InfoVis Evaluation

CS 7450 - Information Visualization November 23, 2015 John Stasko

Area Focus

 Most of the research in InfoVis that we've learned about this semester has been the introduction of a new visualization technique or tool

- Fisheyes, cone trees, hyperbolic displays, tilebars, themescapes, sunburst, jazz, ...
- "Isn't my new visualization cool?..."

Evaluation – Why?

• Reasons?

Fall 2015

CS 7450

3

4

Evaluation – Why?

 Want to learn what aspects of visualizations or systems "works"

- Want to ensure that methods are improving
- Want to insure that technique actually helps people and isn't just "cool"
- NOT: Because I need that section in my paper to get it accepted ... sigh

Evaluation – How?

- What do we measure?
 - What data do we gather?
 - What metrics do we use?
- What evaluation techniques should we use?
- (Channel your HCI knowledge)

Fall 2015

CS 7450

5

6

Evaluation in HCI

- Takes many different forms

 Qualitative, quantitative, objective, subjective, controlled experiments, interpretive observations, ...
- So, which ones are best for evaluating InfoVis systems?

Controlled Experiments

- Good for measuring performance or comparing multiple techniques
- Often quantitative in nature
- What do we measure?
 - Performance, time, errors, ...
- Strengths, weaknesses?

Fall 2015

CS 7450

Subjective Assessments

- Often observational with interview
- Learn people's subjective views on tool
 Was it enjoyable, confusing, fun, difficult, ...?
- This kind of personal judgment strongly influence use and adoption, sometimes even overcoming performance deficits
- Strengths, weaknesses?

CS 7450

Running Studies

- Beyond our scope here
- You should learn more about this in CS 6750 or 6455

Fall 2015

CS 7450

Evaluating UI vs. InfoVis

- Seems comparable but...
- What are some differences?

Usability vs. Utility

- Big difference
- Usability is not the same as utility, which seems to be a key factor for InfoVis
- Can think of visualizations that are very usable but not useful or helpful
- More difficult to measure success of an infovis because more domain knowledge and situated use is required

Fall 2015

CS 7450

Evaluating InfoVis in General

- Very difficult in InfoVis to compare "apples to apples"
 - Hard to compare System A to System B
 - Different tools were built to address different user tasks
- UI can heavily influence utility and value of visualization technique

Exercise

Fall 2015

CS 7450

Evaluating InfoVis

- Three nice overview papers
 - Plaisant, AVI '04
 - Carpendale, book chapter '08
 - Lam, et al, TVCG `12

Fall 2015

CS 7450

Plaisant '04

 Discusses challenges, possible next steps, and gives examples from work at Maryland

CS 7450

Evaluation Challenges

- Matching tools with users, tasks, and real problems
- Improving user testing
 - Looking at the same data from different perspectives, over a long time
 - Answering questions you didn't know you had
 - Factoring in the chances of discovery and the benefits of awareness
- Addressing universal usability

Fall 2015

CS 7450

Possible Next Steps

- Repositories of data and tasks
- Case studies and success stories
- The role of toolkits and development tools

Carpendale '08

- Challenges in infovis evaluation
- Choosing an evaluation approach

5	Evaluating Information Visualizations
	Sheelogh Carpendale Department of Computer Science, University of Calgory, 2000 University Dr. NW, Colgory, AB, Consoli T2N 104 microsoft Data Science Calgory, Con
	1 Introduction
tion	there is a strain of the strai
	A. Karess et al. (Sch.). Information Virtualization, 13/02.4498, pp. 19-45, 2008. © Springer-Verlag Barlin Holdherg 2009

Fall 2015

Evaluation Approaches

CS 7450

- Desirable features
 - Generalizability
 - Precision
 - Realism

CS 7450

Fall 2015

CS 7450

21

Quantitative Methods Laboratory experiments & studies Traditional empirical scientific experimental approach Steps

Fall 2015

CS 7450

with a declared relative degree of certainty

Quantitative Challenges

- Conclusion Validity

 Is there a relationship?
- Internal Validity
 - Is the relationship causal?
- Construct Validity
 - Can we generalize to the constructs (ideas) the study is based on?
- External Validity
 - Can we generalize the study results to other people/places/times?
- Ecological Validity
 - Does the experimental situation reflect the type of environment in which the results will be applied?

