Graphs and Networks 2

CS 7450 - Information Visualization October 23, 2013 John Stasko

Review

 Last time we looked at graph layout aesthetics and algorithms, as well as some example applications

 Today we look at more recent InfoVis projects

CS 7450

Interaction

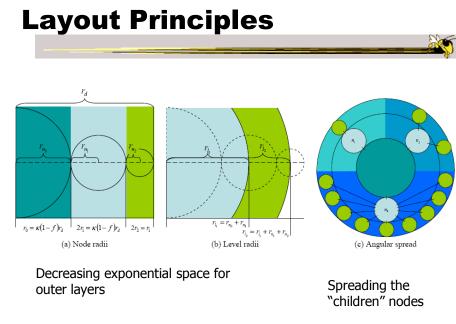
 One of the key ways we move beyond graph layout to graph visualization (InfoVis) is interaction with the graph

Fall 2013

CS 7450

MoireGraph

- Uses radial layout not terribly unlike hyperbolic tree, but no hyperbolic geometry
- Impose levels on graph by doing min span tree from some node
- Put root at center, nodes at subsequent levels further out radially, with descreasing space for each
- Interaction is key


Jankun-Kelly & Ma InfoVis '03

4

3

Fall 2013

<section-header><section-header><section-header><section-header><image><image><image>

Fall 2013

Navigation and interaction...

Figure 3: Changing the focus strength. As the focus strength increases, the rest of the graph is pushed to the periphery (left image). Conversely, as the focus strength decreases, more room is allocated to the focus' children (right image).

Fall 2013

CS 7450

7

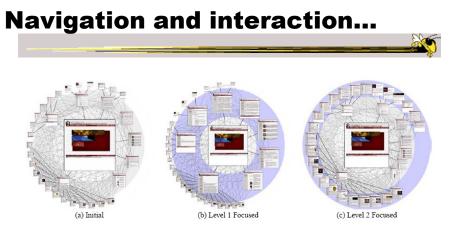


Figure 4: Level highlighting. By highlighting a level in a MoireGraph, the space allocated to the level is increased to provide a more detailed look at the level's visual content.

Navigation and interaction...

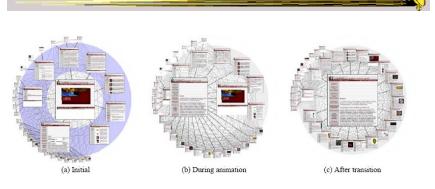
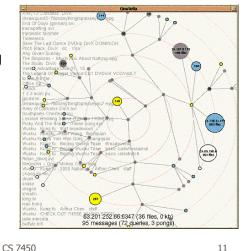


Figure 5: Animated Navigation. Selecting a node in a MoireGraph changes the focus. The angular coordinates of a node and the node's size are interpolated during the animation.

	Video		
Fall 2013	CS 7450		9

Focus of Graph

- Particular node may be focus, often placed in center for circular layout
- How does one build an interactive system that allows changes in focus?
 - Use animation
 - But intuition about changes not always right


Focus Change Animation

Straight linear interpolation of focus changes not as appealing as changes along polar coordinates

Yee, Fisher, Dhamija, Hearst InfoVis '01

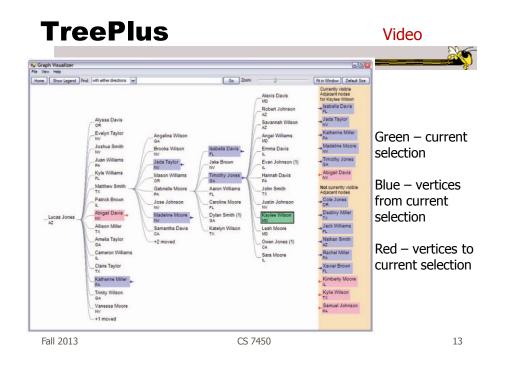
Fall 2013

TreePlus

Don't draw entire graph

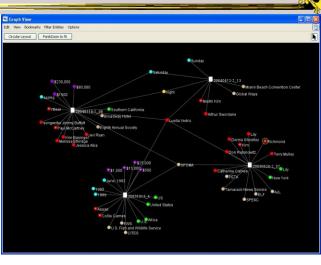
Video

 Have a focus vertex, then incrementally expand and show connections (min span tree) from there


