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ABSTRACT 
This paper describes a set of visualization techniques for 
interactive planning in a physical force simulation called AFS. We 
have developed a 3D environment in which textures are overlaid 
on a simulated landscape to convey information about 
environmental properties, agent actions, and possible strategies. 
Scenes are presented, via automated camera planning, such that 
some simple agent goals can be induced visually with little effort. 
These two areas of visualization functionality in AFS exploit 
properties of human low-level and intermediate-level vision, 
respectively. This paper presents AFS, its visualization 
environment, and studies we have run to explore the relationship 
between AFS visualizations and the high-level planning process.  

1. INTRODUCTION 
In mixed-initiative systems, users collaborate with an automated 
assistant to generate and carry out different courses of action. 
Effective collaboration between a human planner and an AI 
system requires that the participants work in areas where they 
perform best, use appropriate representations for communication, 
and effectively acquire and transfer authority for planning tasks 
[1, 5]. A number of mixed-initiative systems have been developed 
in planning and natural language processing research (e.g., 
TRAINS [11], TRIPS [12], COLLAGEN [23], AIDE [24, 25]), 
and significant progress has been made on abstract models of 
mixed initiative (e.g. [7]). Nevertheless, although the broad 
outlines of the area are gradually becoming better understood, 
basic questions about user interaction techniques for mixed-
initiative assistance remain open. 
The term mixed-initiative assistance covers a wide range of 
potential activities, including providing timely information for 
situation assessment, helping users focus on critical problem 
areas, making suggestions about appropriate actions, and handling 
plans and actions delegated by the user. Most systems developed 
to date have relied heavily on natural language in interacting with 
users, an appropriate choice for many situations. Our interest, in 
contrast, lies in a direct manipulation interaction style, that 
associated with conventional graphical user interfaces. 

Direct manipulation techniques combined with graphical data 
presentation (which we will refer to here simply as GUI 
techniques) dominate modern interactive software. The purported 
benefits of GUIs, in comparison to other styles of interaction, 
include reduced error rates, faster learning and better retention, 
and facilitation of exploratory behavior. GUI interfaces gain these 
benefits by offering users a structured, predictable environment: 
like real-world objects, static software objects remain static over 
time; environmental response to a given action is the same if the 
action is repeated under the same conditions; actions are usually 
taken at the user's direction and pace, rather than those of the 
environment; the environment does not initiate activity, but rather 
only responds to user actions [25]. These properties reduce the 
space of user decisions to a more manageable level (e.g., time 
pressure, uncertainty, and environmental instability, including 
exogenous events, are abstracted away.) Unfortunately, the same 
properties that help users solve problems working alone also limit 
the role of an assistant. How can an assistant contribute effectively 
to the problem-solving process if it is not allowed, for example, to 
take visible actions that the user may not yet have thought of? 
We believe that GUI techniques can contribute to the interaction 
between a user and an intelligent assistant, but that some 
concessions must be made in the design of the assistant. Our 
approach has been to emphasize the visual communication 
abilities of an assistant, so that it can use the visual GUI 
environment to guide and sometimes constrain the potential 
actions of the user. Our work on mixed-initiative assistance has 
focused on strategic, physical planning problems in AFS, an 
abstract force simulator [2, 22]. AFS is a general-purpose 
simulation system that supports experimentation with interactive 
planning techniques and their relationship to physical processes. 
AFS incorporates an assistant that works behind the scenes to 
generate plans potentially helpful to the user. A visualization 
interface presents these plans and their supporting information to 
the user by graphical means, relying as much as possible on visual 
techniques rather than language (i.e., text, symbols, or even iconic 
conventions) for communication. Our goal is not to build an 
intelligent, collaborative assistant that relies solely on direct 
manipulation and graphics (though intelligent rooms and 
ubiquitous computing research suggest that this is at least 
conceivable) but rather to gain a better grasp of the relationship 
between GUI techniques and mixed-initiative assistance. We 
believe that a better understanding of this relationship may lead to 
improved problem-solving performance and increased user 
acceptance of intelligent assistants. 
Although our work arises from research on planning in the user 
interface, it can also be seen as a form of intelligent visualization, 
a staple of research in the intelligent user interfaces community. 
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Intelligent visualization researchers have built systems for 
automatic explanation generation, intelligent tutoring, and other 
tasks [10, 20, 8, 9, 14, 3, 4], relying on many of the same sources 
we use. The requirements for our work differ in some ways from 
these efforts, however: the assistant and the user observe an 
external process, each able to guide it but without complete 
control; camera manipulation is viewed as a means of explicit 
communication, rather than only a mechanism for visual 
orientation and focus of attention; problem-solving is reactive and 
opportunistic, with no extended narratives involved; neither party 
acts in a fixed role in the interaction (e.g., user as commander or 
student, assistant as tutor or information provider.) Similarities to 
existing systems will be obvious nevertheless.  
The remainder of this paper is structured as follows. The AFS 
section describes the simulation, which provides a concrete setting 
for interaction issues relevant to mixed-initiative planning. We 
describe the visualizations AFS produces and explain their 
relationship to models of human visual processing. The 
experimentation section discusses a study of user consistency in 
associating visual features with specific physical interpretations; 
this consistency will eventually be exploited by AFS to convey 
the planning intentions of the assistant in an unobtrusive, natural-
seeming fashion in the physical domain. In the conclusion, we tie 
this work to our ongoing efforts to formalize the concept of 
affordances [13] in the user interface. 