Fall 2015

CS 7450

23

Qualitative Methods

- Types
 - Nested methods

Experimenter observation, think-aloud protocol, collecting participant opinions

- Inspection evaluation methods
 Heuristics to judge
- Observational context
 - In situ, laboratory, participatory
 - Contextual interviews important

Qualitative Challenges

- Sample sizes
- Subjectivity
- Analyzing qualitative data

Fall 2015

CS 7450

Lam, et al '12

- Meta-review: analysis of 850 infovis papers (361 with evaluation)
- Focus on evaluation scenarios

CS 7450

Evaluation Taxonomies

TABLE 1

Туре	Categories	Refs
Evaluation goals	Summative (to summarize the effectiveness of an interface), formative (to inform design)	Andrews [2], Ellis and Dix [22]
Evaluation goals	Predictive (e.g., to compare design alternatives and compute usability met- rics), observational (e.g., to understand user behaviour and performance), participative (e.g., to understand user behaviour, performance, thoughts, and experience)	Hilbert and Redmile [34]
Evaluation challenges	Quantitative (e. g., types validity: conclusion (types I & II errors), construct, external/internal, ecological), qualitative (e. g., subjectivity, sample size, analysis approaches)	Carpendale [10]
Research strategies	Axes (generalizability, precision, realism, concreteness, obtrusiveness) and research strategies (field, experimental, respondent, theoretical)	McGrath [53]
Research methods	Class (e.g., testing, inspection), type (e.g., log file analysis, guideline reviews), automation type (e.g., none, capture), effort level (e.g., minimal effort, model development)	Ivory and Hearst [42]
Design stages	Nested Process Model with four stages (domain problem characterization, data/operation abstraction, encoding/interaction technique design, algorithm design), each with protontial threater to validity and mathedre of validity	Munzner [54]
Design stages	de right, i cach win poculat anceas to relating and minoras to reansation post- postgat/devolupment cycle stage associated with evaluation goals ("ex- ploratory" with "before design", "predictive" with "before implementation", "formative" with "during implementation", and "summative" with "differ implementation"). Methods are further classified as inspection (by usability predictive/defacts.	Andrews [2]
Design stages	speciausis) or testing (ϕ) test acers). Planning & feasibility (e_s , competitor analysis), requirements (e_s , user surveys), design (e_s , heuristic evaluation), implementation (e_s , style guide), test & measure (e_s , diagnostic evaluation), and post release (e_s , remote evaluation)	Usability.net [88]
Design stages	Concept design, detailed design, implementation, analysis	Kulyk et al. [46]
Data and method	Data collected (qualitative, quantitative), collection method (empirical, analyt- ical)	Barkhuus and Rode [5]
Data	Data collected (qualitative, quantitative, mixed-methods)	Creswell [17]
Evaluation scope	Work environment, system, components	Thomas and Cook [82]

Fall 2015

CS 7450

Evaluation Scenarios

27

- Understanding data analysis
 - Understanding environments and work practices (UWP)
 - Evaluating visual data analysis and reasoning (VDAR)
 - Evaluating communication through visualization (CTV)
 - Evaluating collaborative data analysis (CDA)

Evaluation Scenarios

- Understanding visualizations
 - Evaluating user performance (UP)
 - Evaluating user experience (UE)
 - Evaluating visualization algorithms (VA)

Fall 2015

CS 7450

29

Methods

Coded each paper with tags

TABLE 3 Original Coding Tags, the Number of Papers Classified, and the Final Scenario to Which They Were Assigned

