Multivariate Data & Tables and Graphs

CS 7450 - Information Visualization Sep. 4, 2013 John Stasko

Agenda

• Data and its characteristics

- Tables and graphs
- Design principles

CS 7450

3

4

Data Sets

- Data comes in many different forms
- Typically, not in the way you want them
- What is available to me (in the raw)?

Example

- Cars
 - make
 - model
 - year
 - miles per gallon
 - cost
 - number of cylinders
 - weights

- ...

Fall 2013

CS 7450

5

Example

Web pages

Data Models

Often characterize data through three components

 Objects
 Items of interest
 (students, courses, terms, ...)
 Attributes
 Characteristics or properties of data
 (name, age, GPA, number, date, ...)
 Relations
 How two or more objects relate
 (student takes course, course during term, ...)

Fall 2013

CS 7450

Data Tables

- We take raw data and transform it into a model/form that is more workable
- Main idea:
 - Individual items are called cases
 - Cases have variables (attributes)
 - Relational: Relations between cases (not our main focus today)

CS 7450

Data Table Format

		Case ₁	Case ₂	Case ₃	
D i m	$Variable_1$	Value ₁₁	Value ₂₁	Value ₃₁	
e n	Variable ₂	Value ₁₂	Value ₂₂	Value ₃₂	
s i o	Variable ₃	Value ₁₃	Value ₂₃	Value ₃₃	
n s					
	Think of as a function $f(case_1) = \langle Val_{11}, Val_{12}, \rangle$				

Fall 2013

CS 7450

9

Example Mary Jim Sally Mitch ... SSN 145 294 823 563 Age 23 17 47 29 brown black blonde red Hair GPA 2.9 3.7 3.4 2.1 ...

People in class

	P1	P2	P3	P4
Name	Mary	Jim	Sally	Mitch
SSN	145	294	563	823
Age	23	17	47	29
Hair	brown	black	blonde	red
GPA	2.9	3.7	3.4	2.1
				People in class

Fall 2013

CS 7450

11

Example

		licrosoft Excel -	baseball								
		Eile Edit ⊻iew	(nsert Form	at <u>T</u> ools <u>D</u> a	ata <u>A</u> ccounti	ng <u>₩</u> indow	Help				
		i 🛩 🖬 🎒 🖸	X 💞 🐰	📭 🛍 ダ	N - C4	- 🔒 🌾	Σf_{*}	🕴 🦹 🛍	🔮 🚯 1	00% 🔹 🙎	J .
	Ari	al	× 10 ×	B 7 1	T = =	三日 (₽ % . [•]	.0 .00 <i>i</i> ≣		A . A .	-
			1 -	Neme			₽ /0 J	.00 +.0 ==	т. Т.	· · · · · · · · · · · · · · · · · · ·	
				Ivame	D	E	E	0	ш		
	1	Namo	At Bate	Hite	Homo Dun	Punc	Phi	Walke	Veare In M	Corpor At	Garager Hits Cor
	-	STRING	INT	INT	INT	INT	INT	INT	INT	INT	INT INT
seball	- 3	Andy Allanson	293	66	1	30	29	14	1	293	66
	4	Alan Ashhv	315	81	7	24	38	39	14	3449	835
tistics	5	Alvin Davis	479	130	18	66	72	76	3	1624	457
ill Stics	6	Andre Dawson	496	141	20	65	78	37	11	5628	1575
	7	Andres Galarra	321	87	10	39	42	30	2	396	101
	8	Alfredo Griffin	594	169	4	74	51	35	11	4408	1133
	9	Al Newman	185	37	1	23	8	21	2	214	42
	10	Argenis Salaza	298	73	0	24	24	7	3	509	108
	11	Andres Thomas	323	81	6	26	32	8	2	341	86
	12	Andre Thornton	401	92	17	49	66	65	13	5206	1332
	13	Alan Trammell	574	159	21	107	75	59	10	4631	1300
	14	Alex Trevino	202	53	4	31	26	27	9	1876	467
	15	Andy Van Slyk	418	113	13	48	61	47	4	1512	392
	16	Alan Wiggins	239	60	0	30	11	22	6	1941	510
	17	Bill Almon	196	43	7	29	27	30	13	3231	825
	18	Billy Beane	183	39	3	20	15	11	3	201	42
	19	Buddy Bell	568	158	20	89	75	73	15	8068	2273
	20	Buddy Biancala	190	46	2	24	8	15	5	479	102
	21	Bruce Bochte	407	104	6	57	43	65	12	5233	1478