2. AFS 
AFS provides a physical domain in which abstract agents (which 
we alternatively call “agents,” “force units,” or simply “blobs”) 
can interact, based generally on Newtonian physics [2]. Units and 
inanimate objects have mass, size, and shape; they may be solid or 
permeable; they move with variable friction over a domain-
dependent surface; they apply force to one another, causing 
damage/mass reduction. 
In AFS's Capture the Flag (CTF) domain, two teams of force units 
move over a terrain, their travel constrained by mountains, water, 
and forests. Each team is responsible for defending a set of 
stationary flags. A team successfully completes a scenario by 
destroying all the members of the opposing team or capturing all 
of its flags. Figure 1 shows a sample scenario, in a birds-eye or 
plan view. In this domain, as in all AFS domains, force units rely 
on a small set of primitive physical actions: they may move from 
one location to another and apply-force to other units and objects 
such as flags. These actions can be specialized and combined in 
various ways to form higher-level strategies, such as blocking a 
pass, encircling a flag, attacking an opponent in a group, and so 
forth. A hierarchical planner at the center of the system provides 
plan execution and monitoring. 
Ordinary interaction with AFS is via direct manipulation. The 
user can direct agents by selecting them and assigning to them 
either low-level actions or higher-level plans. One role of the 
assistant is to interpret the strategic situation in the unfolding 
simulation, to inform the user of significant relationships or 
events, and to suggest ways of dealing with them, in order to help 
the user make informed decisions Visual communication toward 
these ends is carried out by two means: texture-based 
visualizations and scenario-based camera planning. We discuss 
each type in turn. 

2.1 Scenario-based camera planning 
The 3D version of the AFS environment, shown in Figure 2, 
allows the user to navigate via an “eye in hand” interface. The 

user is free to view the scenario from any position and angle. The 
visualization interface can also manipulate the camera 
autonomously with a camera-planning module. In particular, the 
camera can be positioned by the system to present the scenario 
such that certain user actions are more readily evaluated and 
executed than others. The design of the camera planner takes a 
situated approach to problem solving and visualization. The 
system attempts to position the camera, and thereby situate the 
embodied user, to present a particular set of affordances to the 
user in the environment. In this way, the AFS system can lead the 
user into taking specific actions. 
Our approach treats camera planning as a form of numerical 
constraint satisfaction. Constraints are placed on what the 
resulting visualization should look like, and the camera planner 

Figure 1. AFS plan view 

Figure 2. Camera planning result 



must meet those constraints to place the camera in the optimal 
position. Inconsistencies cause conflicts between constraints, 
which are resolved by relaxing one of the constraints to some 
degree. Based on the high-level goals assigned to the force-units 
in the scenario, a set of visualization constraints are fed into the 
camera planner. The camera planner uses these constraints to 
evaluate possible camera positions as it performs a depth-limited 
hill-climbing search. Some of the constraints that can be passed 
into the camera planner are given below. Most are related to 
conveying a suggestion that one agent should attack a specific 
opponent or capture a flag. 

• In-scene: Whether the agents and objects participating in the 
action are visible. 

• Centered-vertical: Whether the agents and objects are 
centered vertically in the scene. 

• Background: Whether “distractor” agents are visible. 

• Attack-angle: How closely the “optimal” view is met: from 
an attacking agent to the center of a target object.  

• Agent-occlusions: Whether any agents obscure participating 
agents or objects. 

• Terrain-occlusion: Whether uneven terrain (e.g., a mountain 
range) obscures agents or objects. 

• Too-low: Whether the angle of view is too low to show 
sufficient context. 

