
Topic Notes

Few's Design Guidance

CS 7450 - Information Visualization September 9, 2013 John Stasko

Today's Agenda

Stephen Few's Guidance

- Excellent advice for the design of tables and graphs
- Page references are from Now You See It
- Let's review some of his recommendations
 - We explored chapters 1-4 earlier
 - Today we examine chapters 5-12

Fall 2013 CS 7450

Analytic Techniques & Practices

- Some examples he has highlighted
 - Optimal quantitative scales
 - Reference lines and regions
 - Trellises and crosstabs
 - Multiple concurrent views and brushing
 - Focus and context together
 - Details on demand
 - Over-plotting reduction

Fall 2013 CS 7450 4

Add Reference Lines

p. 96 Fall 2013 CS 7450

More Reference Lines

p. 97

Fall 2013 CS 7450 6

Trellis Display

Typically varies on one variable

p. 100

Fall 2013 CS 7450

Crosstab

Varies across more than one variable

p. 102

Fall 2013 CS 7450

Crosstab

p. 103

Fall 2013 CS 7450

Multiple Concurrent Views

Vintage infovis

Fall 2013 CS 7450 p. 107

Concurrent Views

- He calls such things faceted analytical displays
 - Sometimes that term is used in other ways in infovis
- As opposed to dashboards
 - They are for monitoring, not analysis

Fall 2013 CS 7450 11

Overplotting

Too many data points

p. 118

Fall 2013 CS 7450 12

Overplotting Solutions

- Reducing size of data objects
- Removing all fill color from data objects
- Changing the shape of data objects
- Jittering data objects
- Making data objects transparent
- Encoding the density of values
- Reducing the number of values
 - Aggregating the data
 - Filtering the data
 - Breaking the data into a series of separate graphs
 - Statistically sampling the data

Fall 2013 CS 7450 13

Quantitative Data

Fundamental visualization techniques

Fall 2013 CS 7450 14

Time Series Data

- Patterns to be shown
 - Trend
 - Variability
 - Rate of change
 - Co-variation
 - Cycles
 - Exceptions

Fall 2013 CS 7450 15

Time Series Visualizations

• Effective visualization techniques include...

Fall 2013 CS 7450 16

Line Graphs

When to use:

When quantitative values change during a continuous period of time

p. 151

Fall 2013 CS 7450 17

Bar Graphs

When to use:

When you want to support the comparison of individual values

p. 152

Fall 2013 CS 7450 18

Dot Plots

When to use:

When analyzing values that are spaced at irregular intervals of time

CS 7450

p. 153

Fall 2013

19

Radar Graphs

When to use:

When you want to represent data across the cyclical nature of time

p. 154

Fall 2013 CS 7450

Heatmaps

When to use:

When you want to display a large quantity of cyclical data (too much for radar)

p. 157

Fall 2013 CS 7450

21

Box Plots

When to use:

You want to show how values are distributed across a range and how that distribution changes over time

p. 157

Fall 2013 CS 7450 22

Animated Scatterplots

When to use:

To compare how two quantitative variables change over time

Fall 2013 CS 7450

p. 159

Banking to 45°

Same diagram, just drawn at different aspect ratios

People interpret the diagrams better when lines are around 45°, not too flat, not too steep

p. 171

Fall 2013 CS 7450 2

Question

Which is increasing at a faster rate, hardware sales or software sales?

Log scale shows this

Both at same rate, 10%

Fall 2013 CS 7450

p. 172

Patterns

Daily sales

Average per day

CS 7450

p. 176

Fall 2013

26

Cycle Plot

Combines visualizations from two prior graphs

p. 177

Fall 2013 CS 7450 27

A Story

How much wine of different varieties is produced?

p. 191-2

Fall 2013 CS 7450 28

Pareto Chart

Shows individual contributors and increasing total

80/20 rule – 80% of effect comes from 20%

p. 194

Fall 2013 CS 7450

29

Bump Chart

Shows how ranking relationships change over time

p. 201

Fall 2013 CS 7450 30

Deviation Analysis

Do you show the two values in question or the difference of the two?

p. 203
Fall 2013 CS 7450 31

Distribution Analysis Views

- Histogram
- Frequency polygon
- Strip plot
- Stem-and-leaf plot

Fall 2013 CS 7450 32

p. 225

Fall 2013 CS 7450 3

Frequency Plot

Fall 2013

p. 226 cs 7450

Strip Plot

p. 227

Fall 2013 CS 7450 35

Stem-and-leaf Plot

p. 228

Comparisons

Note how first one's curve is smooth (not such a noticeable difference). Second one is more noticeable. Same data.

p. 234

Fall 2013 CS 7450

37

Correlation Analysis

Bleah. How can we clean this up?

p. 276

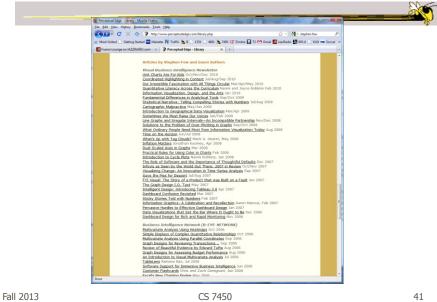
Fall 2013 CS 7450 38

Crosstab

p. 277

Fall 2013 CS 7450 39

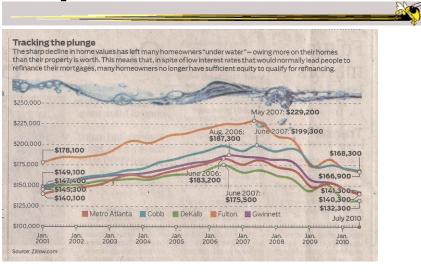
Color Choice in Heatmaps


Argues that black should not be used as a middle value because of its saliency (visual prominence)

Some people are redgreen color blind too

p. 285-7

Fall 2013 CS 7450 40


Further Articles

Blog

Fall 2013 CS 7450 42 **Critique It**

AJC, July 2010
Fall 2013 CS 7450 43

Reminder

- HW 2 due Wednesday
 - Design a table and a graph
 - Submit 2 copies

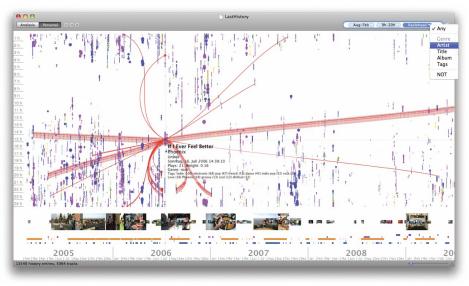
Project

- Proposals due next Monday
- More ideas
- Looking for teammates?

Fall 2013 CS 7450 45

What are you Listening to?

- Represent music listening histories
- What would you want to show?
- How might you visualize it?


Nice example of a project

LastHistory

- Visualizing a person's listening history from last.fm
- Want to support
 - Analysis
 - Reminiscing
- Potential to synchronize with photos and calendar entries from that time

Video

Upcoming

- Multivariate Visual Representations 1
 - ReadingInselberg '97
- Multivariate Visual Representations 2
 - ReadingKeim et al '02