
Automatic Playtesting for Game Parameter Tuning via
Active Learning

Alexander Zook, Eric Fruchter and Mark O. Riedl
School of Interactive Computing, College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA

{a.zook, efruchter, riedl}@gatech.edu

ABSTRACT
Game designers use human playtesting to gather feedback
about game design elements when iteratively improving a
game. Playtesting, however, is expensive: human testers
must be recruited, playtest results must be aggregated and
interpreted, and changes to game designs must be extrap-
olated from these results. Can automated methods reduce
this expense? We show how active learning techniques can
formalize and automate a subset of playtesting goals. Specif-
ically, we focus on the low-level parameter tuning required
to balance a game once the mechanics have been chosen.
Through a case study on a shoot-‘em-up game we demon-
strate the efficacy of active learning to reduce the amount
of playtesting needed to choose the optimal set of game pa-
rameters for two classes of (formal) design objectives. This
work opens the potential for additional methods to reduce
the human burden of performing playtesting for a variety of
relevant design concerns.

Categories and Subject Descriptors
Applied Computing [Computers in other domains]: Per-
sonal computers and PC applications—Computer games

General Terms
Experimentation

Keywords
Active learning, machine learning, game design, playtesting

1. INTRODUCTION
Iterative game design practices emphasize the centrality

of playtesting to improve and refine a game’s design. Human
playtesters provide valuable feedback on audience reactions
to a game. Playtesting is often claimed to be“the single most
important activity a designer engages in” [7]. Test data in-
forms designers of how real players may react to the game in

ways that self-testing, simulations, and design analysis may
not. Playtesting, however, is expensive—developers must
recruit players, devise design experiments, collect game play
and subjective feedback data, and make design changes to
meet design goals.

We ask the question: can we reduce the cost of the playtest-
ing process by automating some of the more mundane as-
pects of playtesting? To address this problem we exam-
ine a subset of playtesting questions focused on “param-
eter tuning.” Parameter tuning involves making low-level
changes to game mechanic settings such as character move-
ment parameters, power-up item effects, or control sensitiv-
ity. Games based on careful timing and reflexes depend on
well-tuned parameters, including racing, platforming, shoot-
‘em-up, and fighting game genres. Addressing the problem
of parameter tuning requires a means to automatically select
a set of potentially good parameter settings, test those set-
tings with humans, evaluate the human results, and repeat
the process until a pre-defined design goal is achieved.

Our primary insight is to model playtesting as a form of
active learning (AL). Active learning [19] selects among a set
of possible inputs to get the best output while minimizing
the number of inputs tested. We define the “best output”
as a parameter tuning design goal and treat a set of game
design parameters as an “input.” Minimizing the number of
inputs tested minimizes the number of playtests performed,
saving human effort and reducing costs. This paper makes
three contributions toward machine–driven playtesting:

1. Formulating efficient playtesting as an AL problem

2. Defining several common playtesting goals in terms of
AL metrics

3. Demonstrating the efficacy of AL to reduce the number
of playtests needed to optimize (1) difficulty-related
and (2) control-related game parameters in a case study
of a shoot-‘em-up game

We believe machine–driven playtesting is a novel use of
machine learning in games. Unlike prior work on dynamic
difficulty and adaptive games we focus on the case of decid-
ing on a fixed design for future use. Our approach can apply
to iterative, online game adjustments to more rapidly con-
verge on the right set of game parameters. Unlike prior work
on game design support tools using simulations or model-
checking we focus on the problem of efficiently working with
a set of human testers. Our approach complements these
tools for early-stage exploration with late-stage refinement.
To the best of our knowledge this work is novel in auto-
matically tuning game controls. Controls are an important



element of player interaction. Poor controls can obstruct
player enjoyment or make a game unplayable, yet have been
largely overlooked in AI for game design support. This work
provides a first step to addressing interaction through tuning
controls to construct a single control setting that best meets
the preferences of many players (e.g. default controls).

In this paper we first compare our approach to related
work on game design support. We next define a set of pa-
rameter tuning design goals and relate them to AL meth-
ods. Following this we describe a case study of automated
playtesting using a shoot-‘em-up game. After describing
the game we present results showing AL reduces playtesting
costs using human data collected from an online study. We
conclude with a discussion of the limitations, applications,
and potential extensions to this playtesting approach.

