Visual Perception

CS 7450 - Information Visualization September 1, 2011 John Stasko

Agenda

Visual perception

- Pre-attentive processing

- Color

– Etc.

Semiotics

- The study of symbols and how they convey meaning
- Classic book:
 - J. Bertin, 1983, The Semiology of Graphics

Fall 2011

CS 7450

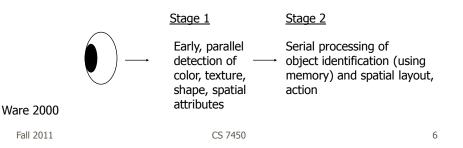
Related Disciplines

- Psychophysics
 - Applying methods of physics to measuring human perceptual systems
 - How fast must light flicker until we perceive it as constant?
 - What change in brightness can we perceive?
- Cognitive psychology
 - Understanding how people think, here, how it relates to perception

CS 7450

Perceptual Processing

- Seek to better understand visual perception and visual information processing
 - Multiple theories or models exist
 - Need to understand physiology and cognitive psychology


Fall 2011

CS 7450

5

One (simple) Model

- Two stage process
 - Parallel extraction of low-level properties of scene
 - Sequential goal-directed processing

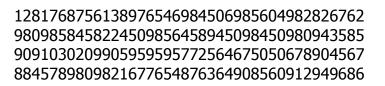
Stage 1 - Low-level, Parallel

- Neurons in eye & brain responsible for different kinds of information
 - Orientation, color, texture, movement, etc.
- Arrays of neurons work in parallel
- Occurs "automatically"
- Rapid
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called "pre-attentive" processing

Fall 2011

CS 7450

Stage 2 - Sequential, Goal-Directed


- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion & action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements

CS 7450

Stage 2 Attributes

- Slow serial processing
- Involves working and long-term memory
- More emphasis on arbitrary aspects of symbols
- Top-down processing

Fall 2011	CS 7450	9
Preatte	ntive Process	sing
images? – Some thi	human visual system ngs seem to be done p the need for focused at	preattentively,
moveme	y less than 200-250 ms nts take 200 msecs) o be done in parallel by stem	
		Drawn from C. Healey web article
Fall 2011	CS 7450	10

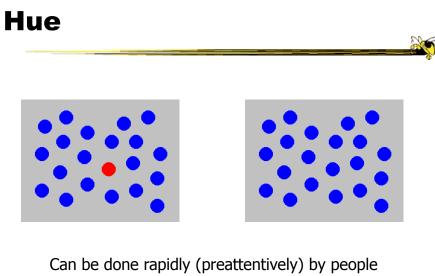
Fall 2011

CS 7450

11

How Many 3's?

3980985845822450985645894509845098094**33**0209905959595772564675050678904567 **3**


What Kinds of Tasks?

- Target detection
 - Is something there?
- Boundary detection
 - Can the elements be grouped?
- Counting
 - How many elements of a certain type are present?

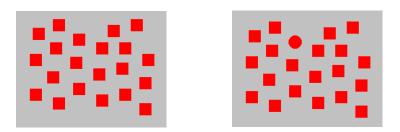
Fall 2011	CS 7450	13
		10

Example

- Determine if a red circle is present
- (2 sides of the room)

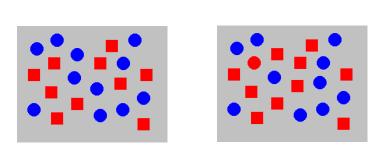
Surrounding objects called "distractors"

Fall 2011


CS 7450

15

• Determine if a red circle is present


Can be done preattentively by people

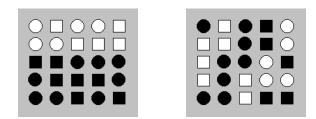
Fall 2011	CS 7450	17

• Determine if a red circle is present

Hue and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjuction of features (shape and hue) causes it

Fall 2011


CS 7450

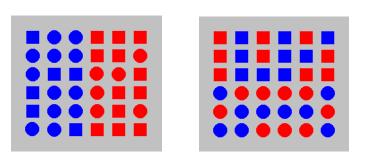
19

• Is there a boundary in the display?

