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ABSTRACT 
The term social navigation refers to the process of seeking social 
interaction as a source of navigational support. In this paper we 
present a computational model of social navigation as an 
extension to an existing conceptual, non-computational model of 
general navigation.  We argue that such models are important in 
designing effective shared environments for information 
navigation. We describe support for the model with a simulation 
environment for social navigation and an analytical model that 
addresses some of the quantitative implications of social 
interaction on the process. 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: Hypertext/ 
Hypermedia - navigation; User Interfaces - theory and methods.  

General Terms 
Design, Human Factors. 

Keywords 
Social navigation, simulation 

1. INTRODUCTION 
Almost all real-world activities at some point involve interaction 
with others or are influenced by the presence and opinions of 
others in a social setting [7].  Navigation, while studied 
extensively as an individualistic activity, is no exception.  
Navigation can be understood as situated action where an agent is 
embedded in the surrounding environment [12].  The agent can 
sense navigation-related information in the environment or can act 
upon knowledge stored in a cognitive map, where a cognitive map 
is a spatial description of the environment acquired through 
observations of the environment over time; it is used to find 
routes to the agent’s goals [13, 11].  These two sources of 
information, the environment and stored knowledge, are 
complementary, with perception giving the agent access to 
information concerning immediate action, and cognitive maps 
allowing the agent to look ahead at possible future states rather 

than act only on local information [3]. 

In accounts of human navigation in real-world environments, a 
more complex picture of the process emerges. A study of route 
finding through unfamiliar city roads shows that the vast majority 
of people choose to interact socially with others in order to 
acquire route-finding information [9, 10].  Other studies support 
the concept of social communication as a preferred form of 
knowledge acquisition in the face of uncertainty [16].  Navigation 
is a social, and often times collaborative, task [11].   

The term social navigation refers to the process of seeking social 
interaction as a source of navigational support [6, 8, 4, 5].  While 
there is some debate whether social navigation is distinct from 
navigation in the abstract, social navigation can be distinguished 
by the practical tools used to solve the navigation problem [1, 18].  
Social navigation is characterized by the use of other people’s 
experiences in order to acquire knowledge for navigation [14] in 
addition to affordances for action that can be perceived in the 
environment.  These experiences are acquired by interaction with 
others through a variety of social media, including computer-
mediated communication systems, and are integrated into one’s 
own cognitive map.  Social navigation characterizes task-oriented 
activities in physical and information spaces that are populated by 
other people and agents.  Practical examples of social navigation 
include finding a location in a city and finding products that meet 
desirability requirements in a shopping center or e-commerce 
Web site. 

This paper presents a model of social navigation as an extension 
to an existing model of general navigation and describes the 
model in computational terms.  This description is followed by 
applications of the model and a simulation of navigation that 
addresses some of the quantitative implications of social 
interaction on the process. This work extends and refines an 
earlier, preliminary model based on the same concepts [14]. 

2. A MODEL OF SOCIAL NAVIGATION 
A recent conceptual model of navigation, due to Spence [17], 
treats navigation as the creation and interpretation of an internal 
mental model.  The model contains four stages of processing, as 
shown in the central cycle of Figure 1: browsing, modeling, 
interpretation, and revision of the browsing strategy. An agent 
begins with the navigational goal of visiting a specific state. In the 
domain of navigation, the current state is the local environment 
and operations move the agent from one locale to the next. During 
the browsing stage, the navigational agent senses the surrounding 
environment and registers what is referred to as the environmental 
content.  The environmental content is what the environment has 
to offer the agent in terms of the navigational task.  Once the 
environmental content has been registered, the modeling stage 
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takes place in which the content is used to build an internalized 
model of the local surroundings and to add to the internalized 
global model of the environments that have been visited and will 
be visited.  During the interpretation stage, the internalized 
models, both local and global, are analyzed to determine whether 
the current locale meets the criteria for successful navigation and, 
if not, how much farther the goal is thought to be.  Finally, during 
the revision stage, the internalized model of the environment and 
the interpretation are used to determine a browsing strategy – 
what the next best step, or series of next best steps, will be for the 
navigation task.  The browsing strategy is a task-oriented plan for 
interacting with the environment in order to achieve progress 
towards the navigational goal.  Executing the browsing strategy 
causes movement, delivering the agent to another locality where it 
can begin the iterative process again by browsing the 
environmental content. 