2. RELATED WORK
Two research areas are closely related to machine playtest-

ing: offline game design tools and online game adaptation.
Offline game design tools help designers explore possible
game designs by defining a high-level space of games through
a design language. Online game adaptation changes game
designs in real-time based on player actions or game state.

2.1 Offline Game Design Tools
Offline game design tools have evaluated game designs us-

ing simulated players and formal model-checking. Simulation-
based tools use sampling techniques to test aspects of a game
design for “playability,” typically defined as the ability for a
player to reach a given goal state with the current design
parameters. Model-checking tools define game mechanics in
a logical language to provide hard guarantees on the same
kinds of playability tests.

Bauer et al. [2] and Cook et al. [6] use sampling methods
to evaluate platformer game level playability. Shaker et al.
[20] combine a rule-based reasoning approach with simula-
tion to generate content for a physics-based game. Simu-
lation approaches are valuable when design involves an in-
tractably large space of possible parameters to test and can
serve as input to optimization techniques. Model-checking
approaches provide guarantees on generated designs having
formally defined properties—typically at the cost of being
limited to more coarse design parameter decisions. Smith et
al. [22], Butler et al. [4], and Horswill and Foged [10] use
logic programming and constraint solving to generating lev-
els or sets of levels meeting given design constraints. Jaffe et
al. [12] use game-theoretic analysis to understand the effects
of game design parameters on competitive game balance.

Our approach to automated playtesting complements these
approaches to high-level early design exploration with low-
level optimization of game parameters and tuning. Further,
we focus on a generic technique that applies to cases with
human testers in the loop, crucial to tuning game controls or
subjective features of games. Offline design tools currently
enable designers to formally define and enforce properties
of a game design across all possible player behaviors in a
specific game or space of designs. To date these tools have
emphasized techniques for ensuring game designs have de-
sired formal properties that meet designer intent. Machine–
driven playtesting uses players to provide feedback to de-
signers on expected player behaviors in a game. Developing
machine–driven playtesting techniques affords designers in-
sight into how human audiences interact with designer in-

tent, complementing an understanding of whether and how
a game matches formal criteria. AL complements formal
design techniques by allowing them to more efficiently learn
and improve models.

2.2 Online Game Adaptation
Online game adaptation researchers have used both hand-

crafted rules and data-driven techniques. Hunicke and Chap-
man [11] track the average and variance of player damage
and inventory levels and use a hand-crafted policy to ad-
just levels of enemies or powerups. Systems by Magerko et
al. [14], El-Nasr [18], and Thue et al. [24] model players
as vectors of skills, personality traits, or pre-defined “player
types” and select content to fit players using hand-crafted
rules. Hand-crafted rules allow designers to give fine-tuned
details of how to adjust a game toward design goals. How-
ever, designers must fully describe how to change the game
and rules are often sensitive to minor game design changes.

To bypass the brittleness of rules others have used data-
driven techniques that optimize game parameters toward de-
sign goals. Hastings et al. [9], Shaker et al. [21], Liapis et
al. [13] and Yu and Riedl [26] model player preferences us-
ing neuro-evolutionary or machine learning techniques and
optimize the output of these models to select potential game
parameters. Harrison and Roberts [8] optimize player reten-
tion and Zook and Riedl [28] optimize game difficulty with
similar techniques.

Automated playtesting extends these approaches with prin-
cipled methods to guide the process of designing hand-crafted
rules or optimizing game parameters. When hand-crafting
rules, automated playtesting informs the choice of which rule
parameters to use. When optimizing models learned from
data, automated playtesting informs the choice of which
next set of parameters to test during the optimization pro-
cess. We argue research to date has ignored the problem of
reducing “sample complexity”—the number of data points
(human playtests) needed to train a model. Active learning
makes explicit the trade-off in playtesting between “explor-
ing” potentially valuable game design settings and “exploit-
ing” known good solutions with small changes. Thus, AL
can complement online game adaptation by reducing the
number of mediocre or bad sets of game parameters play-
ers experience before arriving at good parameter settings
without changing the underlying models used.

2.3 Active Learning in Games
There are other uses of AL in games. Normoyle et al.

[15] use AL to recommend sets of useful player metrics to
track. Rafferty et al. [16] optimize game designs offline
to learn the most about player cognition. Machine–driven
playtesting complements prior uses of AL for game design by
focusing on efficiently improving designs for player behavior
and experience. We extend these efforts with a wider variety
of AL methods while addressing the cost of playtesting.