• Interaction:

- Single-click: show connections via highlight
- Double-click: new focus vertex
- Smooth animated change in focus
- "Plant a seed and watch it grow"

Lee et al *TVCG*`06


Fall 2013

CS 7450

Jigsaw's Graph View

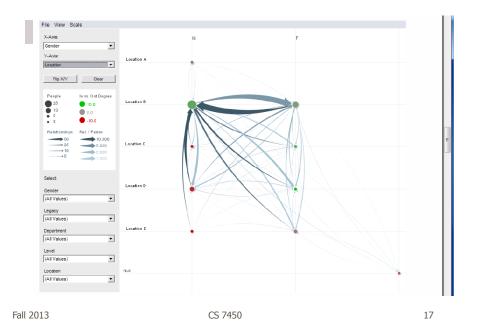
Don't draw everything, but allow the viewer to interactively explore (expand & compress) the graph

CS 7450

Stasko, Görg & Liu Information Visualization '08 Fall 2013

Recent Trends in GraphViz

- Attributes of nodes influence geometric positioning
 - Not just some arbitrary layout
- Utilize graph statistical analysis too
- Largely driven by interest in social network analysis

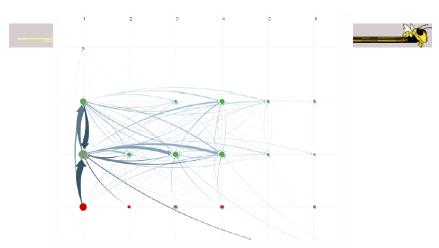

2013	CS 7450	15

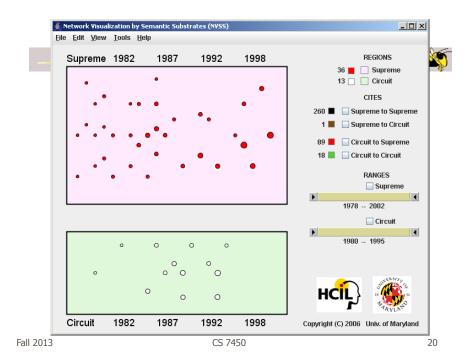
PivotGraph

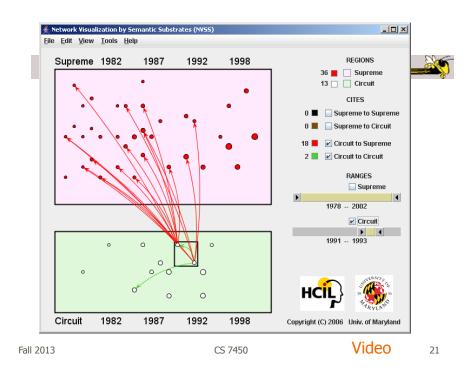
Fall

- Cluster on common node attributes
 - Put all A's together, all B's together, ...
- "Roll up" nodes
 - Draw edge from A to B depending on how many edges from some A to some B
- Position nodes into a grid based on attributes

Wattenberg CHI '06



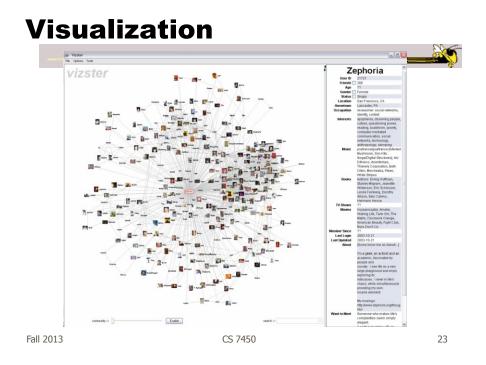

Figure 10. Communication network of people in a large company. X-axis is division, y-axis is office geography. The division in the leftmost column has far more cross-location communication than the others.


