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Abstract—Digital games often center on a series of challenges
designed to vary in difficulty over the course of the game.
Designers, however, lack ways to ensure challenges are suitably
tailored to the abilities of each game player, often resulting in
player boredom or frustration. Challenge tailoring refers to the
general problem of matching designer-intended challenges to
player abilities. We present an approach to predict temporal
player performance and select appropriate content to solve
the challenge tailoring problem. Our temporal collaborative
filtering approach—tensor factorization—captures similarities
among players and the challenges they face to predict player
performance on unseen, future challenges. Tensor factorization
accounts for varying player abilities over time and is a generic
approach capable of modeling many kinds of players. We use
constraint solving to optimize content selection to match player
skills to a designer-specified level of performance and present
a model—performance curves—for designers to specify desired,
temporally changing player behavior. We evaluate our approach
in a role-playing game through two empirical studies of humans
and one study using simulated agents. Our studies show tensor
factorization scales in multiple game-relevant data dimensions,
can be used for modestly effective game adaptation, and can
predict divergent player learning trends.

Index Terms—artificial intelligence, machine learning, games,
procedural content generation, game adaptation, recommender
systems, player modeling, constraint programming

I. INTRODUCTION

D IGITAL games often set players against a series of
challenges in the form of puzzles, combat with computer

controlled enemies, strategic planning and execution, or reflex-
based timed execution. Designers plan challenge difficulty to
vary over the course of a game and choose content to deliver
appropriate challenges. Players, however, have different skills
and backgrounds and mismatches between player skills and
challenges lead to player boredom or frustration. Automati-
cally tailoring game content to a player’s abilities can avoid
these mismatches. Tailoring can also enable dynamic tutorials
that train players only on the skills they lack or enable online
selection of procedurally generated content appropriate to a
player’s abilities.

Challenge tailoring is the problem of selecting skill-based
content to match a player’s abilities. Tailoring applies to a
variety of skill-based challenges: selecting the health, move-
ment speed, and aggressiveness of enemies in action role-
playing games (RPGs) such as The Legend of Zelda; selecting
the types and number of obstacles in platformer games such
as Mario Bros.; selecting the accuracy and aggressiveness of
enemies in a first-person shooter such as Halo; or selecting the
composition of waves of enemies in an arcade shoot-’em-up
like Space Invaders. Challenge tailoring is similar to dynamic
difficulty adjustment, which makes online, real-time changes
to a game. Unlike dynamic difficulty adjustment, challenge
tailoring allows offline game content optimization and applies

to classes of challenges beyond difficulty. Challenge tailoring
has been used for platformer game levels [1], action RPG
levels [2], first-person shooter item drop rates [3], and puzzle
game pieces [4].

In this paper we describe and evaluate GAMETAILOR—
a temporal challenge tailoring system. Temporal challenge
tailoring extends challenge tailoring to model expected player
skills over time to account for player learning or forgetting. We
describe a turn-based RPG game where GAMETAILOR models
player ability to choose the right action to take against partic-
ular types of opponents. GAMETAILOR uses a temporal player
model to select future game opponents that guide players to-
ward a designer-specified trajectory of performance over time.
We describe techniques for temporal player modeling and
planning content for predicted player states. Specifically we
use tensor factorization to model players and use constrained
optimization using Answer Set Programming to plan content.
Tensor factorization, a form of temporal collaborative filtering,
models and predicts player performance against potential sets
of opponents. Constrained optimization then selects opponents
(content) to minimize the difference between predicted player
performance and desired player performance for each point in
time. Desired player performed is provided through a designer-
authored performance curve.

Challenge tailoring adapts to new player behaviors and
guides expected player behavior toward designer goals. Tem-
poral player models allow proactive content selection to avoid
future boredom, account for learning, and arrange content to
create a trajectory of events—e.g. having players experience a
challenge they later triumph over. Performance curves extend
mixed-initiative design techniques to author desired player
behaviors rather than authoring desired content. We make
three contributions toward temporal challenge tailoring:

1) Using tensor factorization for temporal player models
2) Performing full-loop temporal player modeling and chal-

lenge tailoring in two human studies and one simulation
3) Developing performance curves for mixed-initiative de-

sign of temporal player behaviors

We describe related work on game adaptation and
GAMETAILOR’s temporal collaborative filtering technique—
tensor factorization—and constrained optimization
technique—Answer Set Programming. After reviewing
our previous empirical human study of tensor factorization
for predicting player behavior [5] we present a follow-
up empirical human study of GAMETAILOR’s full-loop
adaptation process. We discuss a simulation to verify
GAMETAILOR’s ground truth efficacy. We close with a
discussion of the strengths and limitations of temporal player
modeling and future work to develop the techniques.
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II. RELATED WORK

Digital games are often designed with a planned progression
of content difficulty or skill mastery [6]. Players, however,
come from diverse backgrounds, making different content
appropriate for each player to achieve the desired progression.
Game adaptation addresses this problem by automatically
selecting game content appropriate to player abilities or pref-
erences. Game adaptation techniques: (1) model game players
and then (2) select content to give players a designer’s desired
experience (or at least behavior).