3. PLAYTESTING AS ACTIVE LEARNING
Our goal is to automate mundane playtesting tasks by effi-

ciently choosing game design parameters for players to test.
Active learning provides a generic set of techniques to per-
form the playtesting process of choosing a set of design pa-
rameters to test toward achieving a design goal. Playtesting
typically involves trade-offs between testing designs that are
poorly understood (exploration) and refining designs that



are known to be good but need minor changes (exploitation).
Active learning captures this intuition through explicit mod-
els of the exploration-exploitation trade-off. In this section
we characterize playtesting in terms of AL. We provide in-
tuitions behind AL, but full mathematical treatments are
available through the references.

Machine–driven playtesting—AL for game design—involves
(1) a design model for how a design works, (2) a design goal,
and (3) a playtesting strategy for how to choose a new design
when seeking the best design for a goal. Formally, a design
model is a function that captures the relationship between
game design parameters (input) and game metrics (output:
e.g. specific player behaviors or subjective responses). The
design goal is an objective function specifying what game
metrics are desired. Playtesting strategies choose what de-
sign to test next using an acquisition function that uses in-
formation from the design model and goal to predict and
value possible playtest outcomes.

Design model functions come in two forms: regression and
classification. Regression models predict how design param-
eters will change continuous outputs—e.g. how many times
a player is hit or how long it takes players to complete a
platformer level. Classification models predict changes in
discrete outputs—e.g. which of a pair of racing game con-
trol settings a player will prefer or which choose-your-own
adventure choice a player will make when given a set of
options. Objective functions specify how to value different
outputs—e.g. wanting players to be hit a certain number
of times or wanting players to agree that one set of controls
is good. Note that many design goals can be formulated as
goals for playtesting: the challenge lies in defining a useful
metric for measuring these goals through player feedback or
in-game behavior.

Acquisition functions differ for regression and classifica-
tion models. In the next sections we provide intuitive de-
scriptions of several acquisition functions—references to the
relevant mathematical literature are provided. Our survey of
regression models covers key methods along the exploration-
exploitation spectrum. For classification models we cover
the most common frameworks for AL with discrete data that
are intended to mitigate the impact of highly variable data.

3.1 Regression Models
Acquisition functions choose which input parameters to

test next to most efficiently maximize an objective function.
Acquisition functions vary along a spectrum of exploration—
playtesting by picking designs that are least understood—
and exploitation—picking designs that are expected to be
best. We consider four acquisition functions for regression
models: (1) variance, (2) probability of improvement, (3)
expected improvement, and (4) upper-confidence bounds.
These acquisition functions were developed in the field of
Bayesian experimental design and apply generally to any
regression model with a probabilistic interpretation [3, 5].
Regression models are useful when design goals fall along
a continuous scale; we examine player behavior, specifically
how enemy design parameters affect player performance.

Regression acquisition functions include:

• Variance Exploration by picking the input with great-
est output variance [3].

• Probability of Improvement (PI) Exploitation by
picking the input most likely to have an output that

improves over the previous best [3].

• Expected Improvement (EI) Balances exploration
and exploitation by picking the input with greatest
combined probability and amount of improvement over
the previous best [3].

• Upper Confidence Bound (UCB) Balances ex-
ploration and exploitation by picking the input with
greatest combined expected value and uncertainty to
gradually narrow the space of inputs [23].

3.2 Classification Models
Classification models are useful when design goals involve

discrete choices; we examine player subjective ratings, specif-
ically studying preference choices when picking between sets
of controls. Classification models are primarily concerned
with increasing certainty in predicting outcomes—improving
the model of how the design works. We consider five acqui-
sition functions for classification models: (1) entropy, (2)
query-by-bagging (QBB) vote, (3) query-by-bagging (QBB)
probability, (4) expected error reduction, and (5) variance
reduction. These acquisition functions have been developed
for classification models; several—entropy, QBB probability,
and expected error and variance reduction—require proba-
bilistic predictions.

• Entropy Picks the input with greatest output uncer-
tainty according to entropy—a measure of the amount
of information needed to encode a distribution [19].

• Query-By-Bagging (QBB) Picks the input with most
disagreement among copies of a classification model
trained on random subsets of known results [19]. QBB
vote picks the input with the largest difference be-
tween its top two output options [19]. QBB prob-
ability picks the output with greatest average uncer-
tainty across the models [1].