Spence’s model, as it stands, is not sufficient to deal with the 
complexities of situating a navigational agent in a social 
environment.  While at the most general level, navigating in social 
environments is still fundamentally a task of sensing, planning, 
and execution, the possibility of social interaction as a source of 
navigational information introduces the complexities of inter-
agent communication.  Traditionally, navigation is viewed as the 
interaction between the agent and the environment; all 
navigational decisions stem either from observations of the 
environment or knowledge in the agent’s memory.  Social 
environments yield a third possible source of navigational 
knowledge: other agents in the environment who have previous 
experience.  The agent can choose to interact with other agents 
socially in order to learn from their experiences and thus delegate 
the decision-making process to another agent instead of relying 
strictly on the environment or personal memory.  Social 
navigation is no different from navigation in a social vacuum, in 
the abstract, but what changes when an agent performs in a social 
environment is the richness of sources of decision-making 
knowledge that can be drawn from. 

In any given state, the agent is tasked with updating its browsing 
strategy during the revision stage.  This is tantamount to decision-
making using knowledge about the local and global environment.  

We extend Spence’s navigation model by re-formalizing the way 
in which environmental content is encoded into the internal model 
and how that model is interpreted in order for the agent to make a 
decision about appropriate browsing strategy.  Our extension to 
Spence’s model is as follows.  The three sources of decision-
making information—memory, the environment, and other 
agents—are collected into the internal model of the environment. 
It should be noted that information from other agents is stored in 
those agents’ long-term memories and is accessed through 
communicative actions.  Since the information from other agents 
is elicited through communication, those agents do not need to be 
locally situated, as long as the social medium (e.g. a phone booth 
or computer terminal) is situated in the local environment.  Once 
formed, the internal model and its interpretation are used to revise 
the browsing strategy.  Information from the agent’s memory can 
be interpreted as a pre-existing model of the navigational task 
held by the agent before the navigational task begins.  External 
knowledge, both from the environment and from others, is 
acquired during the browse stage and appended to the internal 
model.  Therefore, when the strategy revision stage comes, the 
choice of action is a matter of choosing the best response, based 
on heuristic pattern matching with the internal model stored in 
memory.  Figure 1 shows how the stages of Spence’s model 
interact with long-term memory to form the decision-making 
process of navigation.  The gray region is long-term memory.  The 
internal model of the environment, which is stored in long-term 
memory, is interpreted with the use of heuristics.  The internal 
model plus the interpretation form the basis for decision making. 

The decisions involved in formulating and revising a browsing 
strategy are related to those faced by an agent that performs 
interleaved planning and execution.  Knowledge about the current 
state of the agent is considered and a decision about the next 
operations to be performed is made.  However, due to the nature 
of the navigation task and uncertainty in the environment, the 
agent often only has partial knowledge of the solution path.  
During the revision stage, the agent must decide whether it is 
better to stay and attempt to refine its strategy or to proceed with 
its partial results. In the latter case, a significant motivation for 
execution before the reasoning process is complete is to move the 
agent into a state where information is available and further 
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Figure 1. Decision-making in Spence’s framework for general navigation 
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processing is possible.  This decision is encountered in a number 
of different contexts; it is sometimes referred to as an 
exploration/exploitation tradeoff. 

The agent can make a rational choice in this situation by 
comparing the relative values (or cost) of its options.  In real-
world environments that support social navigation, revising a 
browsing strategy is almost entirely dependent on information 
gathering and interpretation.  The value of reaching a given state 
is thus based on the navigational information that it provides – 
information relevant to reaching the agent’s navigational goal. 
Equivalently, the information gained in a state is evaluated by the 
extent to which it reduces future navigational cost. This 
information is obtained from the local environment, from 
memory, or from others’ memories.  In any state, the agent can 
compare the cost of continuing to revise its strategy, based on 
locally available information, against the cost of moving to 
another state for further information. (Dean et al. [3] refer to the 
latter type of actions as point-to-point traversal tasks.) In other 
words, navigation is called for when the strategy revision process 
has completed or when the current state does not yield enough 
information for the agent to generate further profitable revision. 