Game adaptation techniques fall into two classes: providing
designers with fine-grained control over content adjustments or
high-level control of objectives for player subjective responses.
Fine-grained control systems use feedback loop models or
rule-based systems to specify how content should change
based on player state. Player state models have used player
inventory and combat effectiveness in a first-person shooter
[3], player health in a RPG [7], or player health and combat
effectiveness in a RPG [8]. Other systems have modeled
players as vectors of training skills [9], character traits [10] or
player types [11]. These player models enable reactive content
selection based on current player and/or game state. Reactive
responses have been encoded as feedback loops [3], [7], multi-
agent systems [8], or rule-based systems [9]–[11]. System
designers, however, must ensure the reactive responses move
players toward the desired state.

High-level control systems have used evolutionary com-
puting and machine learning player models and selected
content by optimizing model parameters for designer-given
goals. These methods bypass the need to explicitly author
rules for how to update player models by learning to pre-
dict how content influences player responses. Evolutionary
computing player models have used multi-layer perceptrons
with gameplay features based on player movement and combat
in a platformer [1], [12], physical activity in a playground
game [13], weapon choice in a space shooting game [14],
and a variety of psychophsiological measures [15]. Machine
learning player models have used clustering and support-vector
machines with combat effectiveness features in an action RPG
[2], reinforcement learning with puzzle game state and choice
alternatives [4], and Gaussian Processes with combat effective-
ness features in a space shooter game [16]. Machine learning
and evolutionary computing models predict a desired player
metric and content is then selected to optimize that player
metric. Evolutionary computing and machine learning have
been used to optimize for player preference [14], subjective
responses of boredom, frustration, or fun [1], [17], retention
[4], or combat effectiveness [16].

Game adaptation systems have overlooked two problems:
(1) acquiring knowledge of how to adapt content or how
players behave and (2) adapting content to create a time-
varying trajectory of player experiences. Medler [18] was
the earliest to suggest recommender systems for game adap-
tation to address the first problem. Recommender systems,
specifically collaborative filtering models, share content across
users to avoid needing detailed knowledge of individual users.
Sharing information among users while still personalizing to

individual users offers greater robustness to missing data.
Tracking user behavior over time allows recommender systems
to capture patterns in how certain states lead to future states
and can address the second problem. GAMETAILOR uses
a collaborative filtering technique—tensor factorization—to
model temporally varying player state.

Educational data mining researchers have shown the power
of recommender systems to model learner skills [19]. Des-
marais and Naceur [20] use matrix factorization—a recom-
mender system algorithm—to automatically choose questions
based on learner skills; the technique outperformed human
experts in constructing these models. Thai-Nghe, Horvath, and
Schmidt-Thieme [21] used tensor factorization (a generaliza-
tion of matrix factorization) to successfully model temporal
changes in learner skills.

Recommender systems have also shown promise for game
adaptation. Thurau, Kersting, and Bauckhage [22] used a
sophisticated matrix factorization variant to mine game data
patterns. Min et al. [23] found matrix factorization outper-
formed related techniques when personalizing story-centric
narrative sequences in a learning environment. Yu and Riedl
[24] describe a matrix factorization variant that compiles
a history of preference ratings to predict future preference
ratings, demonstrating the matrix factorization variant in a
choose-your-own-adventure game. GAMETAILOR uses tensor
factorization for a temporal player model and selects content
to achieve a desired sequence of player behaviors using
constrained optimization. To our knowledge, GAMETAILOR is
the first system to combine a temporal player model—using
time as an explicit dimension—with game content adaptation
to achieve a trajectory of player states. Temporal adaptation
allows game authors to specify trajectories of desired behavior,
rather than a single player behavior.

III. GAME TAILOR

GAMETAILOR adapts game content to guide players toward
designer specifications for intended player behavior over time.
GAMETAILOR uses a closed loop process of: (1) collecting
player data when engaged with content, (2) modeling the
player, (3) predicting player responses to new content, and
(4) selecting content so that predicted player responses meet
design goals for player responses. We study this approach in
a turn-based RPG domain, modeling player performance as
skills in battling opponents.

GAMETAILOR combines techniques from collaborative fil-
tering to model players and constrained optimization to select
content. Collaborative filtering is used to predict player per-
formance and has the advantage of sharing information across
players. Information sharing can bypass limitations of sparse
player data by using information from similar players; e.g.
new players or games where players are unlikely to experience
all content. Constrained optimization—we use Answer Set
Programming (ASP)—is used to select future opponents for
a player subject to design constraints. GAMETAILOR allows
designers to specify time-varying constraints on desired player
behavior using a performance curve. Performance curves de-
scribe designer intent for expected player behavior over time.
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Fig. 1. A battle between monsters and the player team.

GAMETAILOR uses performance curves to bridge between
designer goals for player behavior and specific content used to
induce that behavior. Below we first present our game domain
and performance curves, next explain our tensor factorization
player modeling approach, and finally describe our ASP model
to select game content according to design constraints.

A. Roleplaying Game Domain

To test GAMETAILOR we implemented a turn-based RPG
and tailored the challenge of a sequence of RPG battles. The
player leads a group of four characters through a sequence of
spell-casting battles against groups of enemy monsters. See
Figure 1 for the game’s battle interface. Turns are limited to
10 seconds to require learning the spell system to the level of
intuitive actions.

Players control four characters through a sequence of eleven
battles against groups of four enemies in each battle. Each
enemy is associated with one of eight spell types and player-
controlled characters can attack with four of the eight possible
spells. By forcing players to use different spell subsets we
drove them to learn how to use all spell types, rather than
specializing to a subset of spells. Casting a particular spell
against an enemy of a particular type results in an attack being
effective, ineffective, or super-effective, resulting in normal
damage, no damage, or double damage against an enemy
(Table I enumerates the combinations we implemented).

