InfoVis Evaluation

Area Focus

• Most of the research in InfoVis that we’ve learned about this semester has been the introduction of a new visualization technique or tool
 – Fisheyes, cone trees, hyperbolic displays, tilebars, themescapes, sunburst, jazz, ...
 – “Isn’t my new visualization cool?...”
Evaluation – Why?

• Reasons?

Want to learn what aspects of visualizations or systems “works”
Want to ensure that methods are improving
Want to insure that technique actually helps people and isn’t just “cool”
NOT: Because I need that section in my paper to get it accepted ... sigh
Evaluation – How?

- What do we measure?
 - What data do we gather?
 - What metrics do we use?

- What evaluation techniques should we use?

- (Channel your HCI knowledge)

Evaluation in HCI

- Takes many different forms
 - Qualitative, quantitative, objective, subjective, controlled experiments, interpretive observations, ...

- So, which ones are best for evaluating InfoVis systems?
Controlled Experiments

- Good for measuring performance or comparing multiple techniques
- Often quantitative in nature
- What do we measure?
 - Performance, time, errors, ...

- Strengths, weaknesses?

Subjective Assessments

- Often observational with interview
- Learn people’s subjective views on tool
 - Was it enjoyable, confusing, fun, difficult, ...
- This kind of personal judgment strongly influence use and adoption, sometimes even overcoming performance deficits

- Strengths, weaknesses?
Running Studies

• Beyond our scope here
• You should learn more about this in CS 6750 or 6455

Evaluating UI vs. InfoVis

• Seems comparable but...
• What are some differences?
Usability vs. Utility

- Big difference
- Usability is not the same as utility, which seems to be a key factor for InfoVis
- Can think of visualizations that are very usable but not useful or helpful
- More difficult to measure success of an infovis because more domain knowledge and situated use is required

Evaluating InfoVis in General

- Very difficult in InfoVis to compare “apples to apples”
 - Hard to compare System A to System B
 - Different tools were built to address different user tasks
- UI can heavily influence utility and value of visualization technique
Exercise

- Evaluate your project system
Evaluating InfoVis

• Three nice overview papers
 – Plaisant, AVI '04
 – Carpendale, book chapter '08
 – Lam, et al, TVCG '12

Plaisant ‘04

• Discusses challenges, possible next steps, and gives examples from work at Maryland
Evaluation Challenges

• Matching tools with users, tasks, and real problems

• Improving user testing
 – Looking at the same data from different perspectives, over a long time
 – Answering questions you didn’t know you had
 – Factoring in the chances of discovery and the benefits of awareness

• Addressing universal usability

Possible Next Steps

• Repositories of data and tasks
• Case studies and success stories
• The role of toolkits and development tools
Carpendale ‘08

• Challenges in infovis evaluation
• Choosing an evaluation approach

Evaluation Approaches

• Desirable features
 – Generalizability
 – Precision
 – Realism
Quantitative Methods

- Laboratory experiments & studies
- Traditional empirical scientific experimental approach
- Steps

Fig. 1. Types of methodologies organized to show relationships to precision, generalizability and realism. (adapted, simplified from McGrath 1995)
Quantitative Challenges

• Conclusion Validity
 – Is there a relationship?

• Internal Validity
 – Is the relationship causal?

• Construct Validity
 – Can we generalize to the constructs (ideas) the study is based on?

• External Validity
 – Can we generalize the study results to other people/places/times?

• Ecological Validity
 – Does the experimental situation reflect the type of environment in which the results will be applied?

Qualitative Methods

• Types
 – Nested methods
 - Experimenter observation, think-aloud protocol, collecting participant opinions
 – Inspection evaluation methods
 - Heuristics to judge

• Observational context
 – In situ, laboratory, participatory
 – Contextual interviews important
Qualitative Challenges

- Sample sizes
- Subjectivity
- Analyzing qualitative data

Lam, et al ‘12

- Meta-review: analysis of 850 infovis papers (361 with evaluation)
- Focus on evaluation scenarios
Evaluation Taxonomies

Evaluation Scenarios

- Understanding data analysis
 - Understanding environments and work practices (UWP)
 - Evaluating visual data analysis and reasoning (VDAR)
 - Evaluating communication through visualization (CTV)
 - Evaluating collaborative data analysis (CDA)
Evaluation Scenarios

- Understanding visualizations
 - Evaluating user performance (UP)
 - Evaluating user experience (UE)
 - Evaluating visualization algorithms (VA)

