Multivariate Data & Tables and Graphs

CS 7450 - Information Visualization Aug. 30, 2011 John Stasko

Agenda

- Data and its characteristics
- Tables and graphs
- Design principles

Fall 2011 CS 7450 2

1

Data

- Data is taken from and/or representing some phenomena from the world
- Data models something of interest to us

Fall 2011 CS 7450

Data Sets

- Data comes in many different forms
- Typically, not in the way you want them
- What is available to me (in the raw)?

Example

- Cars
 - make
 - model
 - year
 - miles per gallon
 - cost
 - number of cylinders
 - weights
 - ...

Fall 2011 CS 7450

Example

Web pages

Data Models

- Often characterize data through three components
 - ObjectsItems of interest(students, courses, terms, ...)
 - Attributes
 Characteristics or properties of data (name, age, GPA, number, date, ...)
 - Relations
 How two or more objects relate
 (student takes course, course during term, ...)

Fall 2011 CS 7450 7

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)
 - Relational: Relations between cases (not our main focus today)

Data Table Format

Dimensions

	Case ₁	Case ₂	Case ₃	
Variable ₁	Value ₁₁	Value ₂₁	Value ₃₁	
Variable ₁ Variable ₂ Variable ₃	Value ₁₂	Value ₂₂	Value ₃₂	
Variable ₃	Value ₁₃	Value ₂₃	Value ₃₃	
TI: 1 C C !!				

Think of as a function $f(case_1) = \langle Val_{11}, Val_{12}, ... \rangle$

Fall 2011 CS 7450

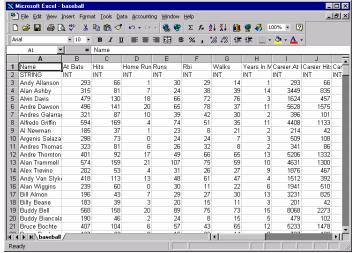
Example

	Mary	Jim	Sally	Mitch	
SSN	145	294	563	823	
Age	23	17	47	29	
Hair	brown	black	blonde	red	
GPA	2.9	3.7	3.4	2.1	

People in class

Or

	P1	P2	Р3	P4	
Name	Mary	Jim	Sally 563 47 blonde 3.4	Mitch	
SSN	145	294	563	823	
Age	23	17	47	29	
Hair	brown	black	blonde	red	
GPA	2.9	3.7	3.4	2.1	


People in class

Fall 2011 CS 7450 11

Example

Baseball statistics

Variable Types

- Three main types of variables
 - N-Nominal (equal or not equal to other values)

Example: gender

O-Ordinal (obeys < relation, ordered set)

Example: fr,so,jr,sr

Q-Quantitative (can do math on them)

Example: age

Fall 2011 CS 7450 13

Alternate Characterization

- Two types of data
 - Quantitative

Relationships between values:

Ranking

Ratio

Correlation

Categorical

How attributes relate to each other:

Nominal

Ordinal

Interval

Hierarchical

From S. Few

Metadata

- Descriptive information about the data
 - Might be something as simple as the type of a variable, or could be more complex
 - For times when the table itself just isn't enough
 - Example: if variable1 is "I", then variable3 can only be 3, 7 or 16

Fall 2011 CS 7450 15

Data Cleaning

- Data may be missing/corrupted
 - Remove?
 - Modify?
- You may want to adjust values
 - Use inverse
 - Map nominal to ordinal/quantitative
 - Normalize values
 Scale between 0 and 1

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data

Fall 2011 CS 7450 17

Representation

- What are two main ways of presenting multivariate data sets?
 - Directly (textually) → Tables
 - Symbolically (pictures) → Graphs
- When use which?

Strengths?

