Visual Perception

CS 7450 - Information Visualization
January 20, 2011
John Stasko

Agenda

• Visual perception
 – Pre-attentive processing
 – Color
 – Etc.
Semiotics

- The study of symbols and how they convey meaning

- Classic book:

Related Disciplines

- **Psychophysics**
 - Applying methods of physics to measuring human perceptual systems
 - How fast must light flicker until we perceive it as constant?
 - What change in brightness can we perceive?

- **Cognitive psychology**
 - Understanding how people think, here, how it relates to perception
Perceptual Processing

- Seek to better understand visual perception and visual information processing
 - Multiple theories or models exist
 - Need to understand physiology and cognitive psychology

One (simple) Model

- Two stage process
 - Parallel extraction of low-level properties of scene
 - Sequential goal-directed processing

Stage 1
- Early, parallel detection of color, texture, shape, spatial attributes

Stage 2
- Serial processing of object identification (using memory) and spatial layout, action

Ware 2000
Stage 1 - Low-level, Parallel

- Neurons in eye & brain responsible for different kinds of information
 - Orientation, color, texture, movement, etc.
- Arrays of neurons work in parallel
- Occurs “automatically”
- Rapid
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called “pre-attentive” processing

Stage 2 - Sequential, Goal-Directed

- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion & action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements
Stage 2 Attributes

- Slow serial processing
- Involves working and long-term memory
- More emphasis on arbitrary aspects of symbols
- Top-down processing

Preattentive Processing

- How does human visual system analyze images?
 - Some things seem to be done preattentively, without the need for focused attention
 - Generally less than 200-250 msecs (eye movements take 200 msecs)
 - Seems to be done in parallel by low-level vision system

Healey article
How Many 3’s?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686

How Many 3’s?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686
What Kinds of Tasks?

- **Target detection**
 - Is something there?

- **Boundary detection**
 - Can the elements be grouped?

- **Counting**
 - How many elements of a certain type are present?

Example

- Determine if a red circle is present
- (2 sides of the room)
Hue

Can be done rapidly (preattentively) by people
Surrounding objects called “distractors”

Example

• Determine if a red circle is present
Shape

Can be done preattentively by people

Example

- Determine if a red circle is present
Hue and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjunction of features (shape and hue) causes it

Example

- Is there a boundary in the display?
Fill and Shape

- Left can be done preattentively since each group contains one unique feature
- Right cannot (there is a boundary!) since the two features are mixed (fill and shape)

Example

- Is there a boundary in the display?
Hue versus Shape

Left: Boundary detected preattentively based on hue regardless of shape
Right: Cannot do mixed color shapes preattentively

Example

- Is there a boundary?
Hue versus brightness

Left: Varying brightness seems to interfere
Right: Boundary based on brightness can be done preattentively

Example Applet

- Nice on-line tutorial and example applet
 - http://www.csc.ncsu.edu/faculty/healey/FP/index.html
 - Chris Healey, NC State
 - Prior pictures taken from site
Preattentive Features

- Certain visual forms lend themselves to preattentive processing
- Variety of forms seem to work

Textons

1. Elongated blobs
2. Terminators
3. Crossings of lines

All detected early
3-D Figures

3-D visual reality has an influence

Emergent Features
Potential PA Features

- length
- width
- size
- curvature
- number
- terminators
- intersection
- closure
- hue
- intensity
- flicker
- direction of motion
- binocular lustre
- stereoscopic depth
- 3-D depth cues
- lighting direction

Discussion

- What role does/should preattentive processing play in information visualization?
Gestalt Laws

• Background
 – German psychologists, early 1900’s
 – Attempt to understand pattern perception
 – Founded Gestalt school of psychology
 – Provided clear descriptions of many basic perceptual phenomena
 → Gestalt Laws of Pattern Perception

Gestalt Laws

• Proximity
 – Things close together are perceptually grouped together
• Similarity
 – Similar elements get grouped together
• Connectedness
 – Connecting different objects by lines unifies them
• Continuity
 – More likely to construct visual entities out of smooth, continuous visual elements
Gestalt Laws

- Symmetry
 - Symmetrical patterns are perceived more as a whole
- Closure
 - A closed contour is seen as an object
- Relative Size
 - Smaller components of a pattern as perceived as objects
- Figure & Ground
 - Figure is foreground, ground is behind

Key Perceptual Properties

- Brightness
- Color
- Texture
- Shape
Luminance/Brightness

- Luminance
 - Measured amount of light coming from some place
- Brightness
 - Perceived amount of light coming from source

Brightness

- Perceived brightness is non-linear function of amount of light emitted by source
 - Typically a power function
 - $S = aI^n$
 - S - sensation
 - I - intensity
- Very different on screen versus paper
Grayscale

- Probably not best way to encode data because of contrast issues
 - Surface orientation and surroundings matter a great deal
 - Luminance channel of visual system is so fundamental to so much of perception
 - We can get by without color discrimination, but not luminance

Color

- Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4 - 0.7 micrometers

<table>
<thead>
<tr>
<th>10^{-6}</th>
<th>10^{-1}</th>
<th>0.5</th>
<th>10^5</th>
<th>10^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma</td>
<td>ultraviolet</td>
<td>visible</td>
<td>microwave</td>
<td>tv</td>
</tr>
</tbody>
</table>

Spring 2011 | **CS 7450** | **39**

Spring 2011 | **CS 7450** | **40**
Color Models

- HVS model
 - Hue - what people think of color
 - Value - light/dark, ranges black<-->white
 - Saturation - intensity, ranges hue<-->gray