• Expected Error Reduction Picks the input that, if
used to train the model, leads to the greatest expected
reduction in classification error [19].

• Variance Reduction Same as expected error reduc-
tion, but seeks to reduce variance in output predictions
rather than error [19].

4. GAME DOMAIN
We sought to assess how well AL could reduce the num-

ber of playtests needed to achieve a design goal. To con-
duct a case study of machine–driven playtesting we devel-
oped a simple shoot-‘em-up game (Figure 1). Shoot-‘em-up
games emphasize reflexes and pattern recognition abilities
as a player maneuvers a ship to dodge enemy shots and re-
turn fire. In general, arcade games serve as an ideal starting
domain for low-level parameter tuning:

• There are a number of parameters that can potentially
interfere with each other: size and speed of enemies
and enemy bullets, rate of enemy fire, player speed,
player rate of fire, etc.

• The game can be played in a series of waves, enabling
our system to naturally test game parameter settings
and gather player feedback.



Figure 1: Study game interface illustrating player,
enemies, and shots fired by both at two points along
adaptation process.

• Action-oriented gameplay reduces the complexity of
player long-term planning and strategizing.

• A scoring system makes gameplay goals and progress
clear, unlike domains involving puzzle-solving or aes-
thetic enjoyment of a game world or setting.

In the case of shoot-‘em-up games, we tested two different
kinds of game design goals: (a) player game play behavior
goals and (b) player subjective response goals. Player game
play behavior goals cover cases where designers desire par-
ticular play patterns or outcomes—e.g. player success rates
or score achieved. Subjective responses goals cover cases
where designers desire specific player subjective feedback—
e.g. getting good user ratings on the feel of the controls.

The shoot-‘em-up game involves space ship combat over a
series of waves. During each wave a series of enemies appear
that fire bullets at the player. To test AL for regression we
set a game play behavior design goal (objective function)
of the player being hit exactly six times during each wave
of enemies (output) and tuned enemy parameters (input).
We varied the size of enemy bullets, speed of enemy bul-
lets, and rate that enemies fire bullets. Increasing bullet
size requires the player to move more carefully to avoid bul-

lets. Faster bullets require quicker player reflexes to dodge
incoming fire. More rapid firing rates increase the volume
of incoming fire. Together these three parameters govern
how much players must move to dodge enemy attacks, in
turn challenging player reflexes. Getting approximate set-
tings for these parameters is easy, but fine-tuning them for
a desired level of difficulty can be challenging.

To test AL for classification we set a subjective response
design goal (objective function) of the player evaluating a
set of controls as better than the previous set (output) and
tuned player control parameters (input). We varied two ship
movement parameters: drag and thrust. Drag is the “fric-
tion” applied to a ship that decelerates the moving ship at
a constant rate when it is moving—larger values cause the
ship to stop drifting in motion sooner. Thrust is the“force”a
player movement press applies to accelerate the ship—larger
values cause the ship to move more rapidly when the player
presses a key to move. Combinations of thrust and drag are
easy to tune to rough ranges of playability. However, the
precise values needed to ensure the player has the appropri-
ate controls are difficult to find as player movement depends
on how enemies attack and individual player preferences for
control sensitivity (much like mouse movement sensitivity).
After each wave of enemies a menu asked players to indi-
cate if the most recent controls were better, worse, or as
good/bad as (“neither”) the previous set of controls. We
provided a fourth option of “no difference” for when players
could not distinguish the sets of controls, as opposed to “nei-
ther” where players felt controls differed but had no impact
on their preferences.

5. EXPERIMENTS
Our experiments tested whether AL could reduce the num-

ber of human playtests needed to tune design parameters
compared to a random sampling approach. Random sam-
pling is the standard baseline used to evaluate the efficacy
of AL models for improving an objective function for a fixed
number of inputs [19]. Random sampling is similar to A/B
testing approaches that capture large amounts of data be-
fore acting on the results. Randomizing parameter ordering
helps control for player learning over waves.

In two experiments we used the above AL acquisition
functions for regression by tuning enemy parameters and
for classification by tuning player controls, respectively. For
both experiments we first built a data set by providing hu-
man players with random sets of parameters and recording
behavior or subjective responses, respectively. The experi-
ments had AL methods use this data as a pool of potential
playtests to run and evaluated how well AL could pick a
sequence of playtests to best achieve the design goals.