Paper Tags	EuroVis	InfoVis	IVS	VAST	Total	Scenario
Process						
1. People's workflow, work practices	3	1	3	0	7	UWP
2. Data analysis	0	5	3	5	13	VDAR
3. Decision making	0	2	1	4	7	VDAR
Knowledge management	0	1	0	2	3	VDAR
Knowledge discovery	1	1	0	1	3	VDAR
6. Communication, learning, teaching, publishing	0	0	4	1	5	CTV
7. Casual information acquisition	0	4	0	0	4	CTV
8. Collaboration	0	3	2	4	9	CDA
Visualizati	on					
9. Visualization-analytical operation	0	12	1	0	13	UP
10. Perception and cognition	17	24	15	3	62	UP
Usability/effectiveness	25	84	31	18	158	UP&UE
12. Potential usage	7	1	5	9	22	UE
13. Adoption	0	1	3	1	5	UE
14. Algorithm performance	17	37	15	0	69	VA
15. Algorithm quality	1	10	12	5	28	VA
Not included in scenarios						
16. Proposed evaluation methodologies	0	3	0	2	5	-
17. Evaluation metric development	2	6	1	1	10	-

Methods

- For each category the authors describe
 - Goals and outputs
 - Evaluation questions
 - Methods and examples

Fall 2015

CS 7450

Example

- UWP Understanding Environments and Work Practices
 - Elicit formal requirements for design
 - Study people for which a tool is being designed and the context of use
 - Very few infovis papers on this topic

CS 7450

UWP 1

- Goals and Outputs
 - Goals: Understand the work, analysis, or info processing practices by a given group of people with or without software in use
 - Outputs: Design implications based on a more holistic understanding of current workflows and work practices, the conditions of the working environment, and potentially current tools in use

Fall 2015

CS 7450

33

UWP 2

Evaluation questions

- What is the context of use of visualizations?
- In which daily activities should the visualization tool be integrated?
- What types of analyses should the visualization tool support?
- What are the characteristics of the identified user group and work environments?
- What data is currently used and what tasks are performed on it?
- What klinds of visualizations are currently in use? How do they help to solve current tasks?
- What challenges and usage barriers can we see for a visualization tool?

UWP 3

- Methods and Examples
 - Field observation
 - Interviews
 - Laboratory observation
 - (with example projects cited)

Fall 2015

CS 7450

Examples

 Let's examine example studies utilizing different goals and styles

Which Technique is Best?

- Space-filling hierarchical views
- Compare Treemap and Sunburst with users performing typical file/directoryrelated tasks
- Evaluate task performance on both correctness and time

		Stasko et IJHCS	al '00
Fall 2015	CS 7450		37

E

Start

Fall 2015	CS 7450	39

Methodology

- 60 participants
- Participant only works with a small or large hierarchy in a session
- Training at start to learn tool
- Vary order across participants

SB A, TM B	
TM A, SB B	32 on small hierarchies
SB B, TM A	28 on large hierarchies
TM B, SB A	20 off large filerarchies

Tasks

- Identification of a directory based on size, specifically, the largest (Q3)
- Location (pointing out) of a file, given the entire path and name (Q4-7)
- Location of a file, given only the file name (Q8-9)
- Identification of the deepest subdirectory (Q10)
- Identification of a directory containing files of a particular type (Q11)
- Identification of a file based on type and size, specifically, the largest file of a particular type (Q12)
- Comparison of two files by size (Q13)
- Location of two duplicated directory structures (Q14)
- Comparison of two directories by size (Q15)
- Comparison of two directories by number of files contained (Q16)

Fall 2015

CS 7450

41

Hypothesis

Treemap will be better for comparing file sizes

– Uses more of the area

- Sunburst would be better for searching files and understanding the structure
 - More explicit depiction of structure
- Sunburst would be preferred overall

Small Hierarchy

Hierarchy A			Hierarchy B		
Tool	Phase	Correct	Tool	Phase	Correct
TM(n=8)	1	9.88 (3.23)	TM(n=8)	1	11.50 (2.14)
SB $(n = 8)$	1	12.88 (1.96)	SB(n=8)	1	10.38 (1.69)
TM(n = 8)	2	12.25 (1.75)	TM(n = 8)	2	10.75 (2.77)
SB(n=8)	2	12.63 (2.00)	SB(n=8)	2	11.50 (2.00)
TM (collapsed across phase)		11.06 (2.79)	TM (collapsed across phase)		11.13 (2.42)
SB (collapsed across phase)		12.75 (1.91)	SB (collapsed across phase)		10.94 (1.88)