Fall 2013

Variable Types

- Three main types of variables
 - N-Nominal (equal or not equal to other values)

Example: gender

- O-Ordinal (obeys < relation, ordered set)
 Example: fr,so,jr,sr
- Q-Quantitative (can do math on them)
 Example: age

Fall 2013

CS 7450

13

Alternate Characterization

 Two types of data

 Quantitative Relationships between values: Ranking Ratio Correlation
 Categorical How attributes relate to each other: Nominal Ordinal Interval

Hierarchical

From S. Few

Fall 2013

Metadata

- Might be something as simple as the type of a variable, or could be more complex
- For times when the table itself just isn't enough
- Example: if variable1 is "I", then variable3 can only be 3, 7 or 16

Fall 2013

CS 7450

Data Cleaning

- Data may be missing/corrupted
 - Remove?
 - Modify?
- You may want to adjust values
 - Use inverse
 - Map nominal to ordinal/quantitative
 - Normalize values
 Scale between 0 and 1

CS 7450

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data

Fall	2013
	-010

CS 7450

Representation

 What are two main ways of presenting multivariate data sets?

– Directly (textually) \rightarrow Tables

– Symbolically (pictures) \rightarrow Graphs

• When use which?

Strengths?

S. Few Show Me the Numbers

Use tables when

- The document will be used to look up individual values
- The document will be used to compare individual values
- Precise values are required
- The quantitative info to be communicated involves more than one unit of measure

• Use graphs when

- The message is contained in the shape of the values
- The document will be used to reveal relationships among values

Fall 2013

CS 7450

Effective Table Design

- See Show Me the Numbers
- Proper and effective use of layout, typography, shading, etc. can go a long way
- (Tables may be underused)

CS 7450

Example

Fall 2013

CS 7450

21

25

Example

Basic Symbolic Displays

- Graphs 🗲
- Charts
- Maps
- Diagrams

From: S. Kosslyn, "Understanding charts and graphs", *Applied Cognitive Psychology*, 1989.

30

23

Fall 2013

1. Graph

Showing the relationships between variables' values in a data table

CS 7450

Properties

Graph

Fall 2013

- Visual display that illustrates one or more relationships among entities
- Shorthand way to present information
- Allows a trend, pattern or comparison to be easily comprehended

CS 7450

Issues			
 Critical to real Why do you What questions? Who is the a 	main task-centric I need a graph? ions are being ansv s needed to answe audience?	c vered? r those	-
Fall 2013	money CS 7450	• • • time	26

Graph Components

- Framework
 - Measurement types, scale
- Content
 - Marks, lines, points
- Labels
 - Title, axes, ticks

Fall 2013

CS 7450

Many Examples

Quick Aside

- Other symbolic displays
 - Chart
 - Мар
 - Diagram

Fall	2013	
i an	2013	

CS 7450

2. Chart

• Structure is important, relates entities to each other

• Primarily uses lines, enclosure, position to link entities

Examples: flowchart, family tree, org chart, ...

Fall 2013

CS 7450

3. Map

Representation of spatial relations

Locations identified by labels

Fall 2013

CS 7450

31

4. Diagram

- Schematic picture of object or entity
- Parts are symbolic

Examples: figures, steps in a manual, illustrations,...

Fall 2013

Some History

- Which is older, map or graph?
- Maps from about 2300 BC
- Graphs from 1600's
 - Rene Descartes
 - William Playfair, late 1700's

Fall 2013

CS 7450

Details

- What are the constituent pieces of these four symbolic displays?
- What are the building blocks?