There are two sources of uncertainty in the agent’s evaluation,   
arising from the correctness of the information gained in any state, 
and the potential difficulty of reaching that state to obtain the 
information.  For example, I may know that a colleague has had 
information in the past about where to retrieve documents that I 
need, but I also know that my colleague is somewhat forgetful, 
rendering his current information suspect, and that he is rarely in 
his office, which means that at any given time he may or may not 
be reachable for this information.  In dealing with this uncertainty, 
an agent can rely on estimates of information quality and the 
probability of reaching specific states, in order to compute 
expected costs for navigation actions. 

To summarize: Operating under the navigation model, the agent 
builds a representation of the environment and stores it in long-
term memory.  This representation includes what the agent knows 
about the environment through which it is navigating, what the 
agent believes it can further learn from the environment, and what 
sources of social media are available.  The nature of the agent’s 
internal representation is such that cost estimates of revising the 
browsing strategy through communication through social media 
are quickly determined.  Along with the cost estimates are also 
estimates of message uncertainty.  Space limitations preclude a 
more thorough description of how the internal representation is 
used to determine these estimates (but see [15] for more detail.) 

These value and uncertainty estimates quantitatively comprise 
utility values of different strategies for revising the browsing 
strategy.  Comparing the utility for revising the strategy to the 
utility of executing the partial plan for navigation provides the 
agent with the foundation for rational navigational behavior in the 
presence of social media.  We assume that the agent always has a 
partial plan of at least one step.  This is the next locale the agent 
should navigate based solely on local environmental cues.  This 
step may or may not be optimal.  The agent may also contain a 
more substantial partial plan, which is often desirable.  We also 
assume that the estimates the agent makes of cost and uncertainty 
with regards to both plan revision and plan execution are not 
guaranteed to be accurate and will reflect internal biases. Our 
model of social navigation can be expressed in decision-theoretic 
terms and is equivalent to one specific case of congregating multi-
agent systems [15].  A congregation [1] is a confederation of 

agents that co-locate in order to benefit from the abilities other 
agents provide.  In the case of social navigation, congregations 
tend to be small and short-lived, forming where the environment 
facilitates co-location or provides social media through which to 
communicate. 

In the next section we discuss a simulation based on this model, to 
explore its implications for social navigation in specific situations. 

3. SIMULATION AND ANALYSIS 
To evaluate our model of social navigation, we have developed an 
abstract simulation to test how social awareness affects 
navigation.  The simulation should provide a reasonable 
approximation of agent behavior when confronted by a variety of 
environments and given various preferences for social media 
usage.  By analyzing the simulation results, we will be able to 
determine whether the model is capable of generating reasonable 
behaviors in navigational agents. 

The simulation does not model specific agents or specific 
environments, but instead operates on classes of environments 
and agents, defined by the parameterization of each.  The 
abstraction in this design allows us to analyze the broad patterns 
of behavior in a large variety of environments without getting 
bogged down by the details of implementing and testing real 
agents and the design and construction of real environments.  A 
more complete study can be performed by developing actual 
social navigation agents, as supported by the environment 
described in Section 4. 

This simulation is intended to provide insight into behavioral 
patterns of agents that use the model of social navigation 
proposed above.  Through the simulation, we can vary the 
environment through which a simulated agent would navigate and 
aspects of the simulated agent itself to determine how different 
combinations of parameters will affect overall performance.    We 
expect to see patterns of behavior that are plausibly explained by 
our model and by anecdotal evidence in the social navigation 
literature.  Additionally we would like to know what features of 
the environment and of the social media used in social navigation 
have effects on agent performance when navigating through 
unfamiliar spaces?  Specifically, under what conditions are social 
navigational strategies appropriate and when should more 
traditional navigation strategies be adopted? 