Correct task completions (out of 16 possible)

Fall 2015

CS 7450

43

Large Hierarchy

Hierarchy A			Hierarchy B			
Tool	Phase	Correct	Tool	Phase	Correct	
TM(n=7)	1	8.71 (1.60)	TM(n=7)	1	8.29 (2.14)	
SB(n=7)	1	11.43 (1.27)	SB $(n = 7)$	1	11.14 (2.67)	
TM(n = 7)	2	11.57 (1.27)	TM(n = 7)	2	10.86 (1.57)	
SB $(n = 7)$	2	11.00 (2.16)	SB(n=7)	2	11.00 (2.00)	
TM (collapsed across phase)		10.14 (2.03)	TM (collapsed across phase)		9.57 (2.24)	
SB (collapsed across phase)		11.21 (1.72)	SB (collapsed across phase)		11.07 (2.27)	

Correct task completions (out of 16 possible)

Performance Results

- Ordering effect for Treemap on large hierarchies
 - Participants did better after seeing SB first
- Performance was relatively mixed, trends favored Sunburst, but not clear-cut

 Oodles of data!

Fall 2015

CS 7450

Subjective Preferences

- Subjective preference: SB (51), TM (9), unsure (1)
- People felt that TM was better for size tasks (not borne out by data)
- People felt that SB better for determining which directories inside others
 - Identified it as being better for structure

CS 7450

Strategies

- How a person searched for files etc. mattered
 - Jump out to total view, start looking
 - Go level by level

Fall 2015

CS 7450

Animation Helpful?

- Examine whether animated bubble charts (a la Rosling and GapMinder) are beneficial for analysis and presentation
- Run an experiment to evaluate the effects of animation

Robertson et al *TVCG* (InfoVis) '08

Fall 2015

CS 7450

47

Start

Experiment Design

- 3 (animation types) x 2 (data size: small & large) x 2 (presentation vs. analysis)
 - Presentation vs analysis between subjects
 - Others within subjects
- Animation has 10-second default time, but user could control time slider

Experiment Design

Data

- UN data about countries

Tasks

- 24 tasks, 1-3 requires answers per
 - Select 3 countries whose rate of energy consumption was faster than their rate of GDP per capita growth
 - Select 2 countries with significant decreases in energy consumption
 - Which continent had the least changes in GDP per capita

Fall 2015

Conditions

- Analysis straightforward, interactive
- Presentation
 - 6 participants at a time
 - Presenter described a trend relevant to task, but different
 - No interaction with system
 - In animation condition, participants saw last frame of animation (no interaction)

Results

Accuracy

Measured as percentage correct 65% overall (pretty tough)

Significant: SM better than animation Small data size more accurate than large

Fall 2015

CS 7450

53

Results Speed Presentation Animation factor than small multiples %

Animation faster than small multiples & traces 15.8 secs vs. 25.3 secs vs. 27.8 secs.

– Analysis

Animation slower than small multiples & traces 83.1 secs. vs. 45.69 secs. vs. 55.0 secs.

Results

* indicates significant differences (p<.05).				
	Animation	SM	Traces	
Q1. The visualization was helpful to me in answering the questions.	4.6 *Traces	4.2	4.1	
Q2. For the smaller dataset, I found the tasks easy using this visualization.	4.6 *SM	4.2	4.5	
Q3. For the larger dataset, I found the tasks easy using this visualization.	2.6	3.4 *Traces	2.3	
Q4. I enjoyed using this visualization.	4.3 *SM *Traces	3.7	3.5	
Q5. I found this visualization exciting.	4.3 *SM *Traces	3.1	3.0	
Q6. For the smaller dataset, I found the screen too cluttered.	1.8	1.5	2.0	
Q7. For the larger dataset, I found the screen too cluttered.	4.4	2.8 *Animation *Traces	4.7	

tin na fan anvan avantinna fan anab vizvalizatin

Table 4. Average ratings for a few general questions.