Methods

- Coded each paper with tags

<table>
<thead>
<tr>
<th>Paper Tags</th>
<th>EuroVis</th>
<th>InfoVis</th>
<th>IVS</th>
<th>VAST</th>
<th>Total</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. People’s workflow, work practices</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>UWP</td>
</tr>
<tr>
<td>2. Data analysis</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>VDAR</td>
</tr>
<tr>
<td>3. Decision making</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>VDAR</td>
</tr>
<tr>
<td>4. Knowledge management</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>VDAR</td>
</tr>
<tr>
<td>5. Knowledge discovery</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>VDAR</td>
</tr>
<tr>
<td>6. Communication, learning, teaching, publishing</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>CTV</td>
</tr>
<tr>
<td>7. Causal information acquisition</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>CTV</td>
</tr>
<tr>
<td>8. Collaboration</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>CDA</td>
</tr>
<tr>
<td>Visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Visualization-analytical operation</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>UWP</td>
</tr>
<tr>
<td>10. Perception and cognition</td>
<td>17</td>
<td>24</td>
<td>15</td>
<td>3</td>
<td>62</td>
<td>UWP</td>
</tr>
<tr>
<td>11. Usability/effectiveness</td>
<td>25</td>
<td>84</td>
<td>31</td>
<td>18</td>
<td>158</td>
<td>UP/UI</td>
</tr>
<tr>
<td>12. Potential usage</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>22</td>
<td>UWP</td>
</tr>
<tr>
<td>13. Adoption</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>UE</td>
</tr>
<tr>
<td>14. Algorithm performance</td>
<td>17</td>
<td>37</td>
<td>15</td>
<td>0</td>
<td>69</td>
<td>VA</td>
</tr>
<tr>
<td>15. Algorithm quality</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>5</td>
<td>28</td>
<td>VA</td>
</tr>
<tr>
<td>Not included in scenarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Proposed evaluation methodologies</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>17. Evaluation metric development</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Methods

- For each category the authors describe
 - Goals and outputs
 - Evaluation questions
 - Methods and examples

Example

- UWP - Understanding Environments and Work Practices
 - Elicit formal requirements for design
 - Study people for which a tool is being designed and the context of use
 - Very few infovis papers on this topic
UWP 1

- **Goals and Outputs**
 - **Goals:** Understand the work, analysis, or info processing practices by a given group of people with or without software in use
 - **Outputs:** Design implications based on a more holistic understanding of current workflows and work practices, the conditions of the working environment, and potentially current tools in use

UWP 2

- **Evaluation questions**
 - What is the context of use of visualizations?
 - In which daily activities should the visualization tool be integrated?
 - What types of analyses should the visualization tool support?
 - What are the characteristics of the identified user group and work environments?
 - What data is currently used and what tasks are performed on it?
 - What kinds of visualizations are currently in use? How do they help to solve current tasks?
 - What challenges and usage barriers can we see for a visualization tool?
UWP 3

- Methods and Examples
 - Field observation
 - Interviews
 - Laboratory observation

- (with example projects cited)

Examples

- Let’s examine example studies utilizing different goals and styles
Which Technique is Best?

- Space-filling hierarchical views
- Compare Treemap and Sunburst with users performing typical file/directory-related tasks
- Evaluate task performance on both correctness and time

Stasko et al. IJHCS '00

Tools Compared

Treemap

SunBurst
Hierarchies Used

- Four in total

Small Hierarchy
(~500 files)

A

B

Large Hierarchy
(~3000 files)

A

B

- Used sample files and directories from our own systems (better than random)

Methodology

- 60 participants
- Participant only works with a small or large hierarchy in a session
- Training at start to learn tool
- Vary order across participants

SB A, TM B
TM A, SB B
SB B, TM A
TM B, SB A

32 on small hierarchies
28 on large hierarchies
Tasks

- Identification (naming or pointing out) of a file based on size, specifically, the largest and second largest files (Questions 1-2)
- Identification of a directory based on size, specifically, the largest (Q3)
- Location (pointing out) of a file, given the entire path and name (Q4-7)
- Location of a file, given only the file name (Q8-9)
- Identification of the deepest subdirectory (Q10)
- Identification of a directory containing files of a particular type (Q11)
- Identification of a file based on type and size, specifically, the largest file of a particular type (Q12)
- Comparison of two files by size (Q13)
- Location of two duplicated directory structures (Q14)
- Comparison of two directories by size (Q15)
- Comparison of two directories by number of files contained (Q16)