3.1 Simulation Design 
The simulation is a way of quantifying the ways in which social 
interaction affects navigation.  The simulation engine assumes an 
arbitrary environment in which navigation can be represented as 
following links through an undirected graph.  At each node in the 
graph, one or more out-link is optimal in that it is part of the path 
that will take the agent from the current node to the goal in the 
shortest number of steps.  There can be several out-links that are 
part of sub-optimal, but valid, paths to the goal.  Yet other out-
links, referred to as “dead ends,” take the agent to nodes that are 
not part of any path to the goal unless backtracking is performed.  
The complexity and uncertainty of the environment can be 
parameterized by six variables, independent of the connectivity of 
the graph.  For each of these three classes of out-links, there is an 
associated cost of following an out-link and a probability that that 
out-link class will be chosen. In a perfectly ambiguous 
environment (e.g., some mazes), every out-link has the same 
probability of being chosen.  If a maze is composed of four-way 
intersections, then the probability of choosing the optimal out-link 
is 1/3 (we do not consider the link from which we arrived at the 



current node).  In a less ambiguous environment, this probability 
increases.  Given the probabilities of choosing a class of out-links 
at any given node in the graph and the optimal length from start 
state to goal state, we compute the expected number of nodes 
visited using a binomial distribution.  This expected number of 
nodes visited gives us a baseline for which to compare results 
using social navigation.  In summary, the navigation environment 
is parameterized by six values:  

• Dopt, the optimal distance from starting point to goal, 

• Poptlink, the probability of choosing an optimal out-link 
in any state,  

• Pdeadlink, the probability of choosing a dead-end,  

• Coptlink, the cost of following an optimal out-link, 

• Csublink, the cost of following a sub-optimal link, and 

• Cdeadlink, the cost of following a dead-end link,  

The probability of choosing a sub-optimal link is left implicit, 
since this value plus the sum of Poptlink and Pdeadlink must be one. 
Poptlink, Psublink, and Pdeadlink implicitly capture the ease through 
which an agent can navigate a network of nodes without 
specifying why it is easy or hard. For example, Pdeadlink may be low 
when the environment contains many navigational cues, such as 
landmarks.  A more specific method of analyzing the impact of 
environmental attributes is described in Section 4.   

Socialization during navigation is parameterized by four 
additional variables: 

• Dsocial, the distribution of social media, as measured by 
the average number of nodes the agent must visit before 
encountering another instance of a social medium, 

• Csocial, the perceived cost of using social media,  

• Tsocial, the actual time it takes to use the social medium, 
and  

• L, the number of steps generated through illocution.   

Social media can be other people, phones, email, or any 
communication technology through which illocution can occur.  
On a university campus, the distribution of other people through 
the environment might be quite high.  In a city environment, 
telephones are distributed such that one can be found every few 
miles.  Alternatively, email might have a very low distribution 
because publicly accessible computer terminals are rare. 

Following the model of social navigation, the simulated agent 
decides at each stage whether to use social navigation or to 
reactively search for the goal.  If reactive search is chosen, the 
simulation engine computes the expected number of nodes visited 
until the agent must make another decision.  While the model 
calls for a decision to be made at every node, in practicality the 
decision will not vary until something in the environment has 
changed significantly, which is based on the distribution of social 
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media in the environment.  If social navigation is chosen, the 
simulation engine computes the expected number of nodes visited 
before reaching an instance of the social medium.  This is 
exploratory navigation that is not directly goal-related.  The 
number of plan steps received through illocution is then 
subtracted off the total distance to the goal as goal-directed 
navigation; we assume that once directions are received, no error 
in navigation is made while the plan is being executed.  The cycle 
of planning and execution is repeated iteratively until the goal is 
reached. 

The simulation engine allows for only one type of source of social 
medium at a time, although the model is not limited in this way.  
In more complex environments, different remote sources of 
information might not overlap in the portions of the navigation 
environment they are knowledgeable about, which means that not 
all social information sources are equivalent.  For the purposes of 
the simulation we assume that remote transactions cost the same 
and that one always exists that can assist the navigational agent as 
long as some instance of a social medium is locally available. 

The simulation engine computes five values as results: 

• Dfinal, the distance the agent is expected to travel, 

• Tfinal, the elapsed time the agent is expected to arrive at 
the goal,  

• RD, the percentage of the baseline (without social 
navigation) distance traveled when social navigation is 
used, 

• RT, the percentage of the baseline elapsed time when 
social navigation is used, 

• and Nsocial, the number of times the agent chooses to 
interact socially. 