Fill and Shape

- Left can be done preattentively since each group contains one unique feature
- Right cannot (there is a boundary!) since the two features are mixed (fill and shape)

Fall 2011


CS 7450

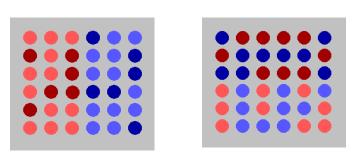
21

• Is there a boundary in the display?

Hue versus Shape

Left: Boundary detected preattentively based on hue regardless of shape Right: Cannot do mixed color shapes preattentively

Fall 2011


CS 7450

23

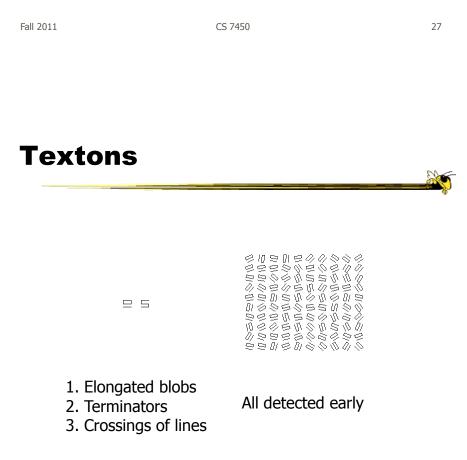
• Is there a boundary?

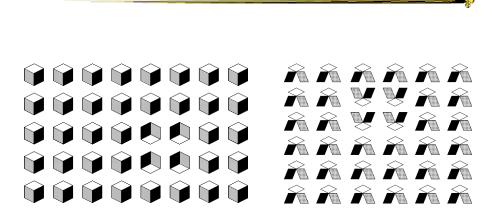
Hue versus brightness

Left: Varying brightness seems to interfere Right: Boundary based on brightness can be done preattentively

Fall 2011

CS 7450

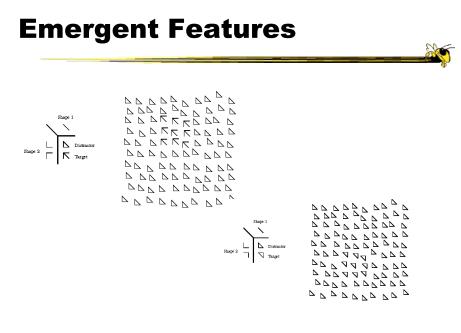

Example Applet


20

- Nice on-line tutorial and example applet
 - http://www.csc.ncsu.edu/faculty/healey/PP/index.html
 - Chris Healey, NC State
 - Prior pictures taken from site

Preattentive Features

- Certain visual forms lend themselves to preattentive processing
- Variety of forms seem to work


3-D visual reality has an influence

Fall 2011

3-D Figures

CS 7450

29

CS 7450

Potential PA Features

length width size curvature number terminators intersection closure hue intensity flicker direction of motion binocular lustre stereoscopic depth 3-D depth cues lighting direction

Fall 2011

CS 7450

31

Discussion

 What role does/should preattentive processing play in information visualization?

Gestalt Laws

Background

- German psychologists, early 1900's
- Attempt to understand pattern perception
- Founded Gestalt school of psychology
- Provided clear descriptions of many basic perceptual phenomena
 - \rightarrow Gestalt Laws of Pattern Perception

Fall 2011

CS 7450

Gestalt Laws

• Proximity

Things close together are perceptually grouped together

- Similarity
 - Similar elements get grouped together
- Connectedness
 - Connecting different objects by lines unifies them
- Continuity
 - More likely to construct visual entities out of smooth, continuous visual elements