Hypothesis

- Treemap will be better for comparing file sizes
 - Uses more of the area
- Sunburst would be better for searching files and understanding the structure
 - More explicit depiction of structure
- Sunburst would be preferred overall
Small Hierarchy

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 8)</td>
<td>1</td>
<td>9.88 (3.26)</td>
<td>TM (n = 8)</td>
<td>1</td>
<td>11.50 (2.14)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>1</td>
<td>12.88 (1.96)</td>
<td>SB (n = 8)</td>
<td>1</td>
<td>10.38 (1.69)</td>
</tr>
<tr>
<td>TM (n = 8)</td>
<td>2</td>
<td>12.25 (1.75)</td>
<td>TM (n = 8)</td>
<td>2</td>
<td>10.75 (2.77)</td>
</tr>
<tr>
<td>SB (n = 8)</td>
<td>2</td>
<td>12.63 (2.00)</td>
<td>SB (n = 8)</td>
<td>2</td>
<td>11.50 (2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td></td>
<td>11.06 (2.79)</td>
<td>TM (collapsed across phase)</td>
<td></td>
<td>11.13 (2.42)</td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td></td>
<td>12.75 (1.91)</td>
<td>SB (collapsed across phase)</td>
<td></td>
<td>10.94 (1.88)</td>
</tr>
</tbody>
</table>

Correct task completions (out of 16 possible)

Fall 2015
CS 7450
43

Large Hierarchy

<table>
<thead>
<tr>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
<th>Tool</th>
<th>Phase</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM (n = 7)</td>
<td>1</td>
<td>8.74 (1.60)</td>
<td>TM (n = 7)</td>
<td>1</td>
<td>9.29 (2.14)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.43 (1.27)</td>
<td>SB (n = 7)</td>
<td>1</td>
<td>11.14 (2.67)</td>
</tr>
<tr>
<td>TM (n = 7)</td>
<td>2</td>
<td>11.57 (1.27)</td>
<td>TM (n = 7)</td>
<td>2</td>
<td>10.86 (1.57)</td>
</tr>
<tr>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.16)</td>
<td>SB (n = 7)</td>
<td>2</td>
<td>11.00 (2.00)</td>
</tr>
<tr>
<td>TM (collapsed across phase)</td>
<td></td>
<td>10.14 (2.03)</td>
<td>TM (collapsed across phase)</td>
<td></td>
<td>9.57 (2.24)</td>
</tr>
<tr>
<td>SB (collapsed across phase)</td>
<td></td>
<td>11.21 (1.72)</td>
<td>SB (collapsed across phase)</td>
<td></td>
<td>11.07 (2.27)</td>
</tr>
</tbody>
</table>

Correct task completions (out of 16 possible)

Fall 2015
CS 7450
44
Performance Results

- Ordering effect for Treemap on large hierarchies
 - Participants did better after seeing SB first
- Performance was relatively mixed, trends favored Sunburst, but not clear-cut
 - Oodles of data!

Subjective Preferences

- Subjective preference: SB (51), TM (9), unsure (1)
- People felt that TM was better for size tasks (not borne out by data)
- People felt that SB better for determining which directories inside others
 - Identified it as being better for structure
Strategies

• How a person searched for files etc. mattered
 – Jump out to total view, start looking
 – Go level by level

Animation Helpful?

• Examine whether animated bubble charts (a la Rosling and GapMinder) are beneficial for analysis and presentation
• Run an experiment to evaluate the effects of animation

Robertson et al
TVCG (InfoVis) ’08
Visualizations Studied

- Animation
- Small multiples
- Traces

Experiment Design

- 3 (animation types) x 2 (data size: small & large) x 2 (presentation vs. analysis)
 - Presentation vs analysis – between subjects
 - Others – within subjects

- Animation has 10-second default time, but user could control time slider
Experiment Design

- **Data**
 - UN data about countries

- **Tasks**
 - 24 tasks, 1-3 requires answers per
 - Select 3 countries whose rate of energy consumption was faster than their rate of GDP per capita growth
 - Select 2 countries with significant decreases in energy consumption
 - Which continent had the least changes in GDP per capita

Conditions

- **Analysis** – straightforward, interactive
- **Presentation**
 - 6 participants at a time
 - Presenter described a trend relevant to task, but different
 - No interaction with system
 - In animation condition, participants saw last frame of animation (no interaction)
Results

• **Accuracy**
 Measured as percentage correct
 65% overall (pretty tough)

 ![Accuracy Chart]

 Significant:
 SM better than animation
 Small data size more accurate than large

Results

• **Speed**
 - **Presentation**
 Animation faster than small multiples & traces
 15.8 secs vs. 25.3 secs vs. 27.8 secs.
 - **Analysis**
 Animation slower than small multiples & traces
 83.1 secs. vs. 45.69 secs. vs. 55.0 secs.
Table 3. Average ratings for seven questions for each visualization.

