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Learning from Explanations using Sentiment and
Advice in RL

Samantha Krening, Brent Harrison, Karen M. Feigh, Charles Isbell, Mark Riedl, and Andrea Thomaz

Abstract—In order for robots to learn from people with no
machine learning expertise, robots should learn from natural
human instruction. Most machine learning techniques that incor-
porate explanations require people to use a limited vocabulary
and provide state information, even if it is not intuitive. This
paper discusses a software agent that learned to play the Mario
Bros. game using explanations. Our goals to improve learning
from explanations were two-fold: to filter explanations into advice
and warnings, and to learn policies from sentences without state
information. We used sentiment analysis to filter explanations
into advice of what to do and warnings of what to avoid. We
developed Object-focused advice to represent what actions the
agent should take when dealing with objects. An RL agent used
Object-focused advice to learn policies that maximized its reward.
After mitigating false negatives, using sentiment as a filter was
approximately 85% accurate. Object-focused advice performed
better than when no advice was given, the agent learned where
to apply the advice, and the agent could recover from adversarial
advice. We also found the method of interaction should be
designed to ease the cognitive load of the human teacher or
the advice may be of poor quality.

Index Terms—Sentiment, Reinforcement Learning, Advice.

I. INTRODUCTION

A goal of Interactive Machine Learning is to enable people
to naturally and intuitively teach robots how to perform

tasks. We cannot expect every person to become an expert in
machine learning. If robots and intelligent agents could learn
from natural human instruction, robotic behavior could be
customized by end-users with no machine learning expertise.

While there are many ways people teach, including demon-
strations and critique, this work focuses on learning from
explanations. Learning from natural language explanations can
decrease the amount of time and effort required by a human
teacher. Giving a few simple sentences is less work than
demonstrating all possible situations or monitoring an agent to
provide critique. Because people are naturally skilled at harsh
dimensionality reduction, learning from language automati-
cally builds human-agent interaction that plays to the strengths
of both the human teacher and robotic student. Ideally, the
person concisely tells the robot what is most important to pay
attention to, and the robot uses its computational power to
develop policies that maximize performance. Learning from
explanations is helpful because people may not be able to
provide demonstrations if they are elderly, injured, or the
task is not safe for people to physically attempt. Additionally,
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a person does not have to be present to teach the robot -
telecommunication or written instructions work just as well.
Another attractive quality of learning from natural language
explanations is it is generalizable across domains. Even if the
domain changes, people will use the same language with the
same meanings and structure to describe new tasks.

There are many challenges when learning from natural
language explanations. People do not limit themselves to a
domain-specific vocabulary - people make their own labels
for objects and actions. Different people use different words
for the same concept. In addition to describing things to do
or avoid, explanations also tend to include information that
is not actionable, like background knowledge. Many natural
language explanations also do not include state information,
which makes it very difficult to determine where and when to
use the advice.

A primary problem addressed in this article focuses on an
area of learning from explanations that has been discussed
little in previous research - how to learn from human ex-
planations that lack state information. Our work contributes
to this through the development of Object-focused advice, a
method in which human advice is tied to objects instead of
specific states and is generalized over the object’s state space.
Consider this explanation from Mario: “Mario should jump
on enemies.” While this advice would easily be understood
by a human student, it proves problematic for reinforcement
learning agents. The teacher did not specify state information
like where the enemy needs to be with respect to Mario and
what Mario’s velocity should be. Knowing that Mario should
jump on an enemy is valuable information, but how can an
agent make use of it if no state information is provided?

Solving this challenge is worthwhile since people often
describe tasks by talking about objects. The following is an
explanation a person might give to describe how to play Mario
that links an object, like an enemy, to an action that should
be used around that object, like jumping on an enemy. We
define this to be advice because it tells the agent what actions
to take.

The goal is to reach the end of the level to the
right quickly. Mario should jump right on enemies.
Mario should jump to collect coins, and jump over
chasms.

The human teacher does not need to provide state informa-
tion, like where the enemy is with respect to Mario. A person
might also provide warnings in an explanation to teach the
agent what actions to avoid.

Do not fall into chasms.
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Another problem addressed in this article is enabling an
agent to categorize each sentence in an explanation as advice
of what to do or a warning of what not to do. Afterward,
the advice and warnings are used to shape the agent’s initial
behavior. Autonomously categorizing sentences into advice
and warnings allows us to use natural language explanations
that are not formatted or restricted to a limited vocabulary.
Most agents that attempt to learn from explanations require
the input to be in a specific format, mainly advice of what
actions to take in specific states. We aim to learn from natural
language explanations that do not necessarily include state-
specific information or follow a rigid format.

A contribution of this work is to use sentiment analysis to
filter natural language explanations into advice and warnings.
Sentiment analysis, or opinion mining, is a way to com-
putationally classify text into positive or negative opinions.
This is a novel application since sentiment analysis has not
traditionally been used to inform action selection. This work
provides a new understanding to how sentiment analysis can
be utilized.

Using sentiment analysis as a filter allows people to ex-
plain tasks to agents without restricting the human teacher
to a specific vocabulary or sentence structure. Consider the
following explanations of how to deal with enemies in the
Mario Brothers domain.

It would be bad to walk right into an enemy. Jump
on enemies.

Sentiment analysis classifies the first sentence as negative,
so the agent is warned not to walk right when dealing with
an enemy. The second sentence is classified as positive, so
the agent treats jumping on enemies as advice of what to do.
Sentiment classifications of “positive” and “negative” are used
in a semantic sense, not syntactic.

We tested our sentiment filter and Object-focused advice in
a human-subject experiment conducted in the popular game
domain Mario Brothers. After creating a method to mitigate
false negatives, the sentiment filter was approximately 85%
accurate. Three types of explanations were tested with an
increasing level of structure and information provided to each
participant. We found that the cognitive load of the explanation
format adversely affected the quality of the advice. The results
show that Object-focused advice performs better than when
no advice is given, the agent can learn where to apply the
advice in the state space, and the agent can recover from
adversarial advice. Also, providing warnings in addition to
advice improved the agent’s performance.

Section II contains related work about learning from human
teachers, sentiment analysis, and reinforcement learning. Sec-
tion III develops Object-focused advice. Section IV describes
the human-subject experiment conducted in the Mario Broth-
ers game, a popular domain for machine learning research.
Readers unfamiliar with Mario are encouraged to read a
description in Section IV.A. Section V includes the results
and discussion. The article concludes with Section VI.