Expected distance and expected time traveled are two commonly 
measured variables in navigation research from which we can 
deduce the level of difficulty navigation in the parameterized 
environment will pose the agent.  The percentage measurements, 
RD and RT, tell us whether social navigation is more efficient in 
certain circumstances, how much more efficient social navigation 
is, and, as other parameters change, how much slower the distance 
and time traveled using social navigation changes with respect to 
distance and time traveled without social navigation.  Nsocial is 
redundant because it grows proportionally with Dfinal, but turns 
out to be important when analyzing certain anomalies observed in 
the other measured values.  It should be noted that while the 
behavior of the simulation is expressed in terms of turn-based 
agent decision-making, the output values are actually computed 
using parameterized mathematical formulae. 

3.2 Simulation Procedure 
The simulation procedure was purely exploratory.  Of the ten 
parameters to the simulation engine, two were chosen at a time 
and varied across a range of values while all other parameters are 
held constant.  For example, Dopt was varied from 100 to 400 by a 
step size of 20; Poptlink and Pdeadlink were varied from 0.1 to 1.0 by 
0.1; Coptlink, Csublink, and Cdeadlink took on ratios of 1:2:4, 1:3:10, 
and 1:5:15; and so forth, all pairs varying independently.  The 
dataset generated by such a pairing can be examined for any 
interactions between the two parameters.  There are 45 possible 
M-by-N analyses that can be made, although not all combinations 
prove to be useful.  Of the M-by-N analyses that were chosen, 
each one was run several times with different sets of constants in 

order to assess whether there are any additional interactions. 
Different sets of constants were used and the data set was 
regenerated in order to assess whether there were any 3-way 
interactions.  Data sets were graphed in various ways and 
observed for interesting patterns.  Initially, the simulation engine 
was run without any of the social navigation parameters.  This 
enabled us to ensure that there were no unexpected patterns that 
arose from various combinations of environmental 
parameterizations as well as provided baseline patterns that we 
could contrast to patterns involving social navigation.  

3.3 Simulation Results 
Running the simulation engine without the four social navigation 
parameters gives predictable results.1  As the probability of 
choosing the optimal out-link decreases, the expected distance 
and time to reach the goal increases proportionally.  The 
probability of choosing a sub-optimal out-link and the probability 
of choosing a dead-end link determines which of the respective 
cost parameters dominates the growth. In Figure 2, each contour 
represents the (linear) relationship between these two 
probabilities, Poptlink and Pdeadlink, for a constant level of distance 
traveled, Dfinal.  As described above, Dfinal increases in a 
northwesterly direction over the contour plot, as Poptlink decreases. 

With this baseline established, we can look at the effects that 
social interaction has on navigation.  Social navigation decreases 
the expected distance the agent must travel to reach the goal, but 
only in certain circumstances.  When conditions are right, the use 
of social interaction increases the expected travel distance, as 
indicated by RD > 1.  The remainder of this section is broken into 
a discussion of the parameters that cause monotonic increases in 
the four dependent variables and the discussion of the parameters 
that cause non-monotonic increases in the dependent variables. 

Once we compensate for the integer settings of Nsocial, the 
monotonic patterns can be summarized as follows. 

• The distribution of social media throughout the environment, 
Dsocial, has a significant effect on the distance the agent will 
travel, Dfinal, as shown in Figures 3.2  As the distance the 
agent must travel to reach other social media increases, the 
overall distance to travel to reach the goal will increase.  In 
fact, Dsocial does not need to grow very large at all before 
social navigation is less efficient than blind search.  The only 
tempering factor is the uncertainty of the environment.  
When Poptlink is close to 1.0 (i.e., when the uncertainty of the 
environment is very low), on the right hand side of the plot, 
the distribution of social media has a reduced impact on Dfinal 
because fewer errors are made while the agent is trying to 
congregate. 