S. Few Show Me the Numbers

- Use tables when
 - The document will be used to look up individual values
 - The document will be used to compare individual values
 - Precise values are required
 - The quantitative info to be communicated involves more than one unit of measure

- Use graphs when
 - The message is contained in the shape of the values
 - The document will be used to reveal relationships among values

Fall 2011 CS 7450 1

Effective Table Design

- See Show Me the Numbers
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)

Example

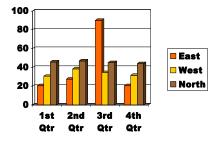
Fall 2011 CS 7450 21

Example

Basic Symbolic Displays

- Graphs ←
- Charts
- Maps
- Diagrams

From:

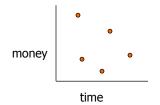

S. Kosslyn, "Understanding charts and graphs", *Applied Cognitive Psychology*, 1989.

Fall 2011 CS 7450 23

1. Graph

Showing the relationships between variables' values in a data table

Properties


- Graph
 - Visual display that illustrates one or more relationships among entities
 - Shorthand way to present information
 - Allows a trend, pattern or comparison to be easily comprehended

Fall 2011 CS 7450 25

Issues

- Critical to remain task-centric
 - Why do you need a graph?
 - What questions are being answered?
 - What data is needed to answer those questions?
 - Who is the audience?

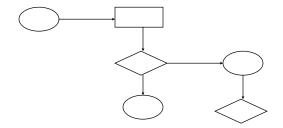

Graph Components

- Framework
 - Measurement types, scale
- Content
 - Marks, lines, points
- Labels
 - Title, axes, ticks

Fall 2011 CS 7450 2

Many Examples

Quick Aside


- Other symbolic displays
 - Chart
 - Map
 - Diagram

Fall 2011 CS 7450 2

2. Chart

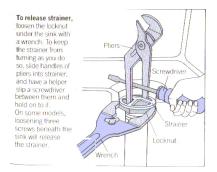
- Structure is important, relates entities to each other
- Primarily uses lines, enclosure, position to link entities

Examples: flowchart, family tree, org chart, ...

3. Map

Representation of spatial relations

Locations identified by labels



Fall 2011 CS 7450 31

4. Diagram

- Schematic picture of object or entity
- Parts are symbolic

Examples: figures, steps in a manual, illustrations,...

Some History

- Which is older, map or graph?
- Maps from about 2300 BC
- Graphs from 1600's
 - Rene Descartes
 - William Playfair, late 1700's

Fall 2011 CS 7450

Details

- What are the constituent pieces of these four symbolic displays?
- What are the building blocks?

Fall 2011 CS 7450 34

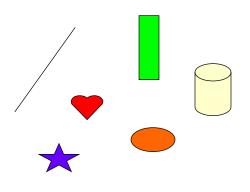
17

Visual Structures

- Composed of
 - Spatial substrate
 - Marks
 - Graphical properties of marks

Fall 2011 CS 7450 3

Space



- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to
 - 1) increase use of space
 - 2) do data encodings

Marks

- Things that occur in space
 - Points
 - Lines
 - Areas
 - Volumes

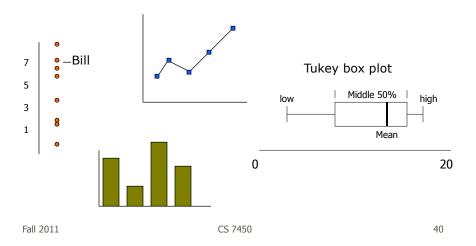
Fall 2011 CS 7450 37

Graphical Properties

• Size, shape, color, orientation...

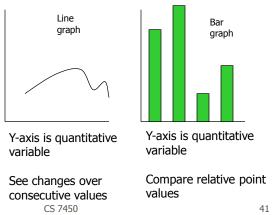
	Spatial properties	Object properties	
Expressing extent	Position Size	Grayscale	
Differentiating marks	Orientation	Color Shape Texture	

Back to Data


- What were the different types of data sets?
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data

Fall 2011 CS 7450 3

Univariate Data

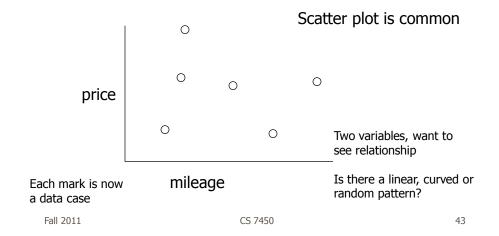

Representations

What Goes Where?