We intentionally created a spell system that was difficult
to completely memorize. The spell system contains intuitive
combinations—water spells are super-effective against fire
enemies—and unintuitive combinations—undeath spells are
super-effective against force enemies—ensuring that skill mas-
tery could only be achieved by playing the game. Note that
pairs of spells—e.g. fire and force—are repeated in Table I.
This means there is a simpler underlying skill structure for
players to learn; there are effectively only four spells. Player
characters each have four different spells that provide a super-
effective spell at all times.

Our scoring system was based on spell effectiveness to
motivate players to learn; effective spells earn two points,
ineffective spells earn zero points, and super-effective spells
earn five points. Enemy attacks decrease player score by one.
Player characters were assigned different spell sets, forcing

TABLE I
SPELL EFFECTIVENESS MATRIX

Attack ↓ Def. → fire water acid ice light. earth force undeath
fire 1 0 1 2 1 2 1 0

water 2 1 0 1 0 1 2 1
acid 1 2 1 0 1 0 1 2
ice 0 1 2 1 2 1 0 1

lightning 1 2 1 0 1 0 1 2
earth 0 1 2 1 2 1 0 1
force 1 0 1 2 1 2 1 0

undeath 2 1 0 1 0 1 2 1
key: super-effective = 2, effective = 1, ineffective = 0
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Fig. 2. Example performance curve. The solid line indicates designer-
requested performance levels and the dotted lines show two player trajectories
through the game.

players to learn the spell system. Together, these systems were
designed to motivate players to learn the game systems while
preventing players from succeeding by only using knowledge
of genre conventions.

B. Performance Curve

A performance curve describes a designer’s intent for player
performance over a series of events with measurable outcomes.
In general, GAMETAILOR uses a designer-defined scoring
method that quantifies player performance on an event. We
used RPG battles as events and measured performance as
the average effectiveness of all spells a player used against
a particular type of enemy in a battle. Figure 2 shows
an example performance curve indicating a desired gradual
decrease in player performance before rising at the end of the
game. Ideally players will experience this gradual decrease in
performance as increasing difficulty in the game, even as the
player masters earlier challenges.

We developed performance curves to enable designers to in-
dicate plans for temporal patterns in player behavior over time.
Most previous mixed-initiative game design tools have focused
on enabling designers to explicitly control game content—e.g.
platformer levels [25], world terrain [26], or game maps [27].
Performance curves extend these efforts by enabling designers
to express desired player behavior over time, with the system
responsible for content-level decisions. Complementing Smith
et al. [28], [29] work to specify constraints on the space of all
possible player behaviors, we specify constraints on expected
human player behavior.

In adaptive games performance curves act as a proxy for
a designer’s intent for what a system should realize in the
face of individual player differences. For example, a curve
with a constant value (horizontal line) indicates designer intent
to have player performance remain constant over time. An
adaptation system is responsible for adjusting content to ensure
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a player experiences a constant level of difficulty, even though
the player may learn to play the game better. A different curve
could specify a series of gradual rises and short drops to create
a sense of mounting difficulty followed by brief breaks.

Performance curves apply to many measurable player be-
haviors beyond in-game performance. For example, player
preferences for game events could be modeled using player
choices when given alternative events to experience. Fur-
ther, multi-dimensional performance curves are possible—e.g.
adapting games for both player performance and preference.
Our content adaptation approach (Section V) allows for multi-
ple sources of design constraints and readily integrates multi-
dimensional optimization criteria.

IV. TENSOR FACTORIZATION

This section presents tensor factorization as a player mod-
eling approach. We use tensor factorization to model player
performance over time in games. We chose tensor factorization
due to its favorable scaling properties, ability to cope with
missing data, high accuracy, speed in generating predictions,
and previous success in other applications [30]. While our
experiments study a turn-based RPG, we believe our tech-
niques generalize to other games that use skill-based events
or measurable subjective player feedback.

Tensor factorization decomposes multidimensional mea-
surements into sets of latent components that capture under-
lying features of the high-dimensional data. Tensors gener-
alize matrices to higher dimensions: matrices have a two-
dimensional structure; tensors have a three or more di-
mensional structure. Intuitively, the decomposition process
searches for a set of low-dimensional vectors that, when
combined, accurately recreate the values in the original ten-
sor. The low-dimensional approximation drives the model to
identify the main underlying dimensions of variability in the
data. We expect player performance to depend on a few
underlying aspects of skill, encoded by this approximation.
Low-dimensional approximations have the additional virtue
of constraining the model from over-fitting the training data
to reduce low-accuracy predictions on new cases. We extend
two-dimensional matrices of player performance on skill-based
events with a third dimension for the time of the event.

Tensor factorization is an extension of matrix factorization,
which has been used in collaborative filtering applications—
such as the Netflix Prize data mining competition—to great
success [31], [32]. We first discuss matrix factorization and
next show how tensor factorization extends these principles.
Matrix factorization uses information from a group of users
that has experienced a set of content to predict what new users
that have only been partially exposed to that content will do.
Matrix factorization learns to predict new player behaviors
as they appear, rather than requiring knowledge encoding
these new cases and how to predict them. Matrix and tensor
factorization handle missing information from players, achieve
high accuracy, and can be trained efficiently even with large
amounts of data [22], [31], [32].