CS 7450

Gestalt Laws

- Symmetry
 - Symmetrical patterns are perceived more as a whole
- Closure
 - A closed contour is seen as an object
- Relative Size
 - Smaller components of a pattern as perceived as objects
- Figure & Ground
 - Figure is foreground, ground is behind

35

Fall 2011

CS 7450

Key Perceptual Properties

- Brightness
- Color
- Texture
- Shape

Luminance/Brightness

- Luminance
 - Measured amount of light coming from some place
- Brightness
 - Perceived amount of light coming from source

CS 7450

37

Brightness

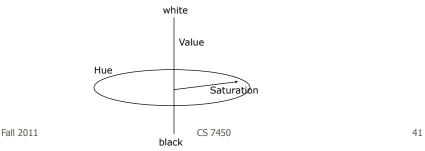
- Perceived brightness is non-linear function of amount of light emitted by source
 - Typically a power function
 - $-S = aI^n$
 - S sensation
 - I intensity
- Very different on screen versus paper

Grayscale

- Probably not best way to encode data because of contrast issues
 - Surface orientation and surroundings matter a great deal
 - Luminance channel of visual system is so fundamental to so much of perception
 We can get by without color discrimination, but not luminance

2011	CS 7450

Color


Fall

 Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4 - 0.7 micrometers

10-6	10-1	0.5	105	10 ⁸	
gamma	ultraviolet	visible	microwave	tv	

Color Models

- HVS model
 - Hue what people think of color
 - Value light/dark, ranges black<-->white
 - Saturation intensity, ranges hue<-->gray

How Not to Use Color

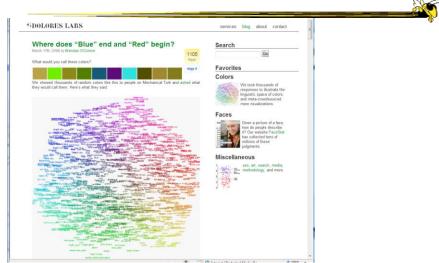


http://www.thedailyshow.com/video/index.jhtml?videoId=156230&title=full-color-coverage

Fall 2011

Color Categories

- Are there certain canonical colors?
 - Post & Greene '86 had people name different colors on a monitor
 - Pictured are ones with > 75% commonality


From Ware '04

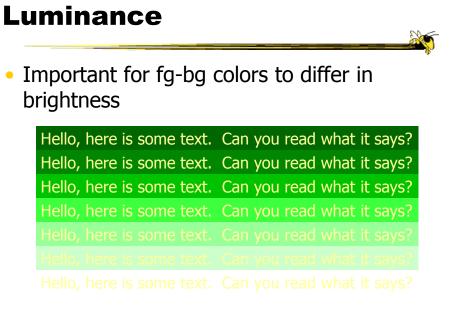
Fall 2011

CS 7450

43

Using Mechanical Turk

http://blog.doloreslabs.com/2008/03/where-does-blue-end-and-red-begin/

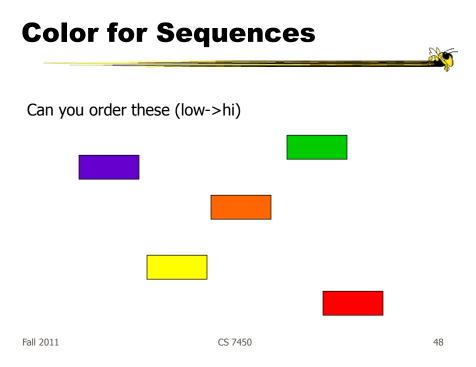

Fall 2011

Fall 2011

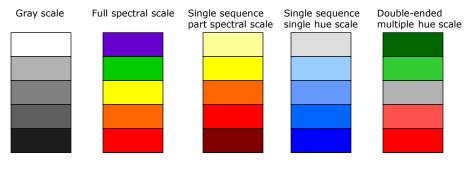
CS 7450

45

Fall 2011


Color for Categories

- Can different colors be used for categorical variables?
 - Yes (with care)
 - Ware's suggestion: 12 colors
 - red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple

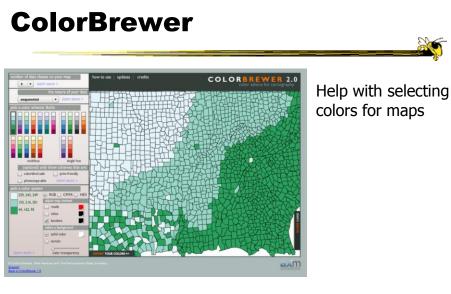


From Ware **`04**

Fall 2011

Possible Color Sequences

Fall 2011


CS 7450

49

HeatMap

Nasdaq-1	00 Webl	leatma	p				_		
,	lasdaq price	es valid as	s of Jan.	16, 2004	12:56 ET I	vlanket Op	en		
QQQ 0.55%									
JNPR TLAE 23.94% 13.41		SANM 8.16%	LVLT 4.31%	CHKP 4.10%	CSCO 3.87%	CMVT 3.74%	MOLX 3.64%	NTAP 3.61%	
GENZ PIXR 3.25% 3.12%		CHRW 2.90%	APCC 2.77%	BIIB 2.77%	PTEN 2.68%	FHCC 2.60%	IVGN 2.58%	FAST 2.55%	
RYAAY EXPE 2.30% 2.05%		ESRX 2.02%	ISIL 1.81%	GILD 1.78%	IACI 1.65%	DISH 1.57%	NVDA 1.49%	ALTR 1.49%	
SNPS TEV 1.47% 1.47%		SUNW 1.31%	NVLS 1.22%	RIMM 1.20%	BMET 1.18%	ATYT 1.12%	MLNM 1.05%	SEBL 1.00%	
PAYX CDW 0.93% 0.90%		XLNX 0.84%	AMGN 0.81%	CHIR 0.78%	DLTR 0.76%	FLEX 0.74%	ERTS 0.70%	MSFT 0.62%	
MRVL GRMI 0.58% 0.57%		HSIC 0.45%	LLTC 0.45%	CPWR 0.44%	AMAT 0.33%	LRCX 0.33%	LNCR 0.24%	VRSN 0.21%	
BBBY CEC0 0.15% 0.14%		CEPH 0.14%	SIAL 0.05%	CTXS 0.05%	AAPL 0.04%	KLAC 0.03%	DELL 0.03%	MEDI 0.00%	
SNDK PSFT -0.01% -0.041		XRAY -0.14%	APOL -0.21%	MERQ -0.30%	VRTS -0.40%	SPOT -0.44%	ADBE -0.52%	BRCM -0.52%	
INTC NXTL -0.54% -0.561		R0ST -0.73%	SPLS -0.76%	COST -0.78%	QLGC -0.80%	0RCL -0.81%	PETM -0.93%	GNTX -0.94%	
FISV YH00 -1.01% -1.021		AMZN -1.12%	SSCC -1.19%	WFMI -1.22%	CTAS -1.29%	QCOM -1.54%	PCAR -1.62%	LAMR -2.29%	
-23.94			% Ch	ange				23.94	
@ 2001 Neo V	sion Hypers	systems				www	i.heatmar	os.com	

http://screening.nasdaq.com/heatmaps/heatmap_100.asp

CS 7450

http://colorbrewer2.org/

Fall 2011

Color Purposes

- Call attention to specific data
- Increase appeal, memorability
- Increase number of dimensions for encoding data
 - Example, Ware and Beatty '88

x,y - variables 1 & 2

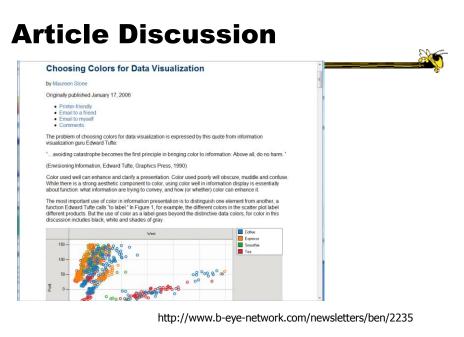
amount of r,g,b - variables 3, 4, & 5

CS 7450

Using Color

- Modesty! Less is more
- Use blue in large regions, not thin lines
- Use red and green in the center of the field of view (edges of retina not sensitive to these)
- Use black, white, yellow in periphery
- Use adjacent colors that vary in hue & value