• Viewing-distance: How closely a specific, constant viewing 
distance is matched. 

These constraints are represented by heuristic functions that 
execute in sequence to evaluate every candidate camera position 
during the search. The constraints return numerical values and the 
camera planner satisfices with the smallest total score. To reduce 
the size of the search space, we approximate the solution 
algorithmically and select that as a starting point. The constraints 
are ordered by importance and weighted so that more important 
constraints are less likely to be relaxed before less important 
constraints. For example, terrain-occlusion is ranked high in 
importance because it is essential that specified objects are visible 
to the user. The weight values for each constraint were determined 
experimentally. 
A sample visualization is shown in Figure 2. The assistant has 
smoothly moved the camera from its previous position to the 
current one, to convey the advice that the blue force unit in the 
foreground should attack the group of red flags immediately in 
front of it. (The suggestion is much more apparent on a normal-
sized display than in the reduced figure.) AFS can also generate 
visualizations for comparing opponent agents, to help the user 
evaluate a potential suggestion. Further camera-planning 
visualizations have been designed and user-tested with paper 
diagrams, but these have not yet been implemented. The assistant 
currently operates under the restriction that the visible scene may 
not be modified to improve a visualization (e.g., simply removing 
irrelevant agents, flags, or landscape features). As we come to a 
better understanding of the capabilities and limitations of the 
system under this restriction, it may be relaxed.  
Our design of the camera planning module is based in part on a 
visual routines model of intermediate vision [29]. This can be 
most easily seen when the system generates a visual comparison 
of two opposing forces: it moves to a point between the forces, at 
an appropriate distance, and arranges that they are seen with their 

lowest points touching a common horizontal line. It is 
straightforward to break this down into elemental operations such 
as setting markers and extending rays, which combine into 
routines, to allow for an efficient and accurate size comparison. 
The geometric computations that drive constraint satisfaction in 
the camera planner are not visual routines, but they are intended 
to share some of the same necessary functionality. 

2.2 Texture-based visualizations 
Our work on texture-based visualization examines another 
component of visual processing, the low-level human visual 
system. When we look at an image, certain visual features can be 
identified very quickly, without the need for search. These 
features are often called preattentive, because their detection 
precedes focused attention in the low-level human visual system 
[27, 30]. Preattentive features include visual properties like color, 
brightness, orientation, size, and motion. When applied properly, 
these features can be used to perform exploratory data analysis. 
Examples include searching for data elements with a unique 
feature, identifying the boundaries between groups of elements 
with common features, tracking groups of elements as they move 
in time and space, and estimating the number of elements with a 
specific visual feature. Preattentive tasks are performed very 
rapidly and accurately; they can often be completed in a “single 
glance” of 200ms or less. The time required for task completion is 
furthermore independent of display size; users can increase the 
number of data elements in a display with little or no increase in 
the time required to analyze the display. 
Our research focuses on identifying such findings in the vision 
and psychophysical literature, then extending these results and 
integrating them into a visualization environment. To date, we 
have compiled an interlocking collection of results on the use of 
color (hue and luminance) [15] and texture (size, density, and 
regularity) [16, 17] for multidimensional visualization. These 
results have been used to visualize a number of real-world 
applications including medical scans [26], weather tracking [16, 
17], and scientific simulations [19]. 
In our AFS work, we have applied these findings to the 
presentation of strategic, spatially distributed information to assist 
the user in making planning decisions. The design of our 
visualizations in AFS and the work cited above centers around the 
concept of a perceptual texture element, or pexel. Pexels are 
graphical icons that collectively convey color and texture 
information: hue, luminance, size, density, and regularity, among 
other possibilities. Pexels appear in the visualization in Figure 3 
as small vertical strips of color standing on end over the 
landscape. In this visualization, for example, the height of a pexel 
represents the shortest time it will take any agent to reach a given 
location; the color of a pexel corresponds to the team of that 
agent; increased density is associated with target regions 
containing flags or opponents. As a simulation unfolds, the user 
sees the local colors and heights of the pexel field spread and 
change; it becomes immediately obvious when a red or blue flag 
is enveloped by a pexel field of the opposite color, indicating that 
it is in danger of capture. Patterns such as boundaries between 
regions of different color, density, and height can be determined 
at a glance, providing potentially useful strategic information. 
This is not intelligent assistance in any significant sense; however, 
the ability to manipulate the association between textures and 
strategic information in the simulation does give an assistant an 
important communicative tool. 