In the standard collaborative filtering setting, user data is
represented in a matrix M = U × I containing structured

feedback such as user (U ) preference ratings on items (I) or
user (U ) performance on test questions (I). Decomposition
extracts latent factors relating to users and items. Latent factors
describe underlying traits of the data: e.g. personality traits
extracted from questionnaires or movie genre preferences from
Netflix movie ratings. Prediction combines these factors to
estimate user ratings on previously unrated items.

Tensor factorization extends matrix factorization as follows.
As a running example we will use our application turn-based
RPG game, predicting player performance against each type
of enemy on each battle. Formally, we represent player data
in a three-dimensional tensor Z = U × I × T where U is
the player (“user”), I is the spell type (“item”) and T is the
time of the performance recording. We use Canonical polyadic
(CP) decomposition (a generalization of the singular value
decomposition method used for matrices) to decompose the
three-dimensional Z tensor into a weighted combination of
three latent vector factors:

Z ≈
K∑

k=1

λkwk ◦ hk ◦ qk

where ◦ is the vector outer product, λk are positive weights on
the factors, wk are player factors, hk are spell type factors, and
qk are time factors. K is the number of components used for
each factor as an approximation of the true structure, keeping
the set of the K most important components found [30]. The
decomposition can be computed by minimizing the root mean
squared error between the result of the outer product above
and true data values, iteratively fitting each of the factors while
fixing values of the other factors until convergence. We employ
the N-way toolbox [33] to perform this decomposition.

The outcomes of unseen events are predicted by combining
the latent factors specific to the player, task, and time. Com-
putationally, prediction is the inner product of the three latent
factors, a computationally efficient process:

p̂uit =

K∑
k=1

λkwukhikqtk

where p̂uit is the predicted performance of player u on task
i at time t, wuk indexes the target player’s player factor, hik
indexes the target spell type, and qtk indexes the target time.
Intuitively, prediction combines the weighted strengths of the
underlying factors describing the player, task, and predictive
time point to estimate that particular performance value.

V. CONTENT ADAPTATION

Challenge tailoring in our RPG is the selection of opponents
in a battle to achieve a desired level of player performance.
The designer-specified performance curve provides desired
levels of player performance. GAMETAILOR minimizes the
difference between the performance curve and the predicted
performance of a particular player against a set of enemies
across all battles. In our second study we tailored opponents
in last four battles of the game; we used a performance curve
specifying a steady drop in performance, attempting to create
a feeling of increased difficulty. Four enemies were selected



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. ?, NO. ?, MONTH 20XX 5

for each battle to have a predicted average performance value
matching the desired performance.

GAMETAILOR selected enemy sets using constrained op-
timization implemented in Answer Set Programming (ASP)
[34]. Answer Set Programming is a declarative programming
language used for finite domain constraint solving using
logic programming semantics. As a declarative programming
language ASP allows design criteria to be specified in terms of
constraints on the form of the final solution. Fast satisfiability
solvers have been implemented to enforce hard constraints
and optimize for soft criteria. Answer sets consist of logical
variable values (if any exist) meeting the requested criteria.
ASP allows design requirements to be expressed declaratively
and efficiently solved without needing to formulate game-
specific algorithms for how to select that content.

To use ASP we defined a representation for enemies and
the performance curve. Enemies were represented in terms
of: (a) their spell type, (b) the battle (and slot of four
possible options in a battle) in the sequence, and (c) the
predicted player performance against the enemy in that battle
in the sequence. Predicted player performance on a battle was
measured as the average player performance over a selection of
four (not necessarily distinct) enemy types according to tensor
factorization predictions for that battle. The performance curve
consisted of a series of battles and the level of performance to
achieve. ASP was constrained to find sets of enemies matching
predicted player performance to performance curve values. All
answers within an answer set are equally effective at matching
the performance curve; differences only relate to the specific
enemies chosen. We used the first generated answers among
the answer sets for simplicity and allowed for multiple enemies
of the same type. ASP can add inter-battle or inter-enemy
constraints for greater design control; in our study we only
matched performance without other constraints for simplicity.

VI. STUDY 1: PREDICTING PLAYER PERFORMANCE

Our first empirical study examined the efficacy of tensor
factorization (TF) for predicting player performance without
adaptation. Many of these results have been previously re-
ported [5]; we review the methodology and results to contex-
tualize our follow-up work evaluating the adaptation approach.
Study 1 tested four hypotheses related to predicting player
performance:
H1 TF player performance predictions improve with

more per-player data.
H2 TF player performance predictions improve with

more players.
H3 TF predictions of future player performance improve

with more per-player performance history.
H4 TF predicts player performance better than related

baseline matrix factorization (MF) models.
We quantified prediction quality as cross-validated percent
variance explained—a standard evaluation metric for matrix
and tensor decomposition evaluations [30], [32].1 Percent
variance explained (PVE) measures the proportion of the total

1H4 used 60-fold cross-validation, the remaining hypotheses used 10-fold
cross-validation.

variability in the data that is explained by a model. Larger
percent variance explained (up to 100%) indicates a model
fits given data better.