 In univariate representations, we often think of the data case as being shown along one dimension, and the value in another

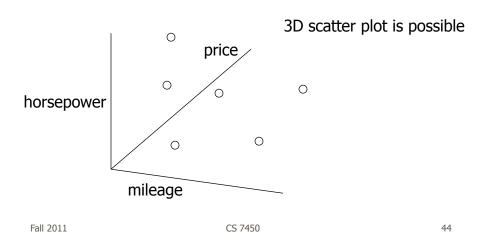
Fall 2011

Alternative View

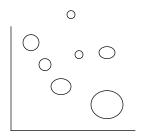


- We may think of graph as representing independent (data case) and dependent (value) variables
- Guideline:
 - Independent vs. dependent variables
 Put independent on x-axis
 See resultant dependent variables along y-axis

Bivariate Data

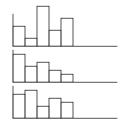

Representations

Trivariate Data



Representations

Alternative Representation



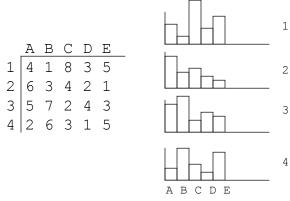
Still use 2D but have mark property represent third variable

Fall 2011 CS 7450 4

Alternative Representation

Represent each variable in its own explicit way

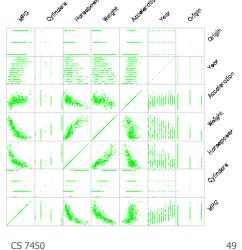
Hypervariate Data


- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?
 - Often the interesting, challenging ones

Fall 2011 CS 7450 47

Multiple Views

Give each variable its own display



Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what? Misses what?

Fall 2011

More to Come...

 Subsequent day will explore other general techniques for handling hypervariate data

50 Fall 2011 CS 7450

Back to Graphs

- Design guidance
 - Few provides many helpful principles to design effective graphs

Fall 2011 CS 7450 51

Few's Selection & Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects
 - Determine the range of the quantitative scale
 - If a legend is required, determine where to place it
 - Determine the best location for the quantitative scale
 - Determine if grid lines are required
 - Determine what descriptive text is needed
- Determine if particular data should be featured and how

S Few "Effectively Communicating Numbers" http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Some examples...

Points, Lines, Bars, Boxes

- Points
 - Useful in scatterplots for 2-values
 - Can replace bars when scale doesn't start at 0
- Lines
 - Connect values in a series
 - Show changes, trends, patterns
 - Not for a set of nominal or ordinal values
- Bars
 - Emphasizes individual values
 - Good for comparing individual values
- Boxes
 - Shows a distribution of values

Fall 2011 CS 7450 53

Vertical vs. Horizontal Bars

 Horizontal can be good if long labels or many items

Multiple Bars

Can be used to encode another variable

Fall 2011 CS 7450 55

Multiple Graphs

 Can distribute a variable across graphs too

Sometimes called a trellis display

Examples

Fall 2011 CS 7450 5

Before

You want to present quantitative sales performance data for the 4 regions of your company for the four quarters of the year

Fall 2011 CS 7450 58

29

Fall 2011 CS 7450 59

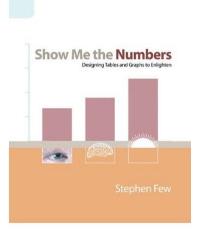
Before

Fall 2011 CS 7450 61

Before

Fall 2011 CS 7450 63

Before



Fall 2011 CS 7450 65

Book Recommendation

Loaded with examples of how to redesign ineffective tables and graphs

Advice

- Take DB & IR courses
 - Learn about query languages, relational data models, datacubes, data warehouses, ...

Fall 2011 CS 7450

Administratia

Office hours are posted

HW 1 Discussion

- What findings did you make?
- What was difficult?
- What help did you want?

Fall 2011 CS 7450

HW 2

- Table and graph design
- Given two (Excel) data sets, design a table and graph for the data, respectively
- Due next Tuesday

Upcoming

- Visual Perception
 - Reading:Stone paper
- Cognitive Issues
 - Reading:Norman chapterLiu paper

Fall 2011 CS 7450 71

Sources Used

Few book
CMS book
Referenced articles
Marti Hearst SIMS 247 lectures
Kosslyn '89 article
A. Marcus, *Graphic Design for Electronic Documents*and User Interfaces
W. Cleveland, *The Elements of Graphing Data*