As the environment becomes less uncertain, however, the 
usefulness of congregation is reduced (unless the usefulness 
of congregation, L, increases proportionally, which is not 
addressed here.)  The basic pattern is shown in Figure 4. 
When uncertainty in the environment is high, on the left 
hand side of the plot, low distribution of social media 
throughout the environment can result in the agent following 
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be found in a technical report [15]. 
2 The irregularities in this graph are due to Nsocial, which increases 

in a step pattern as the number of decision points increases, only 
taking on integer values. 



a lengthy path. However, in an environment with low 
uncertainty, on the right hand side of the plot, any navigation 
is extraneous because reactive search can reveal the path to 
the goal just as easily or even more easily if the distribution 
of social media is low.  

• The perceived cost of social interaction, Csocial, has little 
effect on distance unless Csocial is very large.  When the cost 
of social interaction is very large, then the number of social 
interactions, Nsocial, quickly drops to zero.  It appears that 
perceived cost is primarily a factor for choosing between the 
best source of interaction and best social medium through 
which to conduct the interaction.  In this simulation, which 
only looks at the possibility of one social source at a time 
(assuming the given source is the best), perceived cost has 
little effect. 

• The actual time to use an instance of the social medium, 
Tsocial, predictably causes an increase in the overall time to 
reach the goal, Tfinal.  The actual time required to complete 
illocution is not factored into the utility of planning because 
the agent does not know this value.  The only defense the 
agent has against high and unwieldy actual transaction times 
is to estimate the time required and incorporate that into its 
perceived cost of the social medium.  Ideally, we would like 
to see perceived cost have some effect on Tfinal as Tsocial is 
varied.  In fact, we do find that, in general, if actual time 
Tsocial is low, the agent benefits from a low cost to social 
media usage Csocial, as shown on the left hand side of the plot 
in Figure 5, which shows contours for RD, the gain/reduction 
in distance traveled when social navigation is used. 
Conversely, it is also apparent that if actual time is high, the 
agent benefits from a high value of Csocial.  Only when Tsocial 
and Csocial are inversely related, in the lower right part of the 
plot, do we see poor performance from the simulated social 
navigation agent. 

The non-monotonic observations, which we will summarize 
without plots, show complex interactions between two or more 
parameters that would not be immediately obvious without 
generating large data sets from the simulation.  The most 
interesting interaction occurs between L, Dsocial, and Csocial.  The 
first thing that is noticed is that if Dsocial > L, then RD > 1; i.e., 
when the number steps between instances of social media is 
greater than the number of steps generated by illocution, then 
distance traveled with social navigation is greater than without. 

This observation makes sense, because if Dsocial is large and L is 
small, then the agent is going to expend more energy getting 
assistance than it gets back from obtaining assistance.  The value 
L can be thought of as the quality of responses through illocution.  
A small value of L means that the help the agent is receiving is not 
advancing it greatly towards its goal.  The value of L can be 
attributed to the knowledgeableness of social guides in the 
environment and can also be attributed to the expressiveness of 
the communication mediums available.  Aside from the quality of 
social contact, we assume that social contacts do not lie.  The non-
monotonic relationship is evident; as L increases the distribution 
of social media has a decreasing effect on Dfinal and RD.  This 
lessening of effect occurs more rapidly than linear and, at some 
point, actually reverses itself. The non-linear decrease and 
reversal is non-intuitive, since one would guess that a large L 
could only be a benefit to a navigation agent. However, upon 
closer inspection, we observe that when the distance the agent 
must travel to use an instance of a social medium is greater than 

the number of steps acquired through illocution, social navigation 
is less efficient than reactive search; the agent expends more 
energy reaching the social medium than it receives as reward for 
illocution. When social navigation is beneficial, increasing L is 
beneficial up to a certain point – where L is slightly smaller than 
Dopt.  After this point, social navigation can actually be harmful to 
the agent’s performance unless Csocial is great enough to 
discourage the agent from using social navigation when the goal is 
within reaching distance; a reactive strategy will be more 
beneficial.  If fact, other simulation results show that increasing 
Csocial does diminish the non-linearity because the agent will be 
less likely to engage in social navigation when close to the goal. 