3. EXPERIMENTATION 
We gain some significant advantages in relying on relatively low-
level perceptual mechanisms in our visualization techniques—
speed, high volume, multi-dimensional data integration through 
texture manipulation, effective (though very limited) recognition 
of simple agent plans by assumptions about visual routines. One 
of the drawbacks of the approach, however, is that this interaction 
takes place below the cognitive level—that is, in AFS we have 
adopted the traditional view of planning as search through a 
problem space, with states represented in symbolic terms. 
Although users are able to extract properties of the visualizations 
efficiently, there is no necessary relationship between these 
properties and abstract concepts relevant to planning problems. 
A straightforward solution is to rely on conventions for visual 
representation: the height of a pexel corresponds to some plan or 
situation assessment variable x, its hue, luminance, density, and so 
forth to other variables. These relationships must be learned by 
the user before the visualization can be interpreted. We have 
experimented with a different approach, however, one especially 
well suited to the physical planning domain. Texture fields such 
as the ones shown in Figures 2 and 3 can be viewed as 
abstractions for conveying information, but that can also be 
interpreted in physical terms. It is possible to see the pexel field as 
a field of grass, for example, or other, similar visual texture-
producing ground cover. We naturally associate such textures 
with our physical interaction with it; that is, we are attuned to its 
affordances [13]. If users consistently relate specific visual texture 
properties to specific physical properties, such as ease of 
movement, direction, or speed, then AFS might exploit this 
relationship to convey physical planning suggestions in visual 
terms, without depending on the user's learned knowledge of 
display conventions. 

To explore this issue, we conducted an experiment based on 
artificial visualization scenarios. Our 20 subjects were students 
and interns, both men and women, working at North Carolina 
State University. Their ages varied between 20 and 30. Each 
subject was presented with a sequence of snapshots consisting of 
a 3D field of red pexels surrounding a blue ball (which would 
represent an agent or blob in AFS), as shown in Figure 4. Values 
of blob radius, pexel density, and pexel height, which we will 
refer to as the variables Radius, Density, and Height, were varied 

Figure 3. Texture-based visualization 

Figure 4. Sample experiment trial 



across the snapshots. For each snapshot, the subject was asked, “If 
the ball were to be rolled across the field shown, how fast would it 
move?” A discrete set of choices was available from a pop up 
menu, ranging from Speed 1, the lowest, to Speed 10, the highest. 
Subjects were allowed to experiment with a few different 
snapshots before starting the experiment proper, in order to 
develop an internal calibration of speeds for the textures they 
would see. 
Because of the small number of variables we chose to examine, a 
full factorial design was possible. Radius alternated between 0.60 
and 0.75 units; Height ranged among four values of 0.25, 0.40, 
0.55, and 0.75 units; Density ranged similarly among four values 
of 0.25, 0.40, 0.55, and 0.75 units. The units of measurement here 
are unimportant; the specific values were chosen after prototyping 
and testing by the experimenters. Thirty two combinations of 
these values are possible (2 x 4 x 4); each subject saw every 
combination three times, in randomized order. The data resulting 
from the experiment consisted of a Subject identifier, the specific 
values of Radius, Density, and Height for each snapshot, the 
Speed selected, and the Duration of the user's selection action. 
An analysis of variance shows that all factors have a significant 
influence on the mean value of speed (for Radius F=26.48, 
p<0.0001; Density, F=51.71, p<0.0001, Height, F=700.05, 
p<0.0001.) Subjects most strongly associated Height with Speed, 
followed by Density and then by Radius. 

Figure 5 shows projections through the experimental dataset. In 
the top graph, for example, we collected all the values for each 
combination of Subject and Height, merging the different values 
of Radius and Density, and computed the mean of each partition. 
For each subject we then see four values, shown as marks on a 
line, that represent the average speed of the blob for each of the 
four possible pexel height values: 0.25, 0.40, 0.55, 0.75. The 
other two graphs are constructed analogously for Radius and 
Density. We discarded the first subject’s results because of 
procedural irregularities, but found significant patterns of 
similarity among the remaining subjects. In general, subjects 
judged that the higher the pexel field, the slower a blob will be 
able to move. (Subject 2’s results are consistent with a reversal of 
the magnitude of speed choices; talking with subjects afterwards 
we found this to be a minor source of confusion for others as 
well.) Except for subjects 19 and 20, a comparable pattern holds 
for Radius: larger blobs are judged to be able to move faster than 
smaller ones. Finally, a more complex and slightly unexpected 
pattern holds for Density. For most subjects, higher pexel density 
is associated with higher speed, which corresponds to a physical 
interpretation in which the blob rolls over the field rather than 
through the individual pexels For a few subjects (e.g., 6, 12, 13), 
however, the lowest density affords faster movement as well, 
producing a U-shaped relationship between Density and Speed. 
One last finding was a significant effect of Subject on Speed 
(F=9.80, p<0.0001). In combination with the observations above, 