<table>
<thead>
<tr>
<th>Question</th>
<th>Animation</th>
<th>SM</th>
<th>Traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1. The visualization was helpful to me in answering the questions.</td>
<td>4.6</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Q2. For the smaller dataset, I found the tasks easy using this visualization.</td>
<td>4.6</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>Q3. For the larger dataset, I found the tasks easy using this visualization.</td>
<td>3.6</td>
<td>3.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Q4. I enjoyed using this visualization.</td>
<td>4.3</td>
<td>3.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Q5. I found this visualization exciting.</td>
<td>4.3</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Q6. For the smaller dataset, I found the screen too cluttered.</td>
<td>1.8</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Q7. For the larger dataset, I found the screen too cluttered.</td>
<td>4.4</td>
<td>2.8</td>
<td>4.7</td>
</tr>
</tbody>
</table>

* Indicates significant differences (p < 0.05).

Table 4. Average ratings for a few general questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Presentation</th>
<th>Analysis</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1. I found the Traces view enjoyable.</td>
<td>3.8</td>
<td>2.9</td>
<td>3.4</td>
</tr>
<tr>
<td>G3. I found the Small Multiples view enjoyable.</td>
<td>4.1</td>
<td>3.4</td>
<td>3.7</td>
</tr>
<tr>
<td>G5. I found the Animation view enjoyable.</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7. The animation went too fast for me.</td>
<td>3.2</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>G8. The animation went too slow for me.</td>
<td>1.6</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>G9. I lost track of some data points as they moved.</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Subjective

Likert: 0-strongly disagree, 6-strongly agree

Fall 2015 CS 7450 55

Results

G13: Which visualization did you PREFER for the small dataset?
G14: For the large?

Presentation, small: Animation (9) > SM (6) > Traces (3)
Presentation, large: Traces (8) > SM (6) > Animation (4)
Analysis, small: Animation (7) > SM (6) > Traces (5)
Analysis, large: Animation (8) > SM (6) > Traces (4)

Fall 2015 CS 7450 56
Discussion

- People rated animation more fun, but small multiples was more effective
- As data grows, accuracy becomes an issue
 - Traces & animation get cluttered
 - Small multiple gets tiny
- Animation:
 - “fun”, “exciting”, “emotionally touching”
 - Confusing, “the dots flew everywhere”

Useful Junk?

- Tufte claimed that graphs loaded with chartjunk are no good
- Is that really so?
- How could you test this?
Comparing

Methodology

- Two versions of each chart
- Participant sees one
 - Asked immediate interpretation accuracy questions
 - Asked similar questions again 5 minutes or 2-3 weeks later

Bateman et al
CHI ’10
Results

• No significant difference in immediate interpretation accuracy, or after 5 minute gap
• After 2-3 week gap, recall of chart topic and details was significantly better for chartjunk graphs
• Participants found the chartjunk graphs more attractive, enjoyed them more, and found them easiest and fastest to remember

Caveats

• Small datasets
• “Normal” charts were really plain
• No interaction
• How about other added interpretations from the flowery visuals?

• Be careful reading too much into this
More Complex Task Eval

- Consider investigative analysis tasks involving sensemaking, awareness, and understanding
- Research questions
 - How do people use systems?
 - What characteristics matter?
 - What should we measure/observe?
- Exploring methods for utility evaluation

Kang et al
VAST '08 & TVCG'11

System Examined - Jigsaw
Study Design

• Task and dataset
 – 50 simulated intelligence case reports
 Each a few sentences long
 23 were relevant to plot
 – Identify the threat & describe it in 90 minutes

Source: doc017
Date: Oct 22, 2002

Abu H., who was released from custody after the September 11 incidents and whose fingerprints were found in the U-Haul truck rented by Arnold C. [see doc033] holds an Egyptian passport. He is now known to have spent six months in Afghanistan in the summer of 1999.