II. BACKGROUND AND RELATED WORK

Much of this work is inspired by human development.
Reinforcement learning (RL) is a form of machine learning

influenced by behavioral psychology in which an agent learns
what actions to take by receiving rewards or punishments
from its environment [18], [21]. B.F. Skinner wrote about
“selection by consequences,” comparing the evolution of living
things through natural selection with the shaping of individual
behavior through reinforcement [19]. The probability people
will repeat an action in a given circumstance is increased or
decreased if they receive positive or negative reinforcement.
Since one way people learn is by interacting with their
environment, we chose to mirror this method when choosing
a machine learning algorithm to teach our agent.

Deep learning is biologically inspired by the human brain.
Deep learning models learn how to represent the input in
increasing levels of abstraction. Using deep learning for senti-
ment analysis allows an agent to grasp the sentiment of words
and sentences by looking at a large corpus of how people
have used language. Classifying sentiment using deep learning
is much closer to how the human brain interprets sentiment
because it uses the structure and context within a sentence,
not just words in isolation.

A. Sentiment Analysis
Sentiment analysis has been used to determine whether peo-

ple think movies, books, music, consumer products, political
campaigns, etc. are good or bad [16]. Much of the work in
sentiment analysis has used a bag-of-words method in which
each word in a document is scored. The accumulated score
of the text determines if the document is classified as positive
or negative. Since each word is scored separately, word order
and context are ignored, which leads to less-accurate results.
This work uses Stanford’s deep learning sentiment analysis
software, which builds a representation of an entire sentence
instead of looking at words independently [13].

Stanford’s sentiment tool uses Recursive Neural Tensor
Networks and the Stanford Sentiment Treebank [20]. The
Stanford Sentiment Treebank is a corpus of fully-labeled parse
trees based on the dataset of movie reviews from rottentoma-
toes.com [15].

B. Reinforcement Learning
RL is a form of machine learning in which agents learn

what actions to take in situations by interacting with their
environment - specifically, by receiving a signal of rewards
and punishments [21]. This work incorporates human advice
into an RL agent.

Markov Decision Processes (MDPs) learn policies by map-
ping states to actions such that the agent’s expected reward is
maximized. An MDP is a tuple (S,A, T,R,� ) that describes
S, the states of the domain; A, the actions the agent can take;
T , the transition dynamics describing the probability that a
new state will be reached given the current state and action;
R, the reward earned by the agent; and �, a discount factor in
which 0  �  1.

Object-Oriented Markov Decision Process (OO-MDPs) are
an extension of MDPs. An OO-MDP is a model-based rep-
resentation that uses a fixed-length feature vector of object
relations [6]. For example, one feature in the Mario domain
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would be a binary relation indicating if an enemy is east of
Mario at each time step. A drawback of OO-MDPs is all
relations must be defined by a designer. Also, because the
feature vector is fixed in length, the agent cannot adapt to
new objects in the environment. Object-Focused Q-learning
(OF-Q) is a modified version of OO-MDPs.

Object-Focused Q-Learning (OF-Q) with an Off-Policy TD
Control Q-Learning algorithm was used to train the Q-values
for each object’s policy. Unlike OO-MDPs, OF-Q is model-
free and does not have a fixed-length feature vector [5].
The number of objects and relations in the feature vector can
vary through time. Every object class has its own policy and
reward signal. Since this work focuses on the efficacy of using
sentiment as a filter on natural language explanations, a well-
understood tabular algorithm was used. In Equation 1, s

ot and
a
t

are the object’s state and action chosen at time t, Q(s
ot , at)

is the Q-value for a given object state and action, r is the
reward received after carrying out action a

t

, ↵ is the learning
parameter, and � is the discount parameter for expected future
rewards.

Q(s
ot , at

) (1� ↵)Q(s
ot , at

) + ↵[r + �max

a

Q(s
ot+1 , a)] (1)

Reinforcement learning agents must trade off between ex-
ploring and exploiting - whether to search for better policies
or carry out what the agent has already learned. If the agent
decides to exploit the policy, the action with the maximum
Q-value over all objects in the state space is chosen since it
is expected to yield the greatest reward.

⇡(s) = argmax

a

max

o

Q(s
o

, a) (2)

While natural language explanations can be incorporated
into many machine learning algorithms, we used Object-
focused Q-learning (OF-Q) to represent tasks for two main
reasons [5]. First, OF-Q can directly use object-based hu-
man instruction, which improves the transparency between
the human teacher and robotic learner. Second, object-based
algorithms provide a method to solve high-dimensional state
spaces, like Mario.

C. Learning from Human Teachers
Three commonly studied methods of human instruction are

explanations, demonstrations, and critique [4]. Explanations
transfer knowledge through language. Demonstrations provide
ideal actions to take in situations. Critique is positive or
negative feedback that informs students how good or bad their
actions were.

Most machine learning methods that learn from human
teachers force people to provide state-specific information.
That level of detail is often not intuitive or natural, and
precludes the possibility of learning from natural language that
lacks state information. When an agent learns from demonstra-
tions, the agent learns a mapping from states to actions [3].
An agent that learns from demonstrations is affected by how
much of the state space was explored in the demonstrations
and how well the person performed. Paired states and actions
from demonstrations can also be used with apprenticeship

and inverse reinforcement learning to approximate the reward
function the teacher was following [1]. Critique is linked to
the current state by informing an agent how good or bad its
actions were, which affects the probability the action will be
taken in the same state in the future [7]. Critique can also be
used directly as a reward signal to tell the agent how positive
or negative its actions were in certain states [4]. All of these
approaches link human input to specific states.

Various forms of advice have been developed in other
work, including linking one condition to each action [12], and
linking a condition to rewards [11]. Several connect conditions
to higher-level actions that are defined by the researcher
instead of primitive actions [8], [10], [12]. [2] creates policies
using demonstrations and advice. [14] parses language into a
graphical representation and finally to primitive actions. [12]
has the person provide a relative preference of actions, whereas
the agent determines the order of preferred actions in our
work. [17] explored learning multiple interpretations of in-
structions. Similar to this work, the advice in [2] does not
require people to give specific numbers for continuous state
variables, but uses a set of predefined advice operators. The
advice developed here links one action to each object. This
allows each action to be used multiple times in one domain;
for example, in the Mario domain the agent may be advised to
jump to the right quickly for chasms and enemies. Extracting
advice concerning primitive actions allows the researcher to
include less domain-specific knowledge in the agent.