The first three hypotheses test different forms of model
scaling in the amount of data used. If models achieve a high
PVE they effectively explain the data; if models scale well
they are robust to different forms of missing data. H1 tests
TF’s robustness to sparse or randomly missing data; H2 tests
TF’s scaling as the number of game players increases; and H3

tests TF’s scaling to predict the future as more player history is
gathered. We hypothesized TF would improve with more data
in all three cases and found an overall high PVE (over 80%).
Confirming these hypotheses shows TF can capture patterns
in player performance in a turn-based RPG battle system and
that TF scales in game-relevant data dimensions.
H4 compares TF to MF models as a baseline. Our TF model

organizes player data in a three-dimensional tensor (player,
enemy spell type, battle number), where each value in the
tensor is the average performance of the player when attacking
opponents of a specific spell type during a specific battle.
We hypothesized TF would outperform MF as TF models
can make time an extra dimension, while MF models must
integrate temporal information into other dimensions, losing
this additional information. We compared TF to two baseline
MF models: MF using an unfolded tensor (“unfolded”), and
MF averaging over time (“time-averaged”). The matrix un-
folding of our tensor concatenates battles column-wise [30].
For example, a tensor can record data from 10 players using
any of 8 spell types across 5 battles using a three-dimensional
10 × 8 × 5 tensor. Unfolding this tensor concatenates battles
and spells per player into a single dimension, producing a
10 × 40 matrix. Time-averaging the tensor instead takes the
mean performance value over every time a spell type was used.
Time-averaging produces a 10× 8 matrix, losing information
about changes in performance over time. We hypothesized
TF would outperform MF on an unfolded tensor as TF
retains more structural information about time in the data. We
hypothesized TF would outperform MF on a time-averaged
tensor as TF retains information on temporal variations in
player behavior.

Game designers often plan for a desired player experience,
rather than behavior or performance. We hypothesized there is
an inverse relationship between objective, measurable player
performance and subjective, self-reported difficulty:
H5 Player performance ratings inversely correlate with

self-reported difficulty ratings.
Should this hypothesis hold it will verify that in the context of
our turn-based RPG we can use skill performance as a proxy
for difficulty. We evaluated H5 using Kendall’s rank correla-
tion test to test the null hypothesis that player performance
has no correlation with self-reported ordinal difficulty ratings.

Our results from study 1 show TF has a high PVE with large
amounts of missing data (H1) or fewer players (H2). Further,
TF has a high PVE when fill on future player performance
(H3) with a relatively short part of player history (the first 60%
of the game). TF is moderately more effective than baseline
MF models (H4). There was a medium inverse correlation
between player difficulty ratings and in-game performance
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(H5). Taken together, the results of study 1 suggest TF
robustly predicts player performance and scales in relevant
data dimensions.

A. Study Methodology

For study 1 we recruited 32 people to play our game.
Players had five minutes to review a document explaining
the spell system and the game interface. Once familiar with
the game players completed a sequence of 11 battles while
we recorded player performance as the effectiveness of spells
chosen against enemies. After each battle we asked players to
report how difficult and enjoyable the battle was on a 5-point
Likert-like scale.

We recorded each spell players cast on each enemy on
each turn and battle in the game along with the associated
performance value: 0 for ineffective, 1 for effective, and
2 for super-effective. Player behavior traces varied in the
number of turns taken in a battle because spell effectiveness
determined damage to enemies. We averaged performance for
each spell type across all turns within a given battle, leaving
the performance value missing for any unused spells.

B. Results

As a control we compared player performance across de-
mographic attributes (age, gender, race, prior video game and
RPG experience). An ANOVA found only prior RPG experi-
ence was a significant factor in player performance (p < 0.01),
all other factors were not significant (p > 0.05). We omitted
prior RPG experience from our models to emulate a use case
where our system starts without prior player information.

Players showed substantial performance variability mea-
sured as the standard deviation of per-battle performance.
Performance was on a [0,2] scale with per-battle performance
standard deviations ranging from 0.62 to 0.76; the average
value was 0.71. Performance variability indicates there were
sufficient differences in the data collected that the MF and TF
models needed to fit the data.

To test TF’s robustness to sparse data (H1) we removed
a randomly selected subset of the data. Randomly missing
values simulates more sparse data collection. Figure 3 shows
TF captures most of the variability in the data with as little as
60% of the total dataset. These results support H1: TF achieves
a high PVE even when using small portions of the total data
and improves with more data. Using more components creates
more complex low-dimensional approximations. In our case
player behaviors were explained by a simple model using only
two components; more components likely created models that
overfit the data and thus had a lower PVE.

To test TF’s scaling in the number of players (H2) we
removed a randomly selected subset of players. Altering the
number of players in the dataset simulates a growing number
of game players. We randomly subsampled 6, 11, 16, 21, or
27 players from our full set of 32 players. Accuracy improved
on the 2 component model from 81% PVE with 6 players to
87% with 27 players, while the 4 component model improved
from 53% to 86%, respectively. Other numbers of components
showed similar trends, converging to approximately 86% PVE
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Fig. 3. TF PVE when using a random subset of data from study 1; bars
indicate 95% confidence intervals.
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Fig. 4. TF PVE when using data for a player limited to the initial portion of
the game using study 1 data; bars indicate 95% confidence intervals.

with 27 players. These results support H2: TF reaches a high
PVE even with few players and improves with data from more
players.

To test TF’s scaling in the length of player history available
(H3) we removed a subset of future battles from the data
of a target group of players. Removing future data emulates
predicting future player performance from the initial history
of player actions. Figure 4 shows TF reaches a high PVE with
60% of a player’s total gameplay trace (7 out of 11 battles).
These results support H3: TF achieves high PVE even when
using only an initial subset of a player’s history and improves
with more player history.