Study Design - Settings

1: Paper

2: Desktop

3: Entity

4: Jigsaw
Performance Measures

- Task sheets (like VAST Contest)
 - Three components (relevant people, events, locations)
 - +1 for correct items, -1 for a misidentified items

- Summary narrative
 - Subjective grading from 1 (low) to 7 (high)

- Two external raters
- Normalized, each part equal, mapped to 100-point scale
Results

<table>
<thead>
<tr>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>Final Score</td>
<td>22.87</td>
<td>65.00</td>
<td>24.26</td>
</tr>
<tr>
<td>Performance</td>
<td>Fair</td>
<td>Very</td>
<td>Fair</td>
</tr>
<tr>
<td>Average Score</td>
<td>49.80</td>
<td>50.19</td>
<td>44.42</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td># of Queries</td>
<td>19</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>Amount of Notes</td>
<td>Many</td>
<td>None</td>
<td>Many</td>
</tr>
</tbody>
</table>

Fall 2015
CS 7450
69

Results

<table>
<thead>
<tr>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>Final Score</td>
<td>22.87</td>
<td>65.00</td>
<td>24.26</td>
</tr>
<tr>
<td>Performance</td>
<td>Fair</td>
<td>Very</td>
<td>Fair</td>
</tr>
<tr>
<td>Average Score</td>
<td>49.80</td>
<td>50.19</td>
<td>44.42</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td># of Queries</td>
<td>19</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>Amount of Notes</td>
<td>Many</td>
<td>None</td>
<td>Many</td>
</tr>
</tbody>
</table>

Fall 2015
CS 7450
70
Jigsaw Usage Patterns

Investigative Strategies

1. Overview, filter and detail (OFD)
2. Build from detail (BFD)
3. Hit the keyword (HTK)
4. Find a clue, follow the trail (FCFT)

P16: “I like this people-first approach. Once I identify key people, then things that are potentially important come up, too. I’m an impatient person and don’t want to read all documents chronologically.”
Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P5</td>
</tr>
<tr>
<td>OFD</td>
<td></td>
<td>OFD</td>
<td>OFD</td>
<td></td>
</tr>
<tr>
<td>BFD</td>
<td></td>
<td>OFD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTK</td>
<td></td>
<td>HTK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
<th>Fair</th>
<th>Very good</th>
<th>Very good</th>
<th>Good</th>
<th>Fair</th>
<th>Good</th>
<th>Poor</th>
<th>Fair</th>
<th>Excel-</th>
<th>Good</th>
<th>Very good</th>
<th>Excel-</th>
<th>Good</th>
<th>Very good</th>
<th>Excel-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Fall 2015

CS 7450
Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
</tr>
<tr>
<td>OFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>BFD</td>
<td>Very</td>
<td>Excel</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>OFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>OFD</td>
<td>Good</td>
<td>Poor</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>BFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>BFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>HTK</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>OFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>TKT</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>OFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>BFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>BFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>OFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>BFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>BFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>HTK</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>OFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>BFD</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>BFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>HTK</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Excel</td>
</tr>
<tr>
<td>OFD</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
<tr>
<td>FCFT</td>
<td>Good</td>
<td>Very good</td>
<td>Excel</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Documents Viewed</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
<th>P13</th>
<th>P14</th>
<th>P15</th>
<th>P16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>31</td>
<td>45</td>
<td>50</td>
<td>31</td>
<td>50</td>
<td>46</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2015
CS 7450
76
Results by Strategy

<table>
<thead>
<tr>
<th>Strategy Used</th>
<th>Paper</th>
<th>Desktop</th>
<th>Entity</th>
<th>Jigsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
<td>OFD</td>
</tr>
<tr>
<td>Performance</td>
<td>FAIR</td>
<td>F or D</td>
<td>F or D</td>
<td>F or D</td>
</tr>
<tr>
<td>Documents Viewed</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Tool Design Implications

- Support finding starting points/clues
- Guide the analyst to follow the right trail
- Support different strategies of SM process
- Support smooth transition between SM stages
- Provide a workspace
- Allow flexibility in organizing
- Support to find next steps when dead-end
- Facilitate further exploration
Jigsaw’s Influence

- Supporting different strategies
- Showing connections between entities

- Helping users find the right clue
- Helping users focus on essential information

- Reviewing hypotheses
- Increasing motivation

Evaluation Recommendations

- Compare system usage to traditional methods
- Collect qualitative data, support with quantitative data
- Consider questions to be answered
- Possible metrics
 - Number of documents viewed
 - When note-taking initiated
 - The quantity of representations created
 - Amount of time and effort in organizing
 - Time spent in reading/processing relevant information
How to Evaluate Many Eyes?