Many researchers incorporate advice using IF-THEN rules
and formal command languages [10], [12]; if the state meets
a condition, then the learner takes the advice into account.
Formal command languages and IF-THEN rules require advice
that is state specific and contains numbers. “When the agent
is within 10 meters of this object, do this action.” Developing
a parser is labor intensive, and prior knowledge like distance
calculations must be encoded. Our work is different because
the advice is object specific, the agent learns which part of
the state space the advice applies, and a person does not need
to provide numbers. This allows an agent to learn from a few
simple sentences that non-experts can provide. “Jump when
Mario encounters a chasm.” No state-specific information is
provided by the person, like: Where is the chasm with respect
to Mario? How far away from the chasm should Mario jump?
What should Mario’s speed be near the chasm?

Most methods are permanently influenced by the ad-
vice. [10] can adjust for bad advice by learning biased
function approximation values that negate the advice. [12]
uses a penalty for not following the advice that decreases with
experience. This work differs because the advice is followed a
set number of times for each object and each state in addition
to exploration. After the advice is followed a set number of
times, the exploitation action selections are based entirely on
experience, and advice is no longer considered by the agent.
If it was good advice, it will be reflected in the Q-values and
will continue to be the policy.

III. OBJECT-FOCUSED HUMAN ADVICE

Object-focused advice ties actions to objects instead of
specific states and generalizes the advice over the object’s state
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space [9]. Before the agent starts learning, a person instructs
the agent what action to take when dealing with an object. For
example, in the Mario Bros. game, a person could advise the
agent to jump right (action) when encountering a coin (object).
The person does not need to specify state information, like
where a coin needs to be with respect to Mario, in order to
take the advised action. The agent will take the action the
human advised a specified number of times, regardless of its
experience, before following normal exploitation. The job of
the sentiment filter is to tell the agent whether a sentence
should be treated as advice or a warning.

It is likely this type of general, Object-focused advice will
only apply to some subset of the state space. The advice of
jumping right will gain a reward if the coin is to the right
of Mario, but will not work if the coin is to Mario’s left.
The agent determines the applicable parts of the state space
and how good the advice is through experience. Following
human advice occurs only during exploitation and does not
interfere with exploration. Another way of thinking about this
is following advice initially supplants exploitation with a form
of exploration directed by a human. This is separate from, and
in addition to, ✏-greedy exploration. Since ✏-greedy exploration
is used, Object-focused advice has the convergence properties
of ✏-greedy exploration.

Using Object-focused advice that is independent of the
object’s state allows the person to perform object-level gener-
alization and abstraction instead of the agent. Generalization
is a vital part of induction because it is a way to extend
the knowledge learned from one particular example to many
others. Generalizing over the entire state space of an object
may seem drastic, but it is a way to quickly operationalize
and learn from human explanations without state information.
It is unrealistic to expect people to provide detailed state
information when giving advice. A person might say, “Jump
on the enemy,” but will not say, “Hold the jump key for
10 frames when Mario is within 2.5 horizontal blocks of an
enemy with a velocity of 3.2 units/frame.” The agent will take
the action advice of “Jump on the enemy,” and determine to
which portions of the state space, if any, the advice applies.

A. Advice

The first step is to get advice from a person that describes
what actions the agent should take. Advice is given to the
algorithm as two lists: one containing the objects and the other
the advised actions. Advice can be provided for as many or
as few objects in the state space as a person decides. If the
agent encounters an object for which advice was not given,
the policy is initialized without advice and the agent learns
from exploration and experience.

Next, an object policy must be created for each object
a person gave advice for. If a person advises the agent to
jump when dealing with coins, an empty object policy table
is created that sets the advised action to ‘jump’. Whenever
a new object state is encountered (like the first time Mario
sees a coin to the northeast), a new state entry is made in the
coin’s policy table with specific state values like the x- and
y-positions of the coin with respect to Mario. This new state

entry includes a value that counts the number of times the
advice has been followed as well as a threshold number of
times the advice should be followed. This is what allows the
agent to determine which part of the state space the advice
applies - it tries the advice a set number of times everywhere
in the state space, and the resulting Q-values reflect whether
the advice is good or bad in that region of the object’s state
space. For example, the first twenty-five times Mario sees a
coin to the northeast, Mario would follow the advice to jump
and update the Q-values based on the earned reward. The first
twenty-five times Mario sees a coin to the southwest, Mario
would also follow the advice to jump.

To include Object-focused advice in the OF-Q algorithm,
an extra Q-value was created that corresponds to advice, not
a specific action. This indicator Q-value is initialized to a
value much larger than any reward the agent could achieve
in the state space. During action selection in Equation 2, this
indicator Q-value forces the policy to choose the advice. While
the advice is followed, the Q-values that correspond to each
action are updated as expected. The indicator Q-value is never
updated, nor does it affect the outcome of the Q updates
in Equation 1. After the advice has been followed some set
number of times, the indicator Q-value is removed and the
policy chooses exploitation actions based on experience.

For every time step in game execution, the agent must
choose an action (Algorithm 1). First, object recognition is
used to determine which objects are currently in the state.
Reward allocation from the last time step is completed so
the reward is applied to the proper objects’ policies. Then,
✏-greedy exploration is utilized. During exploitation, if advice
has been followed for an object less than a set number of times,
the large indicator Q-value will force the advised action to be
chosen. ✏ is exponentially decayed at the end of each level.

Two interesting aspects of Object-focused advice are its
ability to recover from adversarial advice and its variable
‘trust’ in a person. Following advice a set number of times and
then relying on experience allows the agent to recover from
adversarial advice, which is antagonistic input that instructs the
agent to take an action expected to result in the least reward
(greatest punishment). An example of adversarial advice in the
Mario domain is standing still while an enemy approaches.
Also, Object-focused advice lets the agent’s ‘trust’ in the
human vary across the domain by treating each piece of advice
without prejudice; if a person provides one piece of good
advice along with eight pieces of bad advice, the agent will
use its experience to build policies that reflect the good and
ignore the bad.