In the regression study we used Gaussian Processes (GPs),
the standard non-linear regression function in the Bayesian
experimental design literature. GPs generally yield good
models with few playtests (samples) and have computation-
ally inexpensive analytic formulations for many of our acqui-
sition functions. In the classification study we used three dif-
ferent objective functions—Gaussian Processes (GP), Ker-
nel Support Vector Machines (KSVM), and optimized neural
networks (“neuro-evolution”, NE). KSVMs and NE are com-
mon classification approaches, whereas GPs are not. Kernel
methods (e.g. KSVMs and GPs) are a popular machine
learning technique previously used in player modeling [27]
and optimized neural networks have been widely used in



preference learning [25].1 Since NE does not produce prob-
abilistic predictions it cannot use some of the above acqui-
sition functions.

5.1 Data Collection
We empirically evaluated AL by deploying two versions of

our game online. We publicized the game through websites
and local emailing lists and did not offer compensation to
participants. To collect data on patterns of play over time
we asked participants to try to play at least 10 waves of the
game, though we did not enforce this requirement.

For analysis we only used data from players who played
at least 10 waves total. This ensures we avoid data from
players who were unable to reliably run the game. For our
regression experiment this resulted in data from 138 players
and 991 waves of the game total (using all waves each player
played). For our preference experiment we had 57 players,
47 of these provided only binary responses of “better” or
“worse” and we limited our analysis to this subset of players
to yield 416 paired comparisons. We only used preference
responses during the first 10 waves of play to avoid collecting
many positive responses from those who were highly engaged
in the game. Note that we did not collect preference com-
parisons for the first wave of the game as players could not
yet compare control settings.

5.2 Experiment Design
Using this data we performed 10-fold cross-validated ex-

periments to measure how well a playtesting strategy (ac-
quisition function) could achieve a design goal (objective
function) given a set of design parameters (input). For re-
gression we trained a GP (design model) using the three en-
emy parameters (input: bullet speed, bullet size, and firing
rate) to minimize the squared difference between the num-
ber of times the player was hit (output) and a desired rate
of 6 times (objective function). We squared the difference
to more steeply penalize sets of parameters with greater dif-
ferences from the ideal. For classification we trained a GP,
KSVM, or NE (design model) with four control parameters
(input: current and previous drag and thrust) to predict
player control preference comparisons as “better” or “worse”
(output) with a design goal of maximizing prediction quality
(objective function: F1 score).

For each cross-validation fold we first randomly selected
10% of the data and set it aside for evaluating objective
function performance. Next we randomly sampled 30 input–
output pairs from the other 90% of the data set to create
a training data set; the remaining unused samples formed
the training pool. Within each fold we then repeated the
following process:

1. Train the regression or classification model on the train-
ing data set.

2. Evaluate the objective function for that model on the
testing data set.

3. Use the acquisition function to pick a new input sam-
ple from the training pool (without yet knowing the
sample output) to improve the objective function.

1For computational reasons we use a gradient-based opti-
mization method for network structure, size, and weights,
rather than the more common neuro-evolutionary ap-
proaches. We found no performance differences between the
two optimization approaches in initial tests on our data.

4. Move the selected sample (including the true output)
from the training pool into the training data.

5. Return to the first step and repeat the process until
the maximum number of training samples are used.

We used a maximum of 300 training samples in both regres-
sion and classification.

6. RESULTS AND DISCUSSION
Overall our results show AL is a promising approach for

reducing the number of playtests needed to achieve a design
goal. For enemy parameter tuning (a regression problem) we
found acquisition functions that balance exploration and ex-
ploitation (especially UCB) have the best performance. For
control tuning (a classification problem) we found acquisi-
tion functions that tolerate high variance (e.g. QBB and
entropy) have strong performance. No single acquisition
function, objective function, or acquisition-objective func-
tion pair was optimal across cases and number of playtests.
These results align with previous work in AL showing that
many data-specific properties impact AL efficacy [17]. Be-
low we provide further details with an emphasis on how AL
impacted the need for playtesting.