- Two main evaluation papers written about system
- Studied use of system, visualizations being created, discussions about system, etc.

Paper 1

- Case study of early use
- System uses
 - Visual analytics
 - Sociability
 - Generating personal and collective mirrors
 - Sending a message

Viégas et al
HICSS '08
Use Characteristics

<table>
<thead>
<tr>
<th>Data Topic/Area</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society</td>
<td>14.0</td>
</tr>
<tr>
<td>Economics</td>
<td>12.7</td>
</tr>
<tr>
<td>Obscured/Anon</td>
<td>12.4</td>
</tr>
<tr>
<td>Art & culture</td>
<td>10.8</td>
</tr>
<tr>
<td>Web & new media</td>
<td>10.3</td>
</tr>
<tr>
<td>Science</td>
<td>10.0</td>
</tr>
<tr>
<td>Test data</td>
<td>9.5</td>
</tr>
<tr>
<td>Politics</td>
<td>7.4</td>
</tr>
<tr>
<td>Technology</td>
<td>6.6</td>
</tr>
<tr>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>46.3</td>
</tr>
<tr>
<td>Question</td>
<td>15.8</td>
</tr>
<tr>
<td>Affirmation</td>
<td>13.7</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>11.6</td>
</tr>
<tr>
<td>Socializing</td>
<td>11.6</td>
</tr>
<tr>
<td>System design</td>
<td>11.6</td>
</tr>
<tr>
<td>Data integrity</td>
<td>9.5</td>
</tr>
<tr>
<td>Testing</td>
<td>4.2</td>
</tr>
<tr>
<td>Tips</td>
<td>4.2</td>
</tr>
<tr>
<td>To do</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Paper 2

- Interview-based study
- Individual phone interviews with 20 users
 - Lots of quotes in paper
- Bloggers vs. regular users
- Also includes stats from usage logs
 - 3069 users
 - 1472 users who uploaded data
 - 5347 datasets
 - 972 users who created visualizations
 - 3449 visualizations
 - 222 users who commented
 - 1268 comments

Danis et al
CHI ’08
Findings

- User motivations
 - Analyzing data
 - Broadening the audience, sharing data
- Lots of collaborative discussion
 - Much off the ManyEyes site
- Concerns about data and other eyes

Specific to Infovis?

- How about evaluation techniques specifically focused on infovis?
Insight

- Isn’t one of the key ideas about InfoVis that it helps generate insights?
- OK, well let’s count/measure insights

- What challenges do you see in this?

Problem Domain

- Microarray experiments: Gain insight into the extremely complex and dynamic functioning of living cells
- Systems-level exploratory analysis of thousands of variables simultaneously
- Big data sets
Insight

- Insight: An individual observation about the data by the participant, a unit of discovery
- Characteristics
 - Observation
 - Time
 - Domain Value
 - Hypotheses
 - Directed vs Unexpected
 - Category

Insight Characteristics

- Complex
 - Involving large amounts of data in a synergistic way
- Deep
 - Builds over time, generates further questions
- Qualitative
 - Can be uncertain and subjective
- Unexpected
 - Often unpredictable, serendipitous
- Relevant
 - Deeply embedded in data domain, connecting to existing domain knowledge
Experiment Design

- **Data: Timeseries, Virus, Lupus**

<table>
<thead>
<tr>
<th>Tool</th>
<th>Visual Representations</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster/Treeview</td>
<td>Heat-map, Clustered heat-map</td>
<td>O+D</td>
</tr>
<tr>
<td>Time-Searcher</td>
<td>Parallel coordinates, line graph</td>
<td>Brushing, O+D, DQ</td>
</tr>
<tr>
<td>HCE</td>
<td>Cluster dendrogram, parallel coordinates, heat-map, scatterplot, histogram</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Spotfire® 7.2</td>
<td>Parallel coordinates, heat-map, scatterplots (2D/3D), histogram, bar/pie chart, tree view, spreadsheet view, Clustered parallel coordinates</td>
<td>Brushing, Zooming, O+D, DQ</td>
</tr>
<tr>
<td>Functional Genomics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeneSpring @ 5.0</td>
<td>Parallel coordinate, heat-map, scatterplots (2D/3D), histogram, bar chart, block view, physical position view, array layout view, pathway view, spreadsheet view, compare gene to gene, Clustered parallel coordinates</td>
<td>Brushing, Zooming</td>
</tr>
</tbody>
</table>
Results