http://www.cs.umd.edu/hcil/nvss/

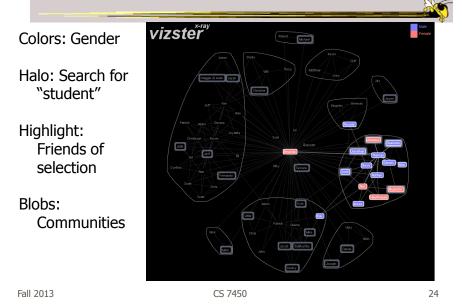
Semantic Substrates

- Group nodes into regions
 According to an attribute
 Categorical, ordinal, or binned numerical
- In each region: Position nodes according to some other attribute(s)
- Give users control of link visibility

	Shneiderman & <i>TVCG</i> (InfoVis)			
Fall 2013	CS 7450		19	



Vizster


- Visualize social networking sites like friendster, myspace, facebook
- Implementation
 - Crawled 1.5 million members (Winter 2003)
 - Written in Java using the *prefuse* tookit (<u>http://prefuse.sourceforge.net</u>)
- Oppose Shneiderman's mantra. Instead: "Start with what you know, then grow."

Heer & boyd InfoVis `05

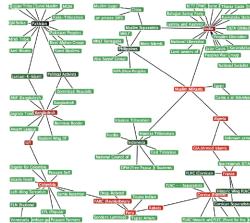
Combining Features

Video

http://www.cs.umd.edu/hcil/socialaction/

Perer & Shneiderman *TVCG* (InfoVis) '06

SocialAction


25

- Combines graph structural analysis (ranking) with interactive visual exploration
- Multiple coordinated views
 - Lists by ranking for analysis data
 - Basic force-directed layout for graph vis

CS 7450

nkings		
etweenness Centrality		÷
The number of shortest paths bet	ween pairs of	
nodes that pass through a given r		
Rank Node	Type	
2,516.00 Muslim Militants	Terrorist Group	1
2,436.50 Corsica (France)	Country	
2,413.00 Colombia	Country	
2,368.00 Peru	Country	- 11
2,280.50 France	Country	۲
2,239.00 Algeria	Country	
2,226.00 Rebels	Terrorist Group	
2,214.00 GIA (Armed Islamic Group)	Terrorist Group	
2,124.00 FARC (Revolutionary Armed For		
1,718.00 Bangladesh	Country	
1,656.00 U/I	Terrorist Group	
1,598.00 India	Country	
1,063.00 Pakistan	Country Terrorist Group	
798.00 Corsican Separatists 704.00 FLNC (Corsican National Libera		
704.00 Historic Wing FLNC	Terrorist Group	
637.00 Indonesia	Country	
614.00 Political Activists	Terrorist Group	
596.00 Philippines	Country	
520.00 Jamaat-E-Islami	Terrorist Group	
330.00 Muslim Separatists	Terrorist Group	
276.00 ELN (National Liberation Army)		
137.00 Venezuela	Country	
187.00 China	Country	
94.00 Egypt	Country	
0.00 Dignity for Colombia	Terrorist Group	
0.00 Jamie Bateman Canon Front	Terrorist Group	
0.00 Sendero Luminoso	Terrorist Group	L
0.00 Jamiat-ul-Mujahideen	Terrorist Group	A
0.00 Timorese Students	Terrorist Group	- Tŵ

in 1996. The nodes are ranked according to their betweenness centrality.

(b) Network visualization of the same 97 nodes, colored according to their ranking. The nodes with highest betweenness rankings, sometimes referred to as "gatekeepers", are painted red.

Figure 1.