To compare TF to baseline MF models (H4) we trained
each of the models on the full dataset. TF outperformed the
unfolded and time-averaged MF models (Table II). Differences
among the models were small overall, with TF performing
best with few components. The unfolded model shows neg-
ative PVE with more components—it fails to explain player
behavior when using more flexible models of player abilities.
Conversely, the time-averaged model gradually improves with
larger numbers of components, indicating the need for a more
complex model to capture player underlying abilities. Overall,
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TABLE II
COMPARISON OF PERCENT VARIANCE EXPLAINED BY DIFFERENT MODELS

USING VARYING NUMBERS OF FACTORS. COMPARES TENSOR MODEL
(TENSOR), MATRIX MODEL CREATED BY UNFOLDING THE TENSOR

(UNFOLDED) AND MATRIX MODEL AVERAGING OVER ALL TIME POINTS
(TIME-AVERAGED).

components tensor unfolded time-averaged
2 92 90 -19
3 87 86 15
4 73 45 42
5 69 28 89
6 65 46 90
7 58 -91 91
8 70 -152 91

these results only weakly support H4: TF models player
behavior as well as related MF models with a relatively simple
(in terms of number of components) model of player abilities.

To test the relationship between objective performance and
self-reported difficulty (H5) we tested the correlation between
mean per-battle performance and ordinal difficulty ratings.
As hypothesized, players reported difficulty had a significant,
medium negative correlation (Kendall’s rank correlation test,
p < 0.001 and τ = −0.35) with in-game performance.
Enjoyment also had a significant, small (p < 0.05 and
τ = −0.09) negative correlation with performance. Thus, in
our game lower objective performance correlates with greater
perceived difficulty and slightly greater enjoyment.

VII. STUDY 2: ADAPTING GAME CONTENT

Our first study showed TF can predict player performance,
but did not address whether these predictions allow for game
adaptation. Study 2 tested adaptation using ASP to select
opponents for the last four battles of the study 1 game. We
hypothesized that adaptation could guide player performance:
H6 Player performance on adapted game content will

match TF player performance predictions.
Adaptation quality was quantified as the mean absolute error
(MAE) between desired performance and observed player
behavior on a piece of adapted content—here a battle. Our
study results partially refuted H6: adaptation never achieved
non-zero error, though in half of the cases the error was small.

Based on the results of testing H6 we conducted a post-
hoc analysis of data from both studies. We believed that
adaptation in study 2 introduced out-of-sample behavior—
behaviors that were not observed in the original game used as
training data—that led to poor prediction quality. Repeatedly
exposing players to their weaknesses taught them to overcome
these weaknesses. We hypothesized TF could predict this new
behavior when using the new data showing this behavior:
H7 TF has high quality predictions using player perfor-

mance data from on adapted content.
TF prediction quality was quantified using PVE and achieved
similar PVE to the results from study 1, supporting H7. We
also hypothesized TF’s scaling properties and comparative
effectiveness (tested as H1 through H4 in study 1) would hold
in the context of the combined dataset from both studies. Using
the combined dataset from both studies we found support

for these hypotheses (H ′
1 through H ′

4). Together these results
suggest temporal adaptation may initially fail due to player
learning, but can model new player behaviors once elicited.

A. Study Methodology

Study 2 used the same game as study 1 with 30 new players.
Players completed the same initial seven battles from study 1.
Upon completing battle 7 a new player’s data was added to
the database of the 32 players from study 1. TF predicted the
new player’s performance against each type of opponent for
the remaining four battles. ASP then selected content (based
on TF performance prediction values) to match a performance
curve that described decreasing player performance over the
last four battles (average performance across enemies of 1.5,
1.0, 0.5, 0.5 on a [0,2] scale).

B. Results

To test game adaptation (H6) we compared desired perfor-
mance from the performance curve and observed performance
on the four adapted battles using the MAE as an error metric.
Player performance was near desired performance for the
first two battles before deviating over the last two battles.
All battles showed significant (non-zero) mean absolute error
(t-test with Bonferroni correction p < 0.001), with values
of 0.24, 0.65, 1.21, and 1.09 over the last four battles,
respectively. Non-zero, but sometimes small, errors refute
H6: GAMETAILOR’s adaptation fails to perfectly drive player
performance to desired levels, though the gap between desired
and actual performance is sometimes small.

Qualitative feedback from players revealed the reason for
these prediction errors—forcing players to fight many enemies
testing the same skill rapidly trained players in that skill.
Players reported the final battles being initially challenging
before learning how to defeat opponents through practice. The
study design of gradually decreasing performance led players
to face multiple of a single type of enemy, giving players more
opportunities to learn. These considerations motivated a post-
hoc analysis of whether TF could learn to predict the new
behavior (H7).