In general, these results are consistent with independent 
observations that human navigators, when faced with navigation 
in an unfamiliar environment, will adjust their goals to seek out 
advance information through social interaction, even when such 
goals took them off of the direct path [9].  Human navigators 
prefer social navigation to map reading because social instructions 
narrow the space and provide contextually relevant information 
that cannot be acquired easily without prior experience [10].  
Other investigators [4, 8, 9, 10] cite phenomena where human 
navigators perform non-goal-related navigation in order to ease 
the cognitive demands of an unknown environment.  

4. MUNE 
The goal of our work is to understand real environments for social 
navigation, in which people communicate with one another for 
information. Our model and simulation are a step toward this 
goal, in that they can help us evaluate our general intuitions about 
the nature of social navigation environments.  Nevertheless there 
remains a gap between theory and practice. We need an 
environment in which we can evaluate detailed design decisions 
that may influence social navigation.  For example, the model and 
simulation say little about how to position instances of social 
media of different types throughout the environment (e.g., public 
telephones and information desks scattered through a shopping 
mall.)  That is, to fully test our model of social navigation, we 
must be able to implement specific environments rather than rely 
on a simulation of abstract environments.  If one understands how 
synchronicity, directness, and social presence [14] affect the 
perceived cost of using social media for a given population, one 
can select the social media with the most desirable traits to place 
in the environment.  Similarly, if social media do not exist that 
already have the most desirable traits, new social systems can be 
designed that have the most appropriate values of synchronicity, 
directness, and social presence.  The evaluation of specific 
environments can indicate whether social navigation is 
sufficiently supported and, if not, how the environment can be 
redesigned to better support user tasks and preferences. 

To evaluate a social environment for navigability, we need a 
better way to simulate an arbitrary navigation environment that 
reflects relevant details about the information in the domain.  The 
environment to be navigated with or without social navigational 
aid could be semantic, such as a database or the World Wide 
Web, or spatial, such as a MUD, CVE, or a real city.  In order to 
simulate as wide a range of environments as possible, we have 
created MUNE, a Multi-User Navigation Environment based on 
the concept of the MUD.  A MUD is a textual virtual environment 
that users can navigate through and interact with other users.  
Where a MUD emphasizes identity and interpersonal relationships 
among human users, MUNE is designed to be a navigational test 
bed for software agents.  Instead of natural-language descriptions 



of “rooms,” MUNE uses an expressive communication protocol 
that is easily parsed by software agents.  Beyond navigation and 
the basic face-to-face interactions that can occur in a MUD, 
MUNE allows objects – referred to as “social media” – to be 
scripted into the world that can facilitate communication such as 
phones, email, etc. 

MUNE, unlike most other MUDs, does not assume a geographical 
world; its “rooms” can be designed to look like nodes in a 
semantic environment, such as the World Wide Web or a 
relational database.  Instead of links between rooms being 
described as “east” or “north,” the links can be described as 
hyperlinks or other such mechanisms for navigation.  MUNE’s 
flexibility stems from its simplicity and its extensibility.  MUNE 
only knows about room descriptions and links between rooms and 
user locations but allows for additional world descriptors.  
Additional world descriptors can be included in the environmental 
description which MUNE does not attempt to understand.  Instead 
additional descriptors are passed to the software clients who are 
responsible for their interpretation.  For example, in the real 
world, a person standing on top of a hill is able to see for miles 
around.  While it is possible for the room representing the top of 
the hill to be described in human-readable form in such a way as 
to give the appearance of being able to see for miles around, a 
software agent would need a more formal description.  Such 
formal descriptions can be coded into the hilltop room as a world 
descriptor extension.  Figure 6 show a conventional, spatial world 
based on geographic terrain in MUNE. The LINK descriptor is a 
basic field that tells MUNE which actions are legal in a given 
room; the LOOKAHEAD descriptor is an extension allows 

software agents to see one or more rooms ahead.  The gray circle 
designates what an agent can see from the hilltop room. 