Fall 2013

Fall 2013

Social Network Attributes

- Bary center total shortest path of a node to all other nodes
- **Betweenness centrality** how often a node appears on the shortest path between all other nodes
- Closeness centrality how close a node is compared to all other nodes
- Cut-points the subgraph becomes disconnected if the node is removed
- **Degree** number of connections for node
- **HITs** "hubs and authorities" measure
- Power centrality how linked a node is to rest of network

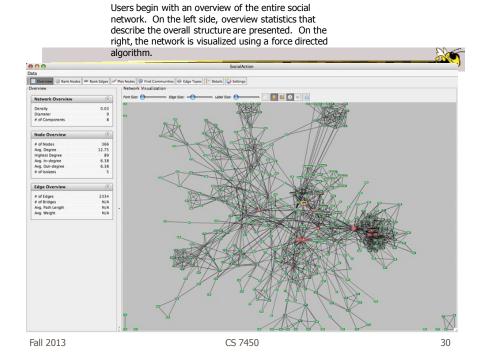
Fall 2013

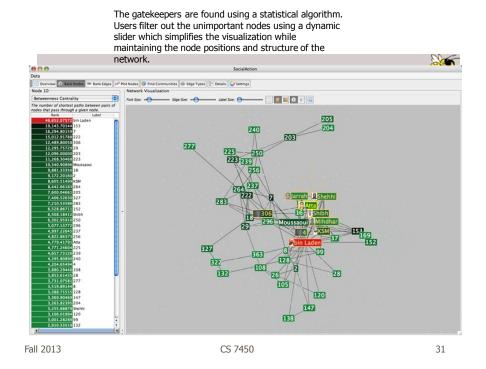
CS 7450

Attribute Ranking

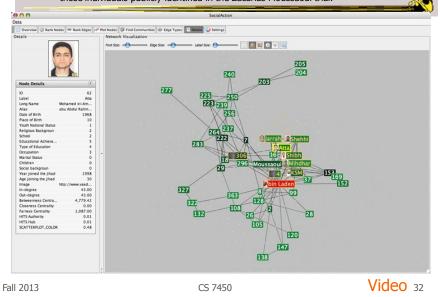
Run these measures on all nodes and rank them

- Sort the rankings and show in lists and scatterplots
- Allow user to filter based on rankings
- Can aggregate rankings for cohesive subgroups of nodes


CS 7450


Graph Visualization

- Standard node-link
- Node positions remain constant across different metric views to promote comprehension
- Links can have types
- Coherent subgroups can be aggregated (like in Vizster)
 - Uses Newman's community identification algo


Fall 2013

CS 7450

Labels are always given priority so users can understand what the data represents. When user selects a node, neighbors are highlighted and details appear on the left. In order to protect sensitive information, node labels have been anonymized except for those individuals publicly identified in the Zacarias Moussaoui trial.

http://www.cs.umd.edu/hcil/socialaction/

Senate Voting Patterns vers I- Dr Video

Implementation

SocialAction: Analyzing the Social Network of US Senators on Vimeo.

Jung

Fall 2013

- Network data structures and algorithms

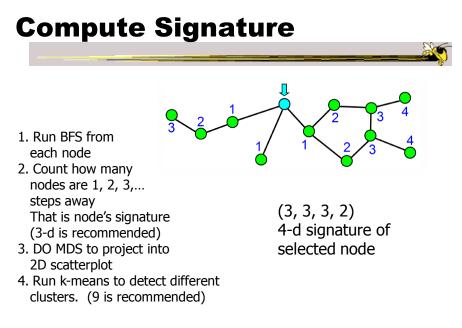
CS 7450

- Prefuse
 - Graph drawing
- Piccolo
 - Scatterplot and Matrix views

CS 7450

Comments

- One of my favorite recent InfoVis papers
- Not too innovative on the vis technique side, but wonderful application and synthesis of useful capabilities
- Actually, a very nice visual analytics example
- Good subsequent paper on case studies evaluation of it (on our later Eval day)