B. Warnings and Multiple Objects

Advice describes what to do, while warnings describe what
not to do. Similar to advice, warnings of what not to do are
incorporated by using an indicator Q-value. Instead of a large
positive value, a large negative indicator value is used. Object-
focused advice, as previously described, chooses an action by
looking at each object separately. To incorporate warnings, all
objects in the state space are taken into account together by
summing up the Q-values associated with each action across
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Algorithm 1 Get Action
1: function GETACTION(reward, environment)
2: objects = getObjectsInStateSpace(environment)
3: for each object 2 objectsOld do
4: Reward allocation: update Q values
5: If advice followed, increment timesAdviceTried
6: end for
7: for each object 2 objects do
8: If this object has never been seen by the agent,
9: create a new object policy

10: If this object has never been seen in this state,
11: add a state entry to the object’s policy
12: end for
13: if rand(0, 1) > ✏ then . Exploit
14: Initialize action and Q

max

 �1
15: for each object 2 objects do
16: q

i

 max
i

(Q(object.state, a
i

))

17: if q
i

> Q
max

then
18: Q

max

 q
i

, action = a
i

19: end if
20: end for
21: else . Explore
22: action = random{actions}
23: end if
24: objectsOld = objects
25: end function

all objects. Choosing an action by taking multiple objects into
account allows us to get an idea of the overall severity of each
action.

Consider the case of both a coin and enemy in the state
space shown in Tables 1 and 2. Assume a person gave advice to
move right for coins and jump right for enemies, and warned
the agent to not move left for coins or walk right for enemies.
If each object is considered separately and no warnings are
used, the agent may follow the advice for coins to move
right, which would cause Mario to walk into an enemy and be
injured. This is solved by considering all objects in the state
space and including warnings about which actions to avoid.

Table 1 shows how multiple objects are considered by
summing Q-values across all objects in the state space. The
indicator Q-values for advised actions are +2,000, warnings
are -2,000, and the default initial value when no information
is given is 0. In this example, the initial Q-values will result
in the agent choosing to jump right since it has the maximum
Q-value in the total row. Moving right has a summed Q-value
of zero because the action was advised for coins but warned
against for enemies (2, 000 � 2, 000 = 0). Moving left has
the worst summed Q-value because it was warned against
for coins. Combining multiple objects still produces a ranked
preference of actions; jumping right (Q = 2, 000) is better than
walking right (Q = 0), which is in turn better than moving left
(Q = �2, 000). Initially, the agent does not have a sense of
severity; it does not know that injuring Mario is much worse
than missing a coin. This is reflected in the learned Q-values.

Table 2 shows the learned Q-values for the same example.
Eventually, the indicator Q-values will not be added in and the

TABLE I. Example of Multiple Objects and Warnings. Initial
Q-values with indicators.

Object JumpRight Right Left
coin 0 2,000 -2,000

enemy 2,000 -2,000 0
total 2,000 0 -2,000

TABLE II. Example of Multiple Objects and Warnings.
Learned Q-values.

Object JumpRight Right Left
coin 10 10 -1

enemy 50 -50 0
total 60 -40 -1

agent will rely on experience. Jumping right has the largest
summed Q-value (Q = 10 + 50 = 60). Notice that the agent
expects moving left (Q = �1 + 0 = �1) to be better than
moving right (Q = 10 � 50 = �40), which is not the same
order as the initial action preferences. Even if the agent moves
right and collects a coin, it will run into an enemy and be
injured; moving left results in a small Q-value hit.

Summing an action’s Q-values across multiple objects al-
lows the agent to learn the importance and severity of all given
advice and warnings. In Table 2, the total row shows the agent
has learned that the warning to avoid walking right into an
enemy is much more severe than walking left near a coin.

IV. EXPERIMENTAL METHOD

The main goals of the human-subject experiment were to
determine if sentiment analysis could be used as a natural
language filter to inform action selection and assess the
performance of Object-focused advice.

The experiment had four phases: familiarization, free-form
explanations, structured explanations, and a fill-in-the-blank
survey. In post-processing, the natural language explanations
were filtered through a sentiment analysis to determine if each
sentence was advice of what to do or a warning of what not
to do. Once advice and warnings were in the form or linking
an object to an action (OF-advice), an agent was trained using
the advice to shape its initial action selection. This process is
shown in Figure 1. The cumulative reward for each object was
analyzed to evaluate the agent’s performance over 500 trials.

Collect	natural	
language	

explana/on	

Use	Sen/ment	
to	filter	into	
advice	and	
warnings	

Create	Object-
focused	advice	

Train	agent:	
Object-focused	
Q-learning	

Fig. 1: Work Flow Chart

A. Mario Domain
The experiment was conducted using the Mario Bros. plat-

form from the 2009 Mario AI Competition [22], as seen in
Figure 2. It is a partially-observable environment in which
Mario must collect rewards and avoid being harmed or killed
while moving toward the goal to the right. Mario wins a level
by reaching the goal, and loses by running out of time, falling
into a chasm, or being repeatedly injured by an enemy. The
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primitive actions are Right, Left, Jump, and Speed. Multiple
actions can be used at once. Momentum is incorporated into
Mario’s dynamics, so when some keys are held down, the
results are different than pressing a key once. Before each
level begins, the Mario platform generates the level using
several parameters, including an integer that represents the
level’s difficulty. The difficulty determines the number and
types of obstacles and enemies in the level. For example, a
chasm is too difficult to appear in levels with a difficulty of
zero.

Fig. 2: A Participant’s View of the Mario Bros. Game

The agent defines objects in a generalized way, which
enables the agent adapt to new objects in the environment.
Each object’s state includes x- and y-positions with respect
to Mario’s location as well as an integer code from the
Mario environment that indicates the type of object (coin,
Goomba, etc.). The Mario Bros. platform provides a 22x22
grid of integers at every time step that shows the environmental
objects surrounding Mario, who appears at the center of each
grid. The platform also provides an integer code for each
visible enemy as well as the continuous x- and y-positions
with respect to Mario. A subset of the available information
was used in the representation. Environmental objects like
coins were included in the state space if they appeared in the
3x3 grid directly surrounding Mario’s location, while enemies
were included if they appeared anywhere on the screen. This
allowed us to determine how advice performed both with a
reflexive agent that looked directly around Mario and policies
that looked at the whole screen. The only value of Mario’s
state that was included by the agent was whether Mario could
jump at each time step. Representing Mario in this manner
creates a state space of approximately 10

25 states.