To test whether TF could adapt to the new learning be-
havior (H7) we trained TF on the full dataset comprising the
players from both studies. We also retested our hypotheses for
TF’s scaling (H1 through H3) and effectiveness compared to
baseline models (H4) using this new dataset (labeling these
hypotheses H ′

1 through H ′
4). TF scaled in dataset size with

the combined dataset. TF fit player behavior (80% PVE) when
hiding 30% of data randomly (H ′

1), and scaled smoothly with
increasing amounts of information on players (up to 96% PVE)
(Figure 5). Even with adaptation introducing out-of-sample
behavior, TF effectively fit data from the full 62 player dataset
(H7) with a slightly better fit than when using only 32 players
(H ′

2: from 92% PVE to 96% PVE). TF achieved a good fit
(over 90% PVE) for predicting future player behavior (H ′

3)
with only 50-60% of the game completed (Figure 6). As in
the first experiment, models with few components had the best
performance while models with more components achieved
similar quality with more data. Together these results show
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TABLE III
COMPARISON OF PERCENT VARIANCE EXPLAINED BY DIFFERENT MODELS

USING VARYING NUMBERS OF FACTORS.

components tensor unfolded time-averaged
2 93 85 92
3 92 82 93
4 91 79 92
5 91 83 92
6 90 77 92
7 88 72 92
8 88 70 92
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Fig. 5. TF PVE when using a random subset of data from both studies; bars
indicate 95% confidence intervals.

TF can learn from anomalous behavior during adaptation to
improve as more player behavior is observed.

TF and the time-averaged model show comparable high
performance (H ′

4), while the unfolded model shows compara-
tively poor performance (Table III). As in study 1, TF degrades
with more components, likely due to overfitting the data. The
time-averaged model shows similar performance across the
varying number of components, indicating a stable model
that gains little from additional flexibility but is less likely
to overfit. The unfolded model did worst—likely caused by
modeling spell types as independent across battles due to the
concatenation used in unfolding.

We performed a post-hoc analysis to examine why the time-
averaged model performed well. A linear regression of player
performance against the battle they were on in the sequence
found progression across battles has a significant, but small,
impact on player performance (β = 0.014, p < 0.001).
That is, for every 10 battles we could expect players to
improve 0.1 points on a [0,2] scale. Performance in our game
was highly variable: per-battle standard deviations in the full
data set ranged from 0.64 to 0.79 with an average value of
0.72. Per-player changes in performance, however, were small:
poor players remained poor while skilled players remained
skilled. With little player learning occurring, TF had limited
advantages over the time-averaged model that ignores this
additional information and estimates player performance based
on their average performance.
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Fig. 6. TF PVE when using data for a player limited to the initial portion of
the game using data from both studies; bars indicate 95% confidence intervals.

VIII. SIMULATION STUDY

As players showed little temporal variation in our two
empirical studies we performed a simulation study with hard-
coded learning trends. Our simulations generated data with
differing rates of learning across the eight spell types in our
game. We again compared TF to baseline models (H ′′

4 ) and
found TF fits temporally varying data as well as the matrix
alternatives. We also retested and found support for all scaling
properties (H ′′

1 through H ′′
3 ). Together these simulation results

support the conclusion that TF can model player behavior with
learning trends even with variations across players and across
individual player abilities.

A. Study Methodology

Our simulation study generated data for 30 players with
varying learning rates on each of the 8 spell types across 11
battles. For each player we synthesized a series of performance
values when facing a given spell type by: uniformly randomly
generating a starting and ending performance level in the
[0,2] range, sorting these to ensure increasing performance
over time, and interpolating performance to linearly increase
from the initial to the final value. We added a moderate
amount of Gaussian noise (mean 0, standard deviation 0.5)
to all performance values and clamped values to fall within
[0,2] after adding noise. The 8 spell performance levels were
generated independently to create the 8 × 11 matrix of an
individual player’s performance. We repeated the synthesis
process for 30 total players.

B. Results

We repeated our baseline comparison and scaling tests from
the previous two studies using only data from the simulated
players (H ′′

1 through H ′′
4 ). TF fit the simulation data as

well as the unfolded or time-averaged models (Table IV).
Performance for all models was best with eight components—
this is expected as the underlying generation process created
eight independent learning trends for the models to fit. TF’s
superior performance supports the claim that tensors can
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TABLE IV
COMPARISON OF TF TO BASELINE MF MODELS ON SIMULATED

LEARNING DATA.

components tensor unfolded time-averaged
2 87 86 84
3 89 87 87
4 91 90 89
5 94 92 91
6 96 95 92
7 97 96 93
8 98 97 94
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Fig. 7. TF PVE when using a random subset of data from simulations; bars
indicate 95% confidence intervals.

model temporal trends in player behavior that related baseline
models less effectively predict (H ′′

4 ).
As in the previous studies TF showed favorable scaling in

randomly missing data (H ′′
1 , Figure 7) and missing future data

(H ′′
3 , Figure 8). Increasing the number of players increased the

PVE of the model (H ′′
2 ). The 2 component model increased

from 81% to 88% PVE when increasing from 5 to 25 players;
the 8 component model increased from 87% to 92% over the
same range. Unlike the empirical studies, TF performance
improved with more components up to the 8 used. This
aligns with our simulation data generation process that used 8
independent learning trends. Thus, even with learning trends
TF retains its favorable scaling properties. Together these
results support the claim that TF can be used for temporal
player modeling.

