Open condition flaws can be subtractively repaired by 
deleting the event with the open precondition. Causal 
threat flaws can be subtractively repaired by deleting the 
event that threatens a causal link. Dead end flaws can be 
subtractively repaired by deleting the dead end event. We 
implement a heuristic that prefers to retain events in the 
original quests as much as possible. Deletion may cause 
new flaws that cause later repair by additive strategies. 
Systematicity. The ability to add and delete events can 
lead to non-systematicity – the ability to revisit a node 
through different routes – and infinite loops. To preserve 
systematicity, we prevent the deletion of any event that 
was added by the algorithm. Events inserted by the 
algorithm are marked as “sticky” and cannot be 
subsequently deleted, whereas events in the original 
plotline are not sticky and can be removed. 

Example 
The short scenario plan in Figure 3 is has two learning 
objectives for Non-Governmental Organization emergency 
medical personnel operating in an area of civil war. The 
scenario adaptor personalizes it to a particular learner. 
Assume this learner is proficient at transporting casualties, 
but needs additional practice negotiating safe passage 
through militia checkpoints. The goal situation thus 
enumerates practiced(stabilizie-casualty) and 
practiced(negotiate-passage) as desired outcomes, as 
well as a world goal condition that the casualty is returned 
to the hospital. 
 First, the Stabilize-Casualty learning objective is 
linked to the goal situation. However, the Transport-
Casualty learning objective is a dead-end that cannot be 
linked to the goal situation and is deleted along with all its 
associated events. The event Dress-Wound (3) becomes a 
dead-end and the condition in the goal situation that the 
casualty is at the hospital becomes an unresolved. To 
resolve the goal situation, a new connective event, 

Transfer-To-Evac-Team (7) is instantiated, which is 
eventually connected to Dress-Wound, resolving Dress-
Wound’s dead-end status. Figure 5 shows the scenario plan 
at this point. 
 The goal condition practiced(negotiate-passage) is 
satisfied by instantiating a new learning objective,  
Negotiate-Safe-Passage. At this time, a decomposition 
rule is selected, resulting in the instantiation of several 
primitive events (8-10) in which the learner contacts the 
checkpoint guard, negotiates passage, and allow him or 
herself to be escorted to the casualty. However, Escort-
To-Casualty (10) is a dead-end. This is resolved by 
moving the link from Find-Casualty (1) to Escort-To-
Casualty, making Find-Casualty a dead-end instead. 
This is finally resolved by removing Find-Casualty. 
 There is one last flaw to consider: where did the 
checkpoint come from? It is not part of the initial state (it 
would have been impossible to predict its need). The 
Contact-Guard event (11) requires a checkpoint, which is 
resolved by instantiating an event in which a checkpoint 
gets set up before the learner begins the scenario. Once this 
is resolved, there are no more flaws; the final scenario plan 
is shown in Figure 6.  

Conclusions 
Our scenario adaptation process is capable of taking 
existing, human-authored scenarios, provided in a 
particular representation, and adapting them to the needs 
and abilities of individual learners and to update them to be 
relevant to changes in the real world. We achieve this by 
providing customization information into a plan refinement 
search process modified to be able to add and delete 
hierarchical scenario content. 
 Automated Scenario Authoring effectively leverages 
human scenario authoring ability to provide potentially 
exponentially many, novel personalized experiences. 
Scenario adaptation can theoretically produce as many 
variations of a given plotline as the size of the power set of 

 
Figure 5. The scenario plan after removing a learning objective. 

 
Figure 6. The final scenario plan after adaptation. 

 



 

 

available learning objectives. In practice, the number may 
be lower because a large fraction of the original content 
will be retained in each adaptation. One of the strengths of 
scenario adaptation is the ability to opportunistically 
discover new transitions between learning objectives in 
order to preserve coherence.  
 Future work is required to measure the pragmatic 
authorial leverage of the system, scaling of scenario effort 
in target domains, and pedagogical effectiveness of 
adapted scenarios. In other work (Li and Riedl, 2010), we 
show that a variation of our system designed for 
personalizing computer role-playing games has favorable 
qualities with respect to narrative coherence. To provide 
further evidence of the authorial leverage, experiments are 
needed that include authoring of training scenarios and 
measurements of variation. To provide further evidence of 
pedagogical utility, experiments are also needed that 
include learners interacting with the training scenarios. 
 Scenario adaptation is one step toward overcoming the 
bottleneck of manual content creation for scenario-based 
computer training games and simulations. By overcoming 
this bottleneck, learners can be presented with a greater 
number of unique learning experiences. Those learning 
experiences can be made highly relevant to individual 
learners by adapting them to that learners’ specific needs 
and abilities, which in theory can lead to more effective 
acquisition of expertise in learning domains involving 
cognitive skills. 
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