Fall 2011

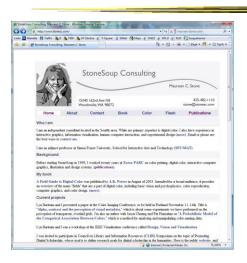

CS 7450

Using Color

• For large regions, don't use highly saturated colors (pastels a good choice)

- Do not use adjacent colors that vary in amount of blue
- Don't use high saturation, spectrally extreme colors together (causes after images)
- Use color for grouping and search
- Beware effects from adjacent color regions (my old house - example)

CS 7450



Fall 2011

CS 7450

55

Good Color Advice

<u>Maureen Stone's website</u> Many references and links She frequently offers tutorials about color at conferences

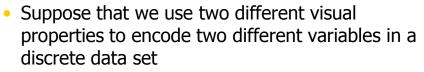
http://www.stonesc.com

Fall 2011

Texture

- Appears to be combination of
 - orientation
 - scale
 - contrast
- Complex attribute to analyze

Fall 2011


CS 7450

Shape, Symbol

- Can you develop a set of unique symbols that can be placed on a display and be rapidly perceived and differentiated?
- Application for maps, military, etc.
- Want to look at different preattentive aspects

CS 7450

Glyph Construction

- color, size, shape, lightness
- Will the two different properties interact so that they are more/less difficult to untangle?
 - Integral two properties are viewed holistically
 - Separable Judge each dimension independently

Fall 2011

CS 7450

Integral-Separable

Not one or other, but along an axis

Integral	red-green	yellow-blue
t	red-green	black-white
	shape height	shape width
	shape	size
	color	size
	direction motion	shape
	color	shape
	color	direction motion
Separable	x,y position	size, shape, color

Ware '04

Fall 2011

CS 7450

Encodings

1

 When you want to communicate one type of variable, which visual property should you use?

Fall 2011

CS 7450

Change Blindness

- Is the viewer able to perceive changes between two scenes?
 - If so, may be distracting
 - Can do things to minimize noticing changes
- Fun examples
 - Static pictures (Ron Rensink, UBC) http://www.psych.ubc.ca/~rensink/flicker/download/
 - Videos (Dan Simons, Illinois)
 http://viscog.beckman.uiuc.edu/djs_lab/demos.html

Fall 2011

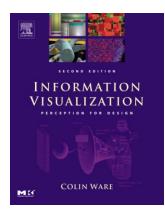
CS 7450

Optical Illusions

Fall 2011

CS 7450

Stage 2


- Missing here!
- Object recognition and locomotion/action
- Maybe in the future... :^)

Fall 2	011
--------	-----

CS 7450

65

Great Book

Information Visualization Perception for Design 2nd edition

Colin Ware Morgan Kaufmann

Fall 2011

More details on website

Design Project

- Group of 2-4 students
- Understand problem, design, build
- You pick the topic/domain/data
 Absolutely crucial!!!
 - NY Times vizs are nice examples
 - Be creative!
- First milestone: Teams and topics in 2 weeks (Sep 15th)

Fall	2011
i an	2011

CS 7450

67

HW 2

- Due Tuesday
- Questions?

Upcoming

Cognitive Issues

Papers to read
 Norman book chapter
 Liu et al

Storytelling

 Papers to read
 Segel & Heer

Fall 2011

CS 7450

69

Sources Used

Healey website and article

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Marti Hearst SIMS 247 lectures C. Ware, *Information Visualization*