IX. DISCUSSION AND FUTURE WORK

GAMETAILOR addresses the temporal challenge tailoring
problem—selecting content to guide players to designer-
specified behavior while accounting for how players change
over time. A performance curve allows high-level authoring
of desired gameplay behavior trajectories. Tensor factorization
models temporal player behavior and constrained optimization
can select content to guide player behavior toward designer
intent using the performance curve. Our experiments with hu-
man players show tensor factorization scales with the density
of data collection (H1), number of game players (H2), and
length of player gameplay history available (H3) and can adapt
to errors due to unexpected player behaviors (H7). Tensor
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Fig. 8. TF PVE when using data for a player limited to the initial portion of
the game using data from simulations; bars indicate 95% confidence intervals.

factorization has similar performance to baseline models when
using data where players show variability but little learning
(H4 and H ′

4) and with simulated players that have hard-coded
learning patterns (H ′′

4 ). GAMETAILOR has some capacity to
guide player behavior through adaptation (H6), though it fails
to capture out-of-sample behavior induced by novel content
combinations. Together, our results show tensor factorization
has promise for temporal player modeling and can be used for
(limited) temporal challenge tailoring.

We combine a temporal player model with game adaptation
to model how players vary in ability over time as they
experience game content. By anticipating temporal variation in
player behaviors, we can proactively generate future content,
avoiding the pitfalls of reactive content selection. Tensor fac-
torization successfully modeled the small set of independent
skills in our game with relatively little data. We hypothesize
that games using tensor factorization or related collaborative
filtering approaches to challenge tailoring will require only
a small amount of training data from any given player. In
game development contexts an initial scripted tutorial should
be sufficient to elicit this data. We believe our techniques
generalize to games with larger numbers of skills, though this
will likely require more data than we used (30-60 players over
11 events).

Our techniques, however, require further development be-
fore they can be used in existing commercial games. Develop-
ers must choose the appropriate prediction model (e.g. tensor
factorization or the time-averaged matrix) and number of
model components to use. We found both tensor factorization
and the time-averaged matrix factorization models performed
well, making these preferable choices. Developers could make
a small-scale comparison using randomly sampled player data
from an existing game (or alpha/beta game testing) to evaluate
these models and inform the choice of model to use for a
game. Should developers change their desired performance
curve they would likely need to retrain their prediction model
on player behavior on new content settings before using the
model’s predictions for adaptation. Our study 2 results show
tensor factorization can predict new behaviors but requires that
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these new situations are first tested to gather examples of the
new behaviors.

Our experiments also open several additional research ques-
tions. Does tensor factorization accurately predict human
player learning? As players showed little learning in our
experimental game additional work should modify the testbed
game to help learning through more detailed feedback (e.g.
suggesting the correct spell to use) or allowing a longer period
of play. Our simulation studies show promise for predicting
player behavior when learning and a follow-up study should
test whether these results hold for humans. In addition, follow-
up work should examine the relationship between adaptation
and player experience to test whether adaptation improves
player experience.

Several factors were important to success in our application
domain of turn-based RPGs: action outcomes were easily
attributed to individual skills, skills were largely independent,
and players faced opponents with fixed behaviors. Games,
however, often involve features that confound the clear ex-
pression of skill: outcomes may have an element of chance,
actions may depend on multiple player skills, or actions may
strongly depend on context. Noisy outcomes—e.g. due to
game system randomization—require more data to discern
the effect of player skill, but are amenable to the same
factorization methods.

Skills often have inter-dependencies—e.g. the ability to
effectively issue commands in a strategy game is required
before a player can successfully execute more complex tactics
or strategies. Skills may require mastering a full procedure
with potential branching or looping over a sequence of actions
[35], choosing a set of actions together to achieve a result [29],
or combining strategic and tactical reasoning in a dynamic
setting [36]. Extending tensor factorization to more complex
skill dependencies may require additional techniques to model
the relationships among the tensor components (e.g. using
graphical models to introduce hierarchies [37]) or dimensions
to account for skill dependencies. Future work will need to
investigate when increasing the number of components is
effective compared to adding new dimensions to the tensor (as
we added time) or adding latent dimensions. Many important
aspects of balancing among computational speed, data scaling,
and system accuracy will need to be studied.

Developing appropriate constraints for adaptation in a
closed loop—where a system observes player behavior, pre-
dicts subsequent behavior, and modifies the game for the
player—is also important to ensure adapted content encourages
desired player behavior. In our second empirical study we
observed that adaptation selected multiple enemies of a single
type, ultimately over-training players against this particular
enemy. Constraining the number of any given type of enemy in
a battle would address this problem and illustrates the value
of more sophisticated adaptation constraints. In general, we
see developing these systems and cross-domain approaches to
solving challenge tailoring as pressing open problems with
broad applicability to entertainment, education, and training.

Challenge tailoring is only one facet of controlling game
content that ignores the non-skill-based elements of a game.
Games often use fictional context between challenges to moti-

vate the challenges presented and immerse players in a game
world. Challenge contextualization is the problem of providing
non-challenge content—e.g. cutscenes, dialog with characters,
quests, or plot exposition—that motivate challenges. Contex-
tualization answers the question “why am I, the player, fight-
ing these enemies?” Techniques for story generation, quest
generation, or drama management can potentially provide this
content to increase the scope of a game adaptation system [38].
Tailoring and contextualizing challenges extends the ability of
designers to shape game experiences.

GAMETAILOR’s combination of temporal player modeling
and optimization allows game designers to abstractly specify
the “feel” of their game with respect to difficulty and allows a
system to fill in the content details that best suit an individual
player. Challenge tailoring makes it possible for a single game
to cater to broader demographics of potential game players
with widely varying skills and backgrounds. Tailoring games
ultimately enables the same game to reach a broader audience,
allowing games for entertainment, training, or education to
reach ever-diversifying player demographics with minimal
additional design work.
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