Fall 2013

CS 7450

PNNL's Graph Vis Work

- Graph Signatures
- Goal is to characterize the different styles of nodes in graph based on their local connectivity patterns

CS 7450

Fall 2013

CS 7450

<image>

CS 7450

Example 2

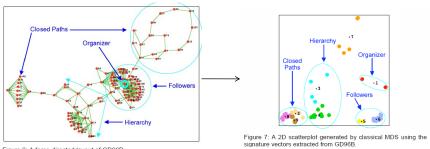
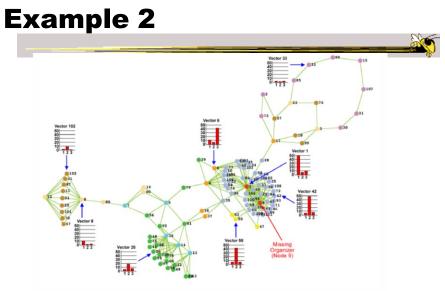


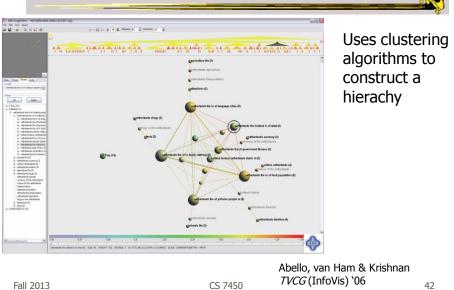
Figure 6: A force-directed layout of GD96B.

Fall 2013

CS 7450

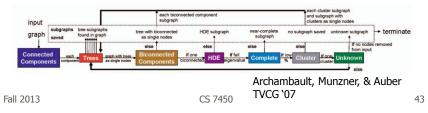
39




Figure 8: Nodes that share the same color belong to the same cl are selected to highlight the general topology of the seven clu among a sea of followers in Figure 6. er identified in Figure 7. Eight signatures (represented as bar graphs) ers. Notice the previously missing organizer (node 9 in red) hidden

Really Big Graphs

- May be difficult to keep all in memory
- Often visualized as "hairballs"
- Smart visualizations do structural clustering, so you see a high-level overview of topology


Fall 2013	CS 7450	41

ASK-GraphView

TopoLayout

- Topological features are detected recursively inside a graph
- Their subgraphs are collapsed into single nodes, forming a hierarchy
- Each feature drawn with an algorithm tuned for its topology

PNNL Big Graph Work

- Goal is to show more nodes in a coherent fashion and provide real-time interactions
- Uses multi-level graph drawing
- Preprocesses graph by generating hierarchy of increasingly coarse layouts

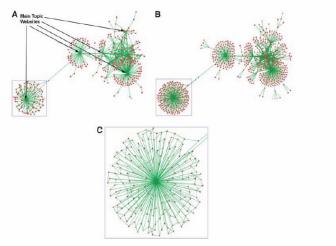


Figure 7 Layout of graphs showing (A) full web crawler network with main topic websites identified (high coarsening), (B) full web crawler network (light coarsening), and (C) close-up view of web crawler subnetwork containing cross-links. The subnetwork is the section of the full network shown bounded by a blue box in both Figure 7(A) and (B).

Fall 2013

CS 7450

45

Alternate Big Graph Approach

- Show some of the details, rather than high level structure
- Allow users to focus on particular nodes
- Adapt DOI algorithm from trees to graphs
- Rely heavily on interaction
- Different paradigm: "Search, show context, expand on demand"