Inside the MUNE world, software agents can be given goals to 
navigate to. MUNE is agnostic with respect to agent design; we 
have tested agents in MUNE that employ depth-first search, 
reactive search, and search using social navigation.  MUNE is 
also flexible enough that a large variety of environments can be 
simulated.  Social navigation agents can be tweaked to behave 
according to certain preferences and preconceived notions about 
social interaction that real users of the simulated environment 
might have.  The navigability, both in terms of general navigation 
strategies as well as social navigation strategies, of the 
environment can be evaluated by measuring and comparing the 
performance of social navigation software agents, conventional 
navigation software agents, and human users in the simulated 
MUD environment.  Human users can interact with the simulated 
MUD environment through client software that converts MUNE 
world specification format into human readable room 
descriptions, although human users may find the textual nature of 
MUDs more cumbersome to interact with than a visual spatial 
environment.  Because the leanness of textual descriptions is 
limiting to human users and not to software agents, it may not be 
possible to directly compare the performances of human users and 
software agents operating within MUNE, unless the conditions are 
well controlled for or more expressive client programs are 
developed.  Once performance measures have been collected, the 
navigation environment can be easily adjusted and social media 
can easily be re-distributed until a desirable level of performance 
is reached. 

Although we have implemented some simple environments in 
MUNE, we have not yet carried out an extensive evaluation. 
Nevertheless our preliminary work leads us to believe that it can 
play a complementary role to the simulation described in Section 
3.  As is generally the case in building interactive systems, 
automated tools can inform and improve the preliminary design of 
a software environment, but eventually users must become 
involved in order to evaluate the details.  MUNE is designed for 
this purpose, to support a smooth development path from abstract 
navigation agents moving through an abstract simulation, through 
implemented software agents moving through a more detailed 
environment, further through real human users interacting in the 
same detailed environment, and finally to a deployed social 
navigation system that incorporates the lessons learned at each of 
the previous stages.  

5. CONCLUSIONS 
The simulation of navigation in social environments has shown to 
produce reasonable results and shows that, in most circumstances, 
social navigation results in superior navigation performance over 
strictly reactive approaches.  One would assume from the 
commonality of social navigation in human behavior [8] that 
social navigation is strictly more efficient than asocial 
navigational practices, such as reactive search.  The simulation, 
however, revealed the following situations in which using a social 
navigation strategy actually detracts from navigation performance: 

• The environment is so uncertain that reaching the social 
medium incurs large penalties. 

• The reward for pursuing social navigation does not dominate 
the cost of reaching the nearest social medium. 
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• The perceived cost of using a social navigation strategy is so 
low that the agent pursues social navigation when a reactive 
approach would serve better. 

Social navigation assumes helpfulness and is bound to fail when 
this assumption does not hold because of environmental 
conditions.   

We have also seen that an agent that can reasonably estimate the 
cost of using social navigation will perform much better than an 
agent that cannot.  The estimate, however, does not have to be 
accurate for performance to be good, only that the agent estimates 
the cost to be high when the time to use the social medium is in 
fact high or that the agent estimates the cost to be low when the 
time to use the social medium is in fact low.  It is fortunate that 
the agent only requires a reasonable estimate and not an accurate 
estimate because human use of heuristics to make decisions relies 
on approximate situation assessment.   

Finally we have seen that social navigation is more beneficial in 
environments that are highly uncertain than otherwise.  Within 
highly uncertain environments, benefit from social navigation 
comes only when instances of social media are widely available.  
In an uncertain environment, reactive search will cause the agent 
to make many mistakes that will be costly in terms of the distance 
the agent travels.  Social navigation can reduce the number of 
mistakes, but only if the agent can reach social media without too 
much difficulty. 

While the simulation has shown that our model of social 
navigation can produce plausible results, it remains to be 
evaluated in more detail.  A more detailed analysis of social 
navigation is not within the scope of this research, but the 
framework for a more detailed experiment is already in place.  
The MUNE system can be used to extract more detailed behavior 
patterns from agents that use social navigation.  Due to the nature 
of MUNE, these agents can be software agents, implementing the 
model of social navigation described above, or they can be human 
agents.  We expect any detailed analysis to fall within the patterns 
observed through our more limited simulation.  Further work is 
needed in order to determine if the cost framework for choosing 
between planning and execution can sufficiently integrate all the 
factors that an agent might consider when choosing between 
planning – using the environment, memory, and others’ 
experiences – and execution.  
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