 

0 
2 
4 
6 
8 

10 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 

0 
1 
2 
3 
4 
5 
6 
7 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 

0 

2 

4 

6 

8 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Figure 5. Subject consistency in visual interpretation 

Speed by Height within Subject 

Speed by Radius within Subject 

Speed by Density within Subject 



this suggests that subjects interpret the visualization textures in 
different ways (a small number of different ways, but still 
different.) This means that we cannot depend on different users 
having a single unified interpretation of AFS texture-based 
visualizations in physical terms. If this is desirable, some initial 
guidance is necessary (e.g., showing different scenarios with the 
preferred interpretations of combinations of size, radius, density, 
and speed) to ensure that users adopt appropriate interpretations. 
This exploratory study is a small step in our research. With 
experimentally validated relationships of this kind, we are 
extending the current visualization assistant in AFS to convey 
suggestions about agent assignments and the strategic value of 
terrain locations by generating appropriate textures. For example, 
the assistant currently does path planning for force units, and can 
draw such paths in the plan view of the simulation to show its 
suggested courses of action. Textures offer a less obtrusive 
solution: the assistant can map lower height pexels over the 
regions over which force units can move more safely, or possibly 
to greater strategic effect, without forcing an obvious choice on 
the user. We are currently running a comparable study of user 
inference of direction of movement based on the orientation of 
pexels; we will continue by designing more formal experimental 
studies of the relative associations between texture features and 
physical behavior. We hope to identify consistent relationships 
between visual textures and physical properties such as speed and 
direction, but also accessibility, safety, vantage point utility, 
among others. 

4. DISCUSSION 
Our work in this area grows out of an interest in situated problem-
solving and affordances in the user interface [25]. Situated 
problem solving differs from more conventional forms of 
problem-solving. When embodied within an environment, how 
one perceives the environment and what is perceptible within the 
environment is of paramount importance to what actions one 
chooses to make. The environment itself provides cues—
affordances—about what appropriate actions there are, but these 
cues must first be perceived and understood within the context of 
one’s relationship with elements within the environment. For 
example, the brink of a gulch may be perceived as affording 
falling off of, but if one is moving towards the brink at a high 
velocity, the brink may suddenly be perceived to afford leaping 
across [28]. Likewise, one cannot make use of tools within the 
environment if they are hidden from view or out of reach. 
In our view, the process of situated problem solving is iterative in 
nature, involving three stages: perception, intention, and action. 
The first stage, perception, involves using the senses to determine 
possible actions that can be made in the environment. This 
process involves registering the affordances the environment 
provides for action. The second stage, intention, involves taking 
the results of perception and choosing the best action that will 
advance the organism towards a given goal. The final stage, 
action, occurs when intent is transformed into behavior by 
interacting directly with the environment [21]. Actuators in the 
environment, including the organisms own motor control, are 
activated in order to bring the organism closer to achieving its 
goal. Actuators affect the environment and the organism’s 
relationship with the environment, resulting in a new situation. 
The cycle iterates, starting with perception of the environment and 
how it has been changed by the previous cycle. New intentions are 
formed and carried out. 

Intentions are formed when there is a mismatch between the goals 
internal to the organism and the state of the external world [21]. 
Before intentions can be formed, the organism must sense its own 
situation within the surrounding environment: it must become 
aware of the environment’s current state as well as its relationship 
with the environment. Needless to say, the perceptual senses play 
an important role in situated problem solving. The sensory 
apparatus, however, cannot be merely instruments for recording 
sensory stimuli; they must proactively interpret and transform the 
sensory stimuli into affordances.  
The perception of affordances is primarily a cognitive interaction 
with perceptual stimuli. Affordances do not exist without an 
organism to perceive them. By presenting plans three-
dimensionally, viewed from a camera that is allowed to move 
anywhere within the playing-space, we call on the metaphor of 
embodiment within a 3D environment. By embodiment we mean 
that the user interacts with the virtual 3D environment as if he 
were present in the environment at the location of the camera. 
With the user embodied in a 3D virtual environment, we are able 
to make use of the same problem-solving strategies one uses when 
interacting with the real-world environment. 
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