	Presentation	Analysis	Overall
G1. I found the Traces view enjoyable.	3.8	2.9	3.4
G3. I found the Small Multiples view enjoyable.	4.1	3.4	3.7
G5. I found the Animation view enjoyable.	4.6	5.0	4.8
G7. The animation went too fast for me.	3.2	2.8	3.0
G8. The animation went too slow for me.	1.6	1.3	1.4
G9. I lost track of some data points as they moved.	4.9	4.6	4.8

Subjective

Likert: 0-strongly diagree,	6-strongly	agree
-----------------------------	------------	-------

Fall 2015

CS 7450

55

Results

G13: Which visualization did you PREFER for the small dataset? G14: For the large?

Presentation, small: Animation (9) > SM (6) > Traces (3)Presentation, large: Traces (8) > SM (6) > Animation (4)Analysis, small:Animation (7) > SM (6) > Traces (5)Analysis, large:Animation (8) > SM (6) > Traces (4)

Discussion

- People rated animation more fun, but small multiples was more effective
- As data grows, accuracy becomes an issue
 - Traces & animation get cluttered
 - Small multiple gets tiny
- Animation:
 - "fun", "exciting", "emotionally touching"

CS 7450

- Confusing, "the dots flew everywhere"

```
Fall 2015
```

Useful Junk?

- Tufte claimed that graphs loaded with chartjunk are no good
- Is that really so?
- How could you test this?

57

Start

Comparing

Methodology

- Two versions of each chart
- Participant sees one
 - Asked immediate interpretation accuracy questions
 - Asked similar questions again 5 minutes or 2-3 weeks later

Results

- No significant difference in immediate interpretation accuracy, or after 5 minute gap
- After 2-3 week gap, recall of chart topic and details was significantly better for chartjunk graphs
- Participants found the chartjunk graphs more attractive, enjoyed them more, and found them easiest and fastest to remember

Fall 2015

CS 7450

61

Caveats

- Small datasets
- "Normal" charts were really plain
- No interaction
- How about other added interpretations from the flowery visuals?
- Be careful reading too much into this

More Complex Task Eval

- Research questions
 - How do people use systems?
 - What characteristics matter?
 - What should we measure/observe?
- Exploring methods for utility evaluation

		Kang et al	
2015	CS 7450	VAST '08 & <i>TVCG</i> '11	63

System Examined - Jigsaw

Fall 2015

Fall

CS 7450

Start

Study Design

- Task and dataset
 - 50 simulated intelligence case reports
 - Each a few sentences long
 - 23 were relevant to plot
 - Identify the threat & describe it in 90 minutes

Source: doc017 Date: Oct 22, 2002

Abu H., who was released from custody after the September 11 incidents and whose fingerprints were found in the U-Haul truck rented by Arnold C. [see doc033] holds an Egyptian passport. He is now known to have spent six months in Afghanistan in the summer of 1999.

Fall 2015

CS 7450

65

Study Design - Settings

Performance Measures

- Task sheets (like VAST Contest)
 - Three components (relevant people, events, locations)
 - +1 for correct items, -1 for a misidentified items
- Summary narrative

 Subjective grading from 1 (low) to 7 (high)
- Two external raters
- Normalized, each part equal, mapped to 100point scale

Results

		Paper				Des	ktop			En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Final Score	22.87	65.00	24.26	87.08	62.08	67.13	42.13	29.41	52.23	15.00	29.26	81.19	95.05	58.07	75.20	90.00
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Average Score		49	.80			50.	.19			44	.42			79	.59	
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23
# of Queries					19	18	48	8	23	61	59	91	44	4	26	8
First Query					40:49	19:55	2:47	12:41	1:31	0:29	0:59	3:12	0:18	5:35	25:37	4:18
Amount of Notes	Many	None	Many	Some	Many	Some	Few	Some	Some	None	None	Few	Some	Few	Few	Few
First Note Taking	0:07		0:05	0:16	1:53	19:57	2:47	8:20	2:37			3:14	0:48	0:32	5:15	78:45
First Task Sheet	43:20	32:53	70:13	3:25	61:35	20:26	7:33	64:11	28:09	0:52	2:55	7:20	48:26	41:48	43:00	5:33