Visual Structures

- Composed of
 - Spatial substrate
 - Marks
 - Graphical properties of marks

Fall 2013

CS 7450

35

Space

- Visually dominant
- Often put axes on space to assist
- Use techniques of composition, alignment, folding, recursion, overloading to
 - 1) increase use of space
 - 2) do data encodings

Marks

Graphical Properties

• Size, shape, color, orientation...

	Spatial properties	Object properties
Expressing extent	Position Size	Grayscale
Differentiating marks	Orientation	Color Shape Texture

Back to Data

- What were the different types of data sets?
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data

F-11 2012	CC 7450	20
Fall 2013	CS 7450	39

What Goes Where?

 In univariate representations, we often think of the data case as being shown along one dimension, and the

value in another

Fall 2013

Alternative View

 We may think of graph as representing independent (data case) and dependent (value) variables

- Guideline:
 - Independent vs. dependent variables
 - Put independent on x-axis
 - See resultant dependent variables along y-axis

CS 7450

Bivariate Data

Representations

Alternative Representation

Still use 2D but have mark property represent third variable

Fall 2013

CS 7450

45

Alternative Representation

Represent each variable in its own explicit way

Hypervariate Data

- Ahhh, the tough one
- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?

– Often the interesting, challenging ones

Fall 2013

CS 7450

Multiple Views

Give each variable its own display

Scatterplot Matrix

Represent each possible pair of variables in their own 2-D scatterplot

Useful for what? Misses what?

Fall 2013

More to Come...

 Subsequent day will explore other general techniques for handling hypervariate data

Back to Graphs

Design guidance

 Few provides many helpful principles to design effective graphs

Fall 2013

CS 7450

Few's Selection & Design Process

- Determine your message and identify your data
- Determine if a table, or graph, or both is needed to communicate your message
- Determine the best means to encode the values
- Determine where to display each variable
- Determine the best design for the remaining objects
 - Determine the range of the quantitative scale
 - If a legend is required, determine where to place it
 - Determine the best location for the quantitative scale
 - Determine if grid lines are required
 - Determine what descriptive text is needed
- · Determine if particular data should be featured and how

S Few "Effectively Communicating Numbers" http://www.perceptualedge.com/articles/Whitepapers/Communicating_Numbers.pdf

Some examples...

Fall 2013

CS 7450

Points, Lines, Bars, Boxes

- Points
 - Useful in scatterplots for 2-values
 - Can replace bars when scale doesn't start at 0
- Lines
 - Connect values in a series
 - Show changes, trends, patterns
 - Not for a set of nominal or ordinal values
- Bars
 - Emphasizes individual values
 - Good for comparing individual values
- Boxes
 - Shows a distribution of values

Fall 2013

CS 7450

Vertical vs. Horizontal Bars

25

53

 Horizontal can be good if long labels or many items

Multiple Bars

• Can be used to encode another variable

Fall 2013

CS 7450

55

Multiple Graphs

Can distribute a variable across graphs too

Sometimes called a trellis display

Examples

Fall 2013

CS 7450

57

Before

You want to present quantitative sales performance data for the 4 regions of your company for the four quarters of the year

CS 7450

59

20

Before

CS 7450

61

20

Before

CS 7450

63

20

Before

CS 7450

Book Recommendation

CS 7450

Take DB & IR courses

 Learn about query languages, relational data models, datacubes, data warehouses, ...

Fall 2013

CS 7450

67

Administratia

• Office hours for Ramik and me are posted

HW 1 Discussion

- What findings did you make?
- What was difficult?
- What help did you want?

Fall 2013	CS 7450

HW 2

- Table and graph design
- Given two (Excel) data sets, design a table and graph for the data, respectively
- Due next Wednesday

Project

- Details
- Some topic ideas

Fall 2013

CS 7450

Upcoming

- S. Few's Design Guidance
 - Reading: Now You See It, chapters 5-12
- Multivariate Visual Representations 1
 - Reading: Inselberg '97

CS 7450

Sources Used

Few book CMS book Referenced articles Marti Hearst SIMS 247 lectures Kosslyn '89 article A. Marcus, *Graphic Design for Electronic Documents and User Interfaces* W. Cleveland, *The Elements of Graphing Data*

Fall 2013

CS 7450