van Ham & Perer *TVCG* (InfoVis) '09

Fall 2013

CS 7450

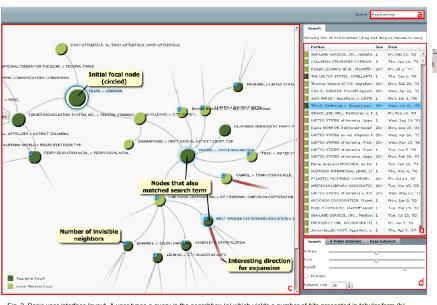
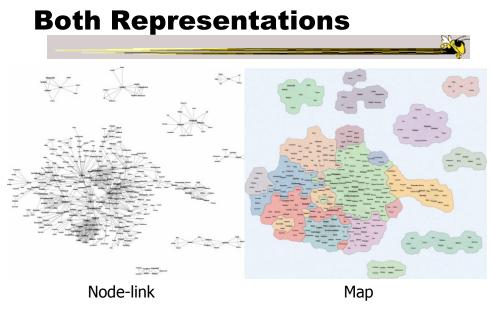


Fig. 3. Basic user interface layout. A user types a query in the searchbox (a) which yields a number of hits presented in tabular form (b). One of these hits can then be dragged to the main screen (c) which shows the subgraph centered on that node. Other nodes that matched the user's search are highlighted in blue. Users can adapt the balance between different components of the DOI function and the size of the subgraph in a separate panel (d). CS 7450


Fall 2013

Graphs as Maps

- Represent a large graph as a map
- Maintain inherent structure and relationships between nodes
- Follow standard cartographic representations

CS 7450

http://www2.research.att.com/~yifanhu/MAPS/imap.html

Fall 2013

CS 7450

49

Music Graph/Map

Drawing Graphs Better

 Can we do clever "tricks" to make dense graphs more readable?

Fall 2013

CS 7450

Hierarchical Edge Bundles

- Bundle edges that go from/to similar nodes together
 - Like wires in a house
- Uses B-spline curves for edges
- Reduces the clutter from many edges

Holten *TVCG* (InfoVis) '06

CS 7450

Example

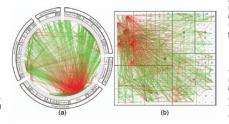


Fig. 11. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system without bundling using a radial and a squarified treemap layout (node labels disabled), respectively. (a) and (b) mainly show hot spots; the actual connectivity information is more difficult to discern due to visual clutter.

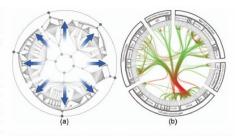


Fig. 12. Radial layout construction. (a) A radial tree layout is used for the inner circle and subsequently mirrored to the outside; (b) the inner layout is hidden and its structure is used to guide the adjacency edges. An icicle plot based on the mirrored layout is used to show the hierarchy.

Fall 2013

CS 7450

53

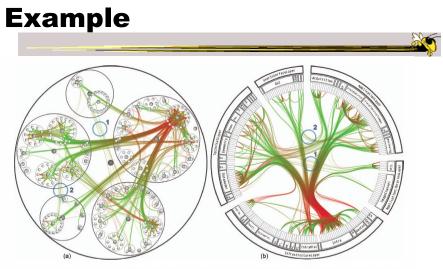
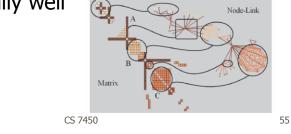



Fig. 13. A software system and its associated call graph (caller = green, callee = red), (a) and (b) show the system with bundling strength $\beta = 0.85$ using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the actual connections than when compared to the non-bundled versions (figures 2a and 11a). Bundled visualizations also show relations between sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled regions highlight identical parts of the system for (a), (b), and figure 15.