B. Familiarization
In the first step of the experimental protocol, participants

played Mario until they were comfortable and had at least
played one level each at a difficulty of 0, 1, and 2. This ensured
each person saw the same objects before providing advice.

C. Human explanations
Explanations were collected from human participants in

three successive trials, in order of increasing structure and

provided information, as seen in Figure 3. Taking explanations
in the order of increasing structure and provided information
allowed the most natural and intuitive human feedback at each
step. Details of each type of explanation is provided in the
following subsections.

Fig. 3: Explanations.

1) Free-form explanations: The free-form explanation was
collected first since no information was given to the human
teacher - this means the participant’s explanation was not
tainted by vocabulary, expected information, or a structure
imposed by the researcher. The researcher asked the participant
the following question.

“Imagine I know nothing about how to play Mario.
Can you explain to me how to play Mario?”

No guidance or instruction was provided to the participant
indicating how to respond. The participants gave their explana-
tions in natural language, and the explanations were collected
as audio recordings.

2) Structured explanations: For the second explanation, the
participants were prompted to provide certain information.
At this point, the responses were still in natural language.
The participants could ignore, loosely follow, or attempt to
fulfill the prompt. This type of structured explanation gives an
approximation of a robotic agent asking an end-user to provide
Object-focused advice. The researcher asked participants the
following question.

“There are many objects in Mario like coins and
different types of enemies. For each object, can you
provide one action that you would advise someone to
use when dealing with that object? Try to fill in the
blank: When Mario encounters an object, he should
do this action.”

Lists of objects and actions were not provided to the par-
ticipants - they spoke about what they remembered in natural
language, including their own labels for objects and actions.
The researcher collected audio recordings of the responses.

3) Survey explanations: Finally, participants provided ad-
vice by completing a fill-in-the-blank survey. The participants
were given a list of objects and actions, including pictures of
the objects, and were asked to provide one advised action for
each object. Participants were told they did not have to provide
advice for every listed object - only the objects they thought
were important. The advice was used to train agents offline;
the results are in the following section.
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D. Post-Processing
1) Sentiment Analysis as a Filter: We used a sentiment

analysis to filter natural language explanations into advice
and warnings. Sentences classified with positive or neutral
sentiment are considered to be advice of actions to take.
Sentences with negative sentiment are treated as warnings of
actions to avoid. Detailed results of the sentiment filter are
found in Section V.B.

2) Object-Focused Advice and Warnings: Once each sen-
tence in an explanation has been filtered into positive or
neutral sentiment (advice) or negative sentiment (a warning),
the explanation can be converted into Object-focused advice.
If a sentence is classified as advice or a warning and contains
an object and action, the paired object and action are added
to lists containing either the advice or warnings. Multiple
actions can be associated with each object. To test the machine
learning performance, the survey data were used in which
the grounding from language to object/action was provided.
Further work on grounding and ambiguity are out of the scope
of our research questions.

3) Object-Focused Q-Learning: Once the Object-focused
advice was created, it was used to initialize the OF-Q agent.
Each agent was trained using the Object-focused advice and
OF-Q algorithms discussed in Sections II and III. The author
of this paper provided the adversarial advice, which is advice
meant to minimize the agent’s performance. An agent using
no advice was used as a baseline for comparison.

The results were averaged over 100 trials. A sliding window
average with a width of 25 trials was used. The parameters
used were ↵ = 0.1, � = 0.95, ✏0 = 0.8, and ✏

min

= 0.15.
✏-greedy exploration was used.

V. RESULTS AND DISCUSSION

The experiment had five participants who provided Object-
focused advice; one agent was trained per participant. The
author of this paper provided the adversarial advice. An agent
using no advice was used as a baseline for comparison.
The labels of ‘good’, ‘mediocre’, and ‘bad’ were applied
to participants’ advice by looking at the learned policy’s
cumulative reward. The participants were asked to give the
best advice they could, but some resulted in better or worse
policies.

In OF-Q, each object class has its own reward function.
Therefore, in addition to analyzing the total cumulative reward
for the entire state space, we evaluate the reward for each
object’s state space. Policies are learned for each object.

In the following sections, we will discuss the nature of the
explanations, show the accuracy of the sentiment filter, and
discuss the agent’s performance using Object-focused advice.

A. Observations on the nature of explanations
The natural language explanations from participants were

varied in many ways, including the amount of prior knowledge
the agent was assumed to have, the level of detail provided,
and whether primitive or higher-level actions were described.
However, the similarities across explanations were intriguing.
All of the participants spoke in terms of objects, not state space

variables; none of the participants gave numbers to specify
particulars of the state like velocity and distance, supporting
the claim that it is useful to be able to learn from explanations
that are not state-specific.

1) Information people did not provide: The most striking
observation from the natural language explanations was none
of the participants provided any numbers to specify distance,
relative position, velocity, etc. This reinforces the idea that it
is useful for an agent to be able to learn from explanations
that do not contain specific state information.

If an object or situation is considered too easy and obvious
to deal with, people tend not to mention it in their explanations.
Almost no one described how Mario should deal with steps
in the natural language explanations.

2) Extra information people provided: For the survey, each
participant provided advice for every available object, even
though they were told they did not have to (and even if
they had not encountered the object during the familiarization
phase).

Several participants gave visual descriptions of how to
identify what objects they were talking about - how to link
their labels to objects. “You are a guy in red clothes.” “Enemies
look like people walking around.” “A pit is when there is no
floor to support you.” It would be interesting to use this type
of explanation, but the agent would need to start with much
more background knowledge.

Some participants described a sequence of actions when
dealing with objects. They wanted to advise Mario to speed
up and then jump over a chasm, or go under and then jump
to hit a brick. The advice developed here is a simple link
from one object to one action - it cannot currently take full
advantage of the nuances of natural language explanations.

Many participants provided advice from their prior knowl-
edge of similar domains. The most common was advice
explaining how to use tunnels to reach secret levels, which
was not possible in the experiment’s version of Mario, and
was therefore never seen in the familiarization phase. One par-
ticipant assumed the agent would know about right-scrolling
games, and would apply that knowledge to Mario.