6.1 Regression
Our regression experiments show AL can effectively tune

for players having a desired level of performance, even with
few samples. Having a clear behavioral objective (being hit
a number of times in the game) was likely a strong contrib-
utor. We found UCB was most effective (Table 1).2 UCB
explicitly balances exploring and exploiting potential test
designs, suggesting parameter tuning objectives involve a
balance between considering alternative parameter settings
and refining a given setting.

AL methods that do not balance exploration and exploita-
tion had worse performance either with few or many sam-
ples. Figure 2 shows MSE values (higher is worse perfor-
mance) for model predictions when trained with different
acquisition functions, illustrating the better performance of
all AL methods over random sampling; Table 1 provides val-
ues at selected regions. Figure 3 shows how much different
acquisition functions reduced MSE compared to a baseline
random sampling approach (larger values indicate greater
improvements). From these figures it is clear AL is par-
ticularly advantageous at small sample sizes, though most
methods show improvements up to the maximum number of
samples used.

Variance performed relatively better with many samples,
explained by the need to explore heavily before having a
good enough design model. When tuning many parameters
at once it is easy to find many sets of uncertain (but bad)
parameters, leading to poor performance with few samples.
Over time EI gradually worsened while UCB and variance
maintained better performance. As more samples are gath-
ered UCB reduces exploration while EI eventually begins to
make poor playtest choices. Approximately 70 samples were
needed to train the successful AL methods for the largest
peak performance improvements; random sampling never
achieved this level of performance on our data set (Table 1).

2AL methods led to significant improvements over the ran-
dom baseline in all reported results tables.



Figure 2: GP performance using different acquisi-
tion functions. Shows MSE with an increasing pool
of AL-selected training samples. Lower values indi-
cate better performance. Bands indicate values that
were averaged to produce Table 1.

Table 1: Regression GP MSE acquisition function
comparison. Sample sizes indicate values averaged
over a range of ±5 samples (for smoothing). Lower
values indicate better performance.

acquisition function 65 samples 280 samples
random 268 239
variance 233 228

PI 255 236
EI 210 242

UCB 203 224

Overall this clearly demonstrates AL can enhance playtest-
ing efficacy, perhaps beyond what would happen through
simply A/B testing and collecting data as suggested by the
asymptotically higher performance of UCB and variance.

Our regression experiments show the power of AL to re-
duce the amount of playtesting required and better achieve
design goals. UCB’s balance of exploration and exploitation
had the greatest efficacy and suggests a gradual refinement
design process is optimal. These results make a strong case
for AL applied to optimizing low-level in-game behaviors,
such as difficulty in terms of in-game performance.

6.2 Classification
Our classification experiments show AL improves models

of subjective player preferences with both probabilistic and
non-probabilistic acquisition functions. Methods that toler-
ate high variance—entropy, QBB vote and probability, and
expected error reduction—have the strongest performance
(Table 2). These acquisition functions succeed by overcom-
ing the noise inherent in human playtest data, particularly
when using few playtests. Performance increases with few
playtests means AL may be particularly effective in cases
where playtesting time or resource budget is limited. Our
results show AL methods are effective even with more com-
plex data and can improve a variety of baseline classification
design models (called classifiers—GPs, KSVMs, and NE).

Figure 3: GP performance improvement over ran-
dom sampling using different acquisition functions.
Shows amount of MSE reduction with an increasing
pool of AL-selected training samples. Larger values
indicate better performance.

Entropy, QBB vote and probability, and error reduction
all improved classification quality (as F1 score) over ran-
dom sampling. Figure 4 shows F1 scores (higher is better
performance) for the best performing acquisition functions
for each classifier; Table 2 provides values at selected re-
gions. Figure 5 shows how much different acquisition func-
tions increased F1 scores compared to a baseline random
sampling approach using the same classifier (larger values
indicate greater improvements). These figures illustrate AL
can provide substantial gains with few samples and maintain
an improvement over random sampling up to the maximum
number of samples used.

QBB methods (especially vote) were effective at both few
and many samples. Entropy was only effective with few
samples while error reduction was most effective with more
samples. Expected error reduction must predict future out-
comes and thus requires more initial data before becoming
effective. Variance reduction had poor performance. As
with the variance acquisition function for regression a large
number of possible parameters causes difficulty in effectively
reducing variability in responses. We speculate preference
responses are typically noisy due to people shifting prefer-
ences or disagreeing on a common design as preferable (e.g.
mouse control sensitivity in first-person games).