Fall 2013

Matrix Representations

- There has been renewed interest in matrix representations of graphs recently
- I think the regularity, symmetry, and structure of a matrix are a win – people understand them well, but they don't scale up really well

Fall 2013

MatrixExplorer

 Provides matrix view in combination with node-link and various operations for gaining different perspectives

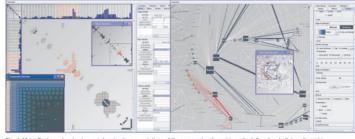


Fig. 1. MatrixExplorer showing two synchronized representations of the same network: matrix on the left and node-link on the right

Fall 2013

CS 7450

Henry & Fekete *TVCG* (InfoVis) '06

Node Reordering

-25

Extremely important operation with matrix representations

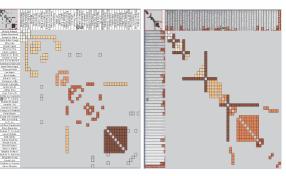
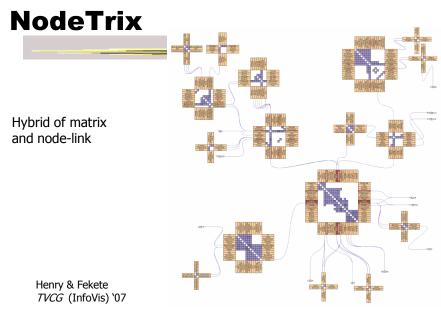



Fig. 6. Initial order (left) and TSP order (right). Colors represent clusters found by the user. Clusters are different in the two representations. Users found more clusters with TSP order. Headers red indicators (right) represents the distance between adjacent rows/columns.

Fall 2013

CS 7450

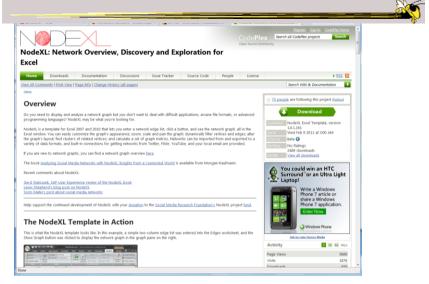
57

Fall 2013

CS 7450

Simplifying Input

 Make it easier to input graphs and then explore them


Fall 2013

CS 7450

59

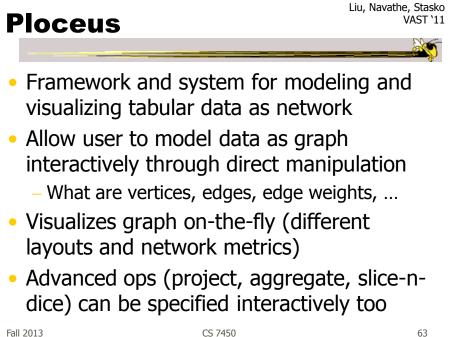
http://nodexl.codeplex.com/

NodeXL

Fall 2013

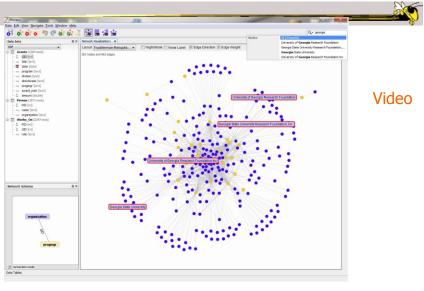
Characteristics

- Plug-in for MS Excel
- Includes many network layout and network analysis metrics
- Data import:


Fall


- List out vertices and edges in Excel columns
- Native importers for email, Twitter, YouTube, etc.

		Smith et al C&T `09	
I 2013	CS 7450		61


Non-Network Data?

- But what if you don't have vertex-edge data to begin?
 - May just have tabular data from spreadsheet or database
- Still may want to explore data modeled as a graph
 - Consider DB of NSF grants (PIs, institution, PM, amount, ...)
 - Look for clusters, patterns, connections, ...

Ploceus

Fall 2013

Graph Visualization Resource

- Very nice overview & survey
 - Herman et al, IEEE TVCG '00
 - but a little dated now

Fall 2013

CS 7450

65

HW

- OK to remove one?
- Spread those points onto other ones (one per)

Upcoming

- Hierarchies and Trees 1
 - Reading
 Card & Nation `02

• Hierarchies and Trees 2

Reading
 Johnson & Shneiderman '91

Fall 2013

CS 7450