Most participants assumed the actions belong to the domain,
not the agent. A couple of participants explained the effect
of each key - each primitive action of the game. It was not
assumed that these were the student’s primitive actions, but
rather actions the student would need to learn. If a teacher were
to explain math operators like addition and multiplication, she
would teach how the operators work; the operators would exist
in the math domain, not the student’s natural, inborn set of
actions.

3) Differences in experience: The amount of prior knowl-
edge the agent was assumed to have varied drastically across
participants. The participant with the least video game ex-
perience provided the most details, including giving advice in
terms of primitive actions. The participant with the most video
game experience provided the fewest details and assumed the
agent had much prior knowledge, including which actions
were available and what each action accomplished.

The least experienced participant often provided a piece
of action advice followed immediately by the corresponding
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primitive action. This led to an interesting error: the natural
language explanation was correct, but the given primitive
action key was wrong. It is easy to accidentally say the “s” key
instead of the “a” key when little meaning is associated with
“s” and “a”. It is much harder to mistake the word “jump”
for “fireball” when speaking. Enabling agents to learn from
natural language explanations may reduce errors compared
to attempting to make normal humans speak ‘computer’.
Agents will be able to learn from many more sources in more
environments if people do not have to change their natural
teaching methods.

4) Generalizations: In natural language explanations, par-
ticipants tended to generalize behavior across objects by
suggesting the same policy for many objects. Some gener-
alizations were, “enemies”, “obstacles”, and “things coming
at you”. People are good at generalization. It is powerful if an
agent can take a few generalized sentences and extract initial
policies for many objects.

In the free-form and structured explanations, participants
often discussed actions like “jump on” and “get”, as in “jump
on an enemy” or “get the coin”. These actions are a higher-
level of abstraction than the primitive actions, in which a
person would have to choose between “jump right” and “jump
left”. It may be better to allow people to specify higher-order
actions that naturally generalize across the state space instead
of making them choose a primitive action. Mario can get the
coin if it is anywhere on the screen by decreasing the distance
between Mario and the coin; Mario can get a coin by jumping
to the right if the coin is to the right of Mario. The advice
developed here used primitive actions. The explanations of
“jump on” and “get” might also imply a planner could be
helpful instead of defining higher-level actions in the future.
If the effects of the primitive actions were known, a planner
could specify a sequence of actions necessary for Mario to
jump such that it landed on an enemy’s head or navigated to
a coin’s location. Alternatively, it would help to consider the
possible actions in the domain as separate from the agent’s
actions.

5) Human-agent interaction: The experimenter let the par-
ticipants continue speaking until they were done. They seemed
to expect to be cut off or given some sort of feedback or
indication that they had explained adequately and enough.
Explanations died off awkwardly and uncertainly. If they
were explaining directly to a robot, feedback, transparency,
and gestures could help tell the teacher that the knowledge
is understood, the teacher can continue, finish, or change
explanation style.

Many participants provided reasons for actions, as if they
needed to explain the meaning of actions to the agent or
convince the agent why an action should be taken. “Jump on
an enemy so you don’t lose a life.” Future work with this
RL agent may try to convert reasons for actions into reward
information - losing a life is bad, which should give the agent
a negative reward, so the agent should jump on an enemy to
avoid a negative reward.

B. Sentiment Analysis

One of our goals was to use sentiment analysis to filter
each sentence from a natural language explanation into either
advice (what to do) or warnings (what not to do). We started
by classifying entire sentences as either positive/neutral or
negative.

We found that positive and neutral classifications were
accurate, but false negatives were a significant problem. For
the free-form explanations, the sentiment analysis correctly
classified approximately 86% of positive and neutral sen-
tences. However, only 47% of sentences classified as negative
are truly negative (describing warnings of what not to do).
Approximately half of the sentences classified as negative are
false negatives. For the structured explanations, 95% of the
positive and neutral sentences were correctly classified, but
84% of the negative classifications were false negatives.

Approximately half of the free-form sentences were classi-
fied as positive and neutral while the other half were negative.
Less than half of the structured explanations were classified
as positive or neutral. This is interesting because before each
participant gave a structured explanation they were prompted
to give positive advice: “If Mario encounters an object, he
should do this action.” If people conformed to the prompted
format to give positive advice and the sentiment classification
were perfect, we would expect 100% of the structured explana-
tions to be classified as positive or neutral. Surprisingly, people
conformed to providing positive advice quite well since only
4/44 sentences were truly warnings; however, people were not
as good at providing one action for an object, often providing
sequences of actions.

If a warning like “Do not walk right into an enemy” is
misclassified as advice, the agent will walk right whenever an
enemy is in its state space, which will injure or kill Mario. The
agent’s initial behavior will be the opposite of what the human
teacher intended. After the advice is followed a threshold
number of times, the agent will rely on its experience and
avoid walking right into an enemy. If advice like “Jump on
the enemy” is misclassified as a warning by the sentiment
filter, the agent will avoid jumping when an enemy is in its
state space, so its initial behavior will not be what the human
teacher intended. The best sentiment tools are approximately
85% accurate, so there will be misclassifications. While we
would prefer a perfectly accurate sentiment filter, a misclas-
sification is not disastrous because it can be valuable for an
agent to learn what not to do early so it does not repeat its
mistakes in the long term.

One reason false negatives are likely to occur is people
include consequences or reasoning in their explanations. The
following sentence from a participant was classified as a
warning (negative) even though it was meant as advice of
what to do. “If you see a shell shooting at you, jump to avoid
it.”

False negatives are also likely to occur when an object or
action associated with a negative sentiment is included in an
explanation. The following sentence is classified as negative
even though it describes what actions the agent should take.
“There are holes in the ground you should jump over.”
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True Classified Classified
Sentiment Positive or Neutral Negative

Positive or Neutral 21 (78%) 6 (22%)
Negative 0 (0%) 3 (100%)

TABLE III. Free-Form Explanations after Reclassification

True Classified Classified
Sentiment Positive or Neutral Negative

Positive or Neutral 19 (86%) 3 (14%)
Negative 2 (67%) 1 (33%)

TABLE IV. Structured Explanations after Reclassification

Positive and neutral classifications are quite accurate, but
negative classifications should not be trusted without further
processing. To correct the false negatives, we split each
sentence into clauses and determined the sentiment of each
clause. If at least half the clauses were positive/neutral, we
reclassified the sentence as positive. Consider the examples
from the previous two paragraphs. After being split into two
clauses, ”If you see a shell shooting at you,” is neutral;
the clause, “jump to avoid it,” is negative. Similarly, “There
are holes in the ground,” is negative, but “you should jump
over,” is neutral. Both false negatives can now be reclassified
correctly as advice of what to do.