Comparing the design models, we found GPs had the best
baseline performance (with random sampling), followed by
NE and then KSVMs. Overall GPs with QBB probability
or expected error reduction did best, followed by KSVMs
with either QBB method and then NEs using QBB vote.
Using AL methods provided the largest performance boost
for KSVMs, though GPs and NE also benefited.

Our classification experiments thus demonstrate AL can
reduce the amount of playtesting needed even for subjec-
tive features of a design such as control settings. Reducing
playtest costs requires acquisition functions (e.g. entropy,
QBB, and error reduction) that mitigate the noise inher-
ent in preference response data. AL always improved over
random sampling across different design model approaches,



Figure 4: Classification performance with differ-
ent combinations of classifiers and acquisition func-
tions. Higher values indicate better performance.
Shows F1 score with an increasing pool of AL-
selected training samples. Bands indicate values
that were averaged to produce Table 2. Only the
best-performing acquisition functions for each clas-
sifier are shown for clarity.

Table 2: Classification acquisition-objective function
F1 score comparison. Sample sizes indicate values
averaged over a range of ±5 samples (for smoothing).
Higher values indicate better performance.
acquisition
function

100 samples 200 samples
GP KSVM NE GP KSVM NE

random 0.720 0.684 0.673 0.773 0.709 0.718
entropy 0.763 0.731 N/A 0.763 0.751 N/A

QBB vote 0.758 0.746 0.703 0.780 0.777 0.760
QBB prob 0.749 0.724 N/A 0.792 0.782 N/A
error red 0.761 0.702 N/A 0.795 0.772 N/A
var red 0.660 0.667 N/A 0.725 0.723 N/A

though the best acquisition functions varied.

6.3 Limitations
Our work has several limitations that point to important

avenues for further developing machine–driven playtesting.
We used a game domain that allows for a tight loop between
playing the game and evaluating the game parameters. More
complex design tasks such as playtesting a platformer level
or tuning a simulation game system will likely require more
sophisticated techniques for credit assignment to design el-
ements. Our tasks tuned a set of flat parameters. Tasks
with structured design elements—e.g. rule sets in a card or
board game—will require alternative techniques able to han-
dle modular composition of design parameters in the opti-
mization process. Understanding the relative strengths and
weaknesses of different AL approaches for different game
types and design tasks is a rich area for further research.
This paper presents a first step toward understanding how
machines can support game design across these applications.

7. CONCLUSIONS
We have shown how playtesting for low-level design pa-

rameter tuning can be automated using active learning. AL

Figure 5: Classification performance improvement
over random sampling with different combinations
of classifiers and acquisition functions. Higher val-
ues indicate better performance. Shows gains in F1
score with an increasing pool of AL-selected train-
ing samples. Only the best-performing acquisition
functions for each classifier are shown for clarity.

can reduce the cost of playtesting to achieve a design goal by
intelligently picking designs to test. In some cases AL may
get better results for a design goal than simple A/B testing
could accomplish. AL is especially powerful when coupled
to online playtesting, enabling a machine to simultaneously
optimize many parameters without burdening the designer.

To the best of our knowledge this paper is novel in au-
tomatically tuning game controls. Application of machine
learning and AI to games have focused on content generation
rather than player interaction. Interaction “feel” is crucial
to many digital games—poor controls can obstruct player
enjoyment or make a game unplayable. This work provides
a first step to addressing this problem through tuning con-
trols to construct a single control setting that best meets the
preferences of many players (e.g. default controls).

We believe machine–driven playtesting can provide in-
sights into how to best perform playtests. Designers might
learn better playtest techniques by considering how ma-
chines best perform these tasks. For example, UCB was the
best acquisition function for AL in regression. UCB uses a
process of initially exploring widely before shifting toward
greater exploitation by choosing designs expected to elicit
both high-quality and high-variability results to narrow the
space of alternatives. Balance or other feature–tuning tech-
niques may benefit from similar methods of testing multiple
alternatives based on balanced consideration of their value
and how well they are understood.

We anticipate AL can improve game development pro-
cesses by making playtesting more efficient and cost-effective.
AL may also inform processes that cannot yet be automated:
e.g. using forums or bug reports to identify and prioritize
potential design changes. Machine–driven playtesting can
thus complement the strengths of human game designers by
allowing them to focus on high-level design goals while ma-
chines handle mundane parameter tweaking.
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