Discussion

- Methodology difficulties
 - Labor intensive
 - Requires domain expert
 - Requires motivated subjects
 - Training and trial time

- Weakness: Short session time (2 hours) when long-term use more desirable
Reconsidering Insight

- Insight with visualization
 - Is not spontaneous “aha!” moments (e.g., in cognitive science)
 - Is knowledge-building and model-confirmation
 Like a substance that people acquire with the aid of systems

Rethinking Methodology

- Do controlled lab experiments really tell us very much in information visualization?
MILC Technique

- **Multi-dimensional**
 - observations, interviews, surveys, logging
- **In-depth**
 - intense engagement of researchers with domain experts so as to almost become a partner
- **Long-term**
 - longitudinal use leading to strategy changes
- **Case Study**
 - detailed reporting about small number of people working on their own problems in their own domain

Influences

- **Ethnography**
 - Preparation
 - Field study
 - Analysis
 - Reporting
Guidelines

- Specify focused research questions & goals
- Identify 3-5 users
- Document current method/tool
- Determine what would constitute professional success for users
- Establish schedule of observation & interviews
- Instrument tool to record usage data
- Provide attractive log book for comments, problems, and insights
- Provide training
- Conduct visits & interviews
- Encourage users to continue using best tool for task
- Modify tool as needed
- Document successes and failures

SocialAction

- Evaluation inspired by MILC ideas goals
 - Interview (1 hour)
 - Training (2 hours)
 - Early use (2-4 weeks)
 - Mature use (2-4 weeks)
 - Outcome (1 hour)
Methodology

- Four case studies
 - Senatorial voting patterns
 - Medical research knowledge discovery
 - Hospital trustee networks
 - Group dynamics in terrorist networks
- Named names
 - I like it!
- Tell what they did with system

My Reflections

- Nice paper
- Stark contrast to comparative, controlled experiments
- We likely need more of this in InfoVis
Value & Evaluation

- Many small, controlled experiment user studies don’t adequately assess true utility of a visualization
- Alternative: Detailed usage scenarios with identification of system’s value along four dimensions

Value Definition

\[V_{\text{value}} = T + I + E + C \]
Value Definition

\[V_{\text{value}} = T + I + E + C \]

Ability to minimize the total time needed to answer a wide variety of questions about the data

(Without formal queries, Interaction really helps)

Fall 2015
CS 7450

Value Definition

\[V_{\text{value}} = T + I + E + C \]

Ability to spur and discover insights or insightful questions about the data

(Would be very difficult with only the data)

Fall 2015
CS 7450
Value Definition

\[V_{\text{value}} = T + I + E + C \]

Ability to convey an overall \textit{essence} or take-away sense of the data

(The big picture: Whole is greater than the sum of the parts)

Value Definition

\[V_{\text{value}} = T + I + E + C \]

Ability to generate \textit{confidence} and trust about the data, its domain and context

(Beneficial data analysis process side effects)
Recommendation

- Provide one or more case studies that illustrate how a system/technique contributes along each of these four dimensions
- Explain how the system will provide value and utility in data analysis situations

Summary

- Why do evaluation of InfoVis systems?
 - We need to be sure that new techniques are really better than old ones
 - We need to know the strengths and weaknesses of each tool; know when to use which tool
Challenges

• There are no standard benchmark tests or methodologies to help guide researchers
 – Moreover, there’s simply no one correct way to evaluate

• Defining the tasks is crucial
 – Would be nice to have a good task taxonomy
 – Data sets used might influence results

• What about individual differences?
 – Can you measure abilities (cognitive, visual, etc.) of participants?

Challenges

• Insight is important
 – Great idea, but difficult to measure

• Utility is a real key
 – Usability matters, but some powerful systems may be difficult to learn and use

• Exploration
 – InfoVis most useful in exploratory scenarios when you don’t know what task or goal is
 So how to measure that?!
Exam Preview

- Course concepts
 - Class, readings, assignments
- Short answer questions
 - Define x
 - Explain y
 - Critique a vis
 - Design a vis

Upcoming

- Review & recap
 - Reading
 Few chapter 13
 Heer et al ’10