The reclassification decision tree is shown in Figure 4. If
a sentence is classified as positive, it is used as advice of
what actions to take. If a sentence is classified as negative,
the sentence is split into clauses; each clause is classified as
positive or negative. If 50% or more of the clauses are positive,
the sentence is reclassified as advice of what to do. If the
sentence is still classified as negative, it is used as a warning
of what not to do.

Fig. 4: Sentiment Classification Decision Tree.

Tables III and IV show the results of reclassifying sentences
with negative sentiment. By splitting negative sentences from
free-form explanations into clauses and reclassifying, 78% of
the false negatives were correctly reclassified as positive. All
of the sentences that remained negative were correctly classi-
fied. For structured explanations, splitting negative sentences
into clauses and reclassifying caused 86% of false negatives
to be correctly classified as positive. Two out of the three
sentences that remained negative were false positives.

Reclassifying sentences with negative sentiment by splitting
each sentence into clauses increased the overall accuracy of
classification from 56% to 83% for the free-form explanations.
Similarly, the accuracy of the structured explanation classi-
fications was improved from 50% to 86% by reclassifying
sentences with negative sentiment.

Another approach to reducing false negatives would be
to retrain the sentiment model on language specific to the
desired domain. Games are generally violent. Mario’s lexicon
includes killing, chasms, enemies, impalement, fireballs, and
shooting – not activities or objects thought of as positive in
the mainstream English language.

From a traditional machine learning perspective, since the
only concern is the agent’s performance in a particular domain,
the language model should be retrained for the domain. The
data used to train the model should be representative of the
data the agent will encounter in the future. However, from a
human-agent interaction perspective, the answer is not as clear.
Should we think of the future data as commands in a domain-
specific lexicon or as language people might use? A goal of
Interactive Machine Learning is to bring the algorithm to the
person instead of forcing the person to come to the algorithm.
If the model is retrained for a specific domain and a person
is required to speak in a limited, domain-specific vocabulary,
the person’s natural behavior is altered to make the algorithm
work. If the model is trained on all of mainstream English
and a person is allowed to say anything, the person is able
to teach an agent using a more natural behavior. People are
unlikely to limit themselves to a specific lexicon - they will
use words they are familiar with, so it is beneficial for the
sentiment model to have an understanding of the mainstream
use of the language. Also, the words people choose inform
what they think of situations. “The monster is chasing me” is
negative, but “The boy is chasing me” is neutral.

C. Object-Focused Advice

The following sections discuss the performance of Object-
focused advice. First, we discuss how the quality of advice
varied given different explanation formats. Then, we show
the cumulative reward earned over an object’s entire state
space, how the agent learns where the advice applies after
generalizing over the object’s state, and then look closer at
one particular subset of an object’s state space.

1) Advice from Explanation Formats: Figure 5 shows the
Object-focused advice and warnings for each participant and
each form of explanation. There are many items worth noting,
including the amount of actionable advice for each explanation
type and the quality of the advice.

The amount of actionable advice increased with the struc-
ture of the explanation format. It is expected that free-form
explanations will contain fewer actionable sentences since the
sentences can contain any information in any format. The
structured explanations prompt teachers to link objects to
actions, so more sentences are expected to contain actionable
advice. Every survey entry will be actionable since teachers
can only choose from a list of actions for each object. Each
participant provided advice for every object in the survey
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Object Coin Ground Tunnel Brick Goomba
Winged	
Goomba Red	Koopa Green	Koopa Bullet	Bill Spiky Enemy	Flower Shell Chasm Goal

Freeform P1 collect jumpOver jump jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball jump,	fireball ? right
P2 collect hitBottom jump,	don'tRunInto jump,	don'tRunInto
P3 collect jumpOver jumpOver jumpOver jumpOver jumpOver jumpOver jumpOver ? right
P4 collect,	jump jump jump jump jump jump jump jump ?
P5

Structured P1 jump jump jump jump jump jump jump,JSOver jump
P2 runInto jump jump jump jump jump jump jump jump jump landOn,jump
P3 walkThrough jump jump jump jump jump jump jump jump ? jump
P4 jump jump jump jump jump jump jump jump jump jump jumpOver
P5 jump jump jump waitProceedCautiously jump

Survey P1 SpeedRight SpeedRight Jump Jump JumpSpeed JRS JumpSpeed JumpSpeed Still JRS JRS Jump JRS JRS
P2 Right Right JumpRight Jump Jump Still Jump Jump Still Jump Still Jump JRS SpeedRight
P3 Right Right JumpRight JumpSpeed JumpRight Still JumpRight JumpRight Still JumpRight JRS JumpRight JRS JumpRight
P4 Right Right JumpRight Jump JumpRight Still JumpRight JumpRight Still JRS JRS JumpRight JRS Still
P5 JumpRight Right JumpRight Jump JumpSpeed JumpSpeed JumpRight JumpRight JRS JumpRight JRS JumpRight JRS Jump

Fig. 5: Object-Focused Advice for each explanation type. Note that the responses for the free-form and survey responses are
varied, while almost all of the structured responses are to jump. The poor performance of the structured responses is likely
due to the increased cognitive load of that explanation format. Warnings are shown in red and underlined. P#=Participant#.
JRS=JumpRightSpeed. JS=JumpSpeed. The question marks indicate the participant did not specify if shells were considered
enemies.

explanation, even though it was not required and they did
not see all of the objects during the familiarization phase.
Even though chasms were the leading cause of death in
Mario, no one provided advice about chasms in the free-form
explanations, three people did in the structured explanations,
and everyone did in the survey.