How Not to Use Color

Color Categories

- Are there certain canonical colors?
 - Post & Greene ‘86 had people name different colors on a monitor
 - Pictured are ones with > 75% commonality

From Ware ‘04

Using Mechanical Turk

http://blog.doloreslabs.com/2008/03/where-does-blue-end-and-red-begin/

Spring 2011 CS 7450 44
Luminance

- Important for fg-bg colors to differ in brightness

Color for Categories

- Can different colors be used for categorical variables?
 - Yes (with care)
 - Ware’s suggestion: 12 colors
 red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple

From Ware ‘04
Color for Sequences

Can you order these (low->hi)

Possible Color Sequences

<table>
<thead>
<tr>
<th>Gray scale</th>
<th>Full spectral scale</th>
<th>Single sequence part spectral scale</th>
<th>Single sequence single hue scale</th>
<th>Double-ended multiple hue scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HeatMap

- http://screening.nasdaq.com/heatmaps/heatmap_100.asp

ColorBrewer

Help with selecting colors for maps

- http://colorbrewer2.org/
Color Purposes

- Call attention to specific data
- Increase appeal, memorability
- Increase number of dimensions for encoding data
 - Example, Ware and Beatty '88
 - x, y - variables 1 & 2
 - amount of r, g, b - variables 3, 4, & 5

Using Color

- Modesty! Less is more
- Use blue in large regions, not thin lines
- Use red and green in the center of the field of view (edges of retina not sensitive to these)
- Use black, white, yellow in periphery
- Use adjacent colors that vary in hue & value
Using Color

- For large regions, don’t use highly saturated colors (pastels a good choice)
- Do not use adjacent colors that vary in amount of blue
- Don’t use high saturation, spectrally extreme colors together (causes after images)
- Use color for grouping and search
- Beware effects from adjacent color regions (my old house - example)

Article Discussion

Choosing Colors for Data Visualization

Choosing Colors for Data Visualization

Originally published January 17, 2004

- Print-friendly
- E-mail to friend
- E-mail to myself
- Comments

The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward Tufte:

“... avoiding catastrophe becomes the first principle in bringing color to information. Above all, do no harm.”

Color used well can enhance and clarify a presentation. Color used poorly will obscure, muddle and confound. While there is a strong aesthetic component to color, using color well in an information display is essentially about a) what information are trying to convey, and how (or whether) color can enhance it.

The most important use of color in information presentation is to distinguish one element from another. A function Edward Tufte calls “to aid.” In Figure 1, for example, the different colors on the scatter plot labeled different products. But the use of color as a label goes beyond the distinctive data colors, for color in this discussion includes black, white and shades of gray.

http://www.b-eye-network.com/newsletters/ben/2235
Good Color Advice

Maureen Stone’s website
Many references and links
She frequently offers tutorials about color at conferences
http://www.stonesc.com

Texture

• Appears to be combination of
 – orientation
 – scale
 – contrast
• Complex attribute to analyze
Shape, Symbol

- Can you develop a set of unique symbols that can be placed on a display and be rapidly perceived and differentiated?
- Application for maps, military, etc.
- Want to look at different preattentive aspects

Glyph Construction

- Suppose that we use two different visual properties to encode two different variables in a discrete data set
 - color, size, shape, lightness
- Will the two different properties interact so that they are more/less difficult to untangle?
 - Integral - two properties are viewed holistically
 - Separable - Judge each dimension independently
Integral-Separable

- Not one or other, but along an axis

<table>
<thead>
<tr>
<th>Integral</th>
<th>Separable</th>
</tr>
</thead>
<tbody>
<tr>
<td>red-green</td>
<td>yellow-blue</td>
</tr>
<tr>
<td>red-green</td>
<td>black-white</td>
</tr>
<tr>
<td>shape height</td>
<td>shape width</td>
</tr>
<tr>
<td>shape</td>
<td>size</td>
</tr>
<tr>
<td>color</td>
<td>size</td>
</tr>
<tr>
<td>direction motion</td>
<td>shape</td>
</tr>
<tr>
<td>color</td>
<td>shape</td>
</tr>
<tr>
<td>color</td>
<td>direction motion</td>
</tr>
<tr>
<td>x,y position</td>
<td>size, shape, color</td>
</tr>
</tbody>
</table>

Ware '04

Encodings

- When you want to communicate one type of variable, which visual property should you use?
Accuracy ranking of quantitative perceptual tasks

 Ranking of perceptual tasks

From Jock Mackinlay’s 1986 thesis

Spring 2011

Change Blindness

- Is the viewer able to perceive changes between two scenes?
 - If so, may be distracting
 - Can do things to minimize noticing changes

- Fun examples
 - Static pictures (Ron Rensink, UBC)
 http://www.psych.ubc.ca/~rensink/flicker/download/
 - Videos (Dan Simons, Illinois)
 http://viscog.beckman.uiuc.edu/djs_lab/demos.html
Optical Illusions

Stage 2

- Missing!
- Object recognition and locomotion/action
- Maybe in the future... :^)
Great Book

Information Visualization
Perception for Design
2nd edition

Colin Ware
Morgan Kaufmann

HW 1 Discussion

• What findings did you make?
• What was difficult?
• What help did you want?
HW 2

• Table and graph design
• Given two (Excel) data sets, design a table and graph respectively
• Due next Thursday

Upcoming

• Cognitive Issues
 – Papers to read
 Norman book chapter
 Liu et al

• Multivariate Visual Representations
 – Papers to read
 Inselberg
Sources Used

Healey website and article
http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Marti Hearst SIMS 247 lectures
C. Ware, Information Visualization