Something very interesting happened with the structured
explanations - while the number of actionable sentences in-
creased from 19 to 27 compared to free-form explanations, the
quality and variation of the advice decreased as seen in Figure
5. In the free-form explanations, the advice had a somewhat
varied vocabulary including collect, jump, right, hitBottom,
fireball, don’t run into, and jump over. For the structured
explanations, almost every piece of advice was jump. In Mario,
jumping vertically with no horizontal velocity will eventually
lead to losing the level. For the survey explanations, the
variation in advice increased again.

The poor advice from the structured explanations is likely
due to the increased cognitive load of the explanation format.
Free-form explanations do not force people to provide specific
content or formulate an answer in a particular format. People
focus entirely on what to say, not how to say it. Structured
explanations, while still in natural language, prompt people to
provide specific content in a certain way. Now, people have to
focus on not just what to say, but how to say it. Participants did
a fairly good job of providing content in the desired format,
as evidenced by the increase in actionable advice. However,
the extra work to formulate their responses led to mostly
worthless advice. Having to extemporaneously create a natural
language response in a certain structure was too difficult to
yield worthwhile results, even in a game domain. For the
survey explanations, the cognitive load was less compared
to the structured explanations. Domain information including
pictures and labels for objects and actions were provided to
participants. They did not have to remember domain informa-
tion or format responses; they simply had to fill in as many
blanks as they chose. If robots ask people for information, the
amount of information given to the person and the method
of response should not impose a high cognitive load or the

person’s response may be of poor quality.
2) Total Cumulative Reward: Figure 6 is included for

completeness and shows the total cumulative reward earned
by an agent with and without advice. The agent with advice
is able to achieve better performance immediately.

Fig. 6: Cumulative Reward from Survey.

3) Performance over an object’s entire state space: Figure
7 compares the performance of participants’ advice for chasms
with adversarial and no advice. Good advice led to an agent
with much better performance than adversarial or no advice.
An agent trained with adversarial advice quickly recovers
and performs as well as no advice, but not as well as good
advice. After 400 trials of learning, the best advice from the
experiment led to Mario falling into chasms approximately
16% of the time, while the agents using adversarial or no
advice fell into chasms 34% of occurrences. Chasms are
difficult for the reflexive state representation that looks at the
3x3 grid surrounding Mario. Mario’s velocity and whether
he is in the air are not part of the state representation. This
leads to state aliasing when learning policies for chasms. The
policy cannot tell if Mario is approaching the chasm quickly
or slowly, which changes the likelihood a given action will
succeed.

It is possible for a participant to provide poor advice for
one object but good advice for another. The agent treats each
piece of advice without prejudice. Even if a participant gave
bad advice for chasms, the agent would not discount the rest
of the advice given by the same person.

4) Object-level generalization: learning where advice ap-
plies: Figure 8 shows the agent learns to which part of the
state space the advice applies. The agent was advised to jump
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Fig. 7: Reward for Chasms from Survey.

to the right quickly when encountering Goombas. The agent
learned this was a good policy when the Goomba was to the
right of Mario in a ‘goldilocks’ zone - not too close but not
too far away. The agent learned jumping to the right quickly
was bad advice when the Goomba was directly above Mario,
because he would become injured when his head ran into the
bottom of the Goomba. Using peoples’ advice as object-level
generalization allows the agent to quickly generalize a policy
to relevant areas of the state space that would be difficult to
learn about via exploration.

Fig. 8: Visualizing Object-level Generalization in a Policy for
Goombas from Survey. The color scale represents Q-values
showing when to jump quickly to the right.

5) Performance in a specific subset of an object’s state
space: Now that we have seen the performance of policies
across the entire state space of an object and how generaliza-
tion over the state works, let’s review the performance in one
specific subset of an object’s state space. Figure 9 shows the
results when a coin is northeast of Mario.

Fig. 9: Comparing the Reward of Good, Mediocre, Adversar-
ial, and No Advice when a coin is northeast of Mario from
Survey.

It can be more difficult to recover from mediocre advice
than adversarial (Figure 9). With adversarial advice, the agent
recognizes quickly that the advice is harmful by earning
negative Q-values. The most exploration occurs in the first
several trials, so it is likely the agent will experience many
actions with better performance than the adversarial advice.
With mediocre advice, the Q-values will be positive, although
not optimal. Fewer actions will earn higher Q-values, and a
better policy may not be found in a timely manner. Because
of the nature of ✏-greedy exploration, it is unlikely the same
advice will be followed multiple times in a row, which makes
the situation more difficult in Mario’s domain due to the
combination of momentum in Mario’s movements and state
aliasing.

6) Advice+Warnings: Figure 10 shows that incorporating
“what not to do” warnings in addition to “what to do” advice
increased the cumulative reward earned by the agent for
different objects. Avoiding dangerous actions and considering
multiple objects simultaneously during action selection im-
proved the agent’s performance.

The agent accumulated approximately twice the reward
when both advice and warnings were included. Algorithmi-
cally, this implies that if a robot or software agent queries
a human teacher for advice, it may improve performance
by asking for both advice and warnings. Even though the
experiment did not specifically ask participants to provide
warnings, they were able to do so for the free-form and
structured explanations. This is a result we will explore in
future work.

Fig. 10: Impact of Warnings on Reward for Coins and Partic-
ipant 3 from Survey.

VI. CONCLUSION

Sentiment analysis can be used to filter natural language
explanations into advice of what to do and warnings of what
not to do. Negative classifications should not be immediately
trusted since there is a high likelihood of false negatives.
Splitting sentences with negative sentiment into clauses and
reclassifying increased the overall accuracy of the sentiment
filter by approximately 30% to around 85%. While a senti-
ment filter can process free-form explanations, many of the
sentences are not actionable and cannot be directly utilized as
advice.

Once the explanations have been split into advice and
warnings, Object-focused advice and OF-Q can be used to
train the agent to maximize its reward for each object. We
presented a novel method of using human advice and warnings
that links objects to actions and does not require people to
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specify state variables. Object-focused advice allows people to
generalize over an object’s state space, which means people
are not forced to provide numbers or particulars describing
the state in explanations. A model-free approach has been
described that increases performance and does not require the
intensive construction of formal language translations.

The goal of Object-focused advice is not to capture all the
nuances and subtleties of free-form teaching, but rather to
make use of human explanations without state information.
It is vital to develop methods that use human explanations
that aren’t state-specific since they reflect much of non-expert
instruction.
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