Fall 2015

CS 7450

69

Results

						Des	ktop		Entity				Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Final Score	22.87	65.00	24.26	87.08	62.08	67.13	42.13	29.41	52.23	15.00	29.26	81.19	95.05	58.07	75.20	90.00
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Average Score		49	.80			50	.19			44	.42			79	.59	
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23
# of Queries					19	18	48	8	23	61	59	91	44	4	26	8
First Query					40:49	19:55	2:47	12:41	1:31	0:29	0:59	3:12	0:18	5:35	25:37	4:18
Amount of Notes	Many	None	Many	Some	Many	Some	Few	Some	Some	None	None	Few	Some	Few	Few	Few
First Note Taking	0:07		0:05	0:16	1:53	19:57	2:47	8:20	2:37			3:14	0:48	0:32	5:15	78:45
First Task Sheet	43:20	32:53	70:13	3:25	61:35	20:26	7:33	64:11	28:09	0:52	2:55	7:20	48:26	41:48	43:00	5:33

Investigative Strategies

- 1. Overview, filter and detail (OFD)
- 2. Build from detail (BFD)
- 3. Hit the keyword (HTK)
- 4. Find a clue, follow the trail (FCFT)

P16: "I like this people-first approach. Once I identify key people, then things that are potentially important come up, too. I'm an impatient person and don't want to read all documents chronologically."

Results by Strategy

		Pa	per			Des	ktop			En	tity			Jig	saw	
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	НТК	HTK	FCFT	FCFT	НТК	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2015

CS 7450

73

Results by Strategy

		Pa	Paper			Desktop				En	tity		Jigsaw			
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	НТК	НТК	FCFT	FCFT	HTK	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Results by Strategy

		Ра	per			Des	ktop			En	tity			Jig	saw	
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	нтк	нтк	FCFT	FCFT	нтк	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2015

CS 7450

75

Results by Strategy

		Paper			Desktop			Entity				Jigsaw				
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	НТК	НТК	FCFT	FCFT	НТК	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Results by Strategy

77

		Ра	per			Des	ktop			En	tity			Jigs	saw	
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
Strategy Used	OFD	OFD	BFD	OFD	OFD	OFD	FCFT	BFD	BFD	НТК	HTK	FCFT	FCFT	НТК	OFD	FCFT
Performance	Fair	Very good	Fair	Excel- lent	Very good	Very good	Good	Fair	Good	Poor	Fair	Excel- lent	Excel- lent	Good	Very good	Excel- lent
Documents Viewed	50	50	50	50	50	50	50	50	49	31	45	50	31	50	46	23

Fall 2015

CS 7450

Tool Design Implications

- Support finding starting points/clues
- Guide the analyst to follow the right trail
- Support different strategies of SM process
- Support smooth transition between SM stages
- Provide a workspace
- Allow flexibility in organizing
- Support to find next steps when dead-end
- Facilitate further exploration

Jigsaw's Influence

- Supporting different strategies
- Showing connections between entities
- Helping users find the right clue
- Helping users focus on essential information
- Reviewing hypotheses
- Increasing motivation

Fall 2015

Evaluation Recommendations

CS 7450

- Compare system usage to traditional methods
- Collect qualitative data, support with quantitative data
- Consider questions to be answered
- Possible metrics
 - Number of documents viewed
 - When note-taking initiated
 - The quantity of representations created
 - Amount of time and effort in organizing
 - Time spent in reading/processing relevant information

How to Evaluate Many Eyes?

- Two main evaluation papers written about system
- Studied use of system, visualizations being created, discussions about system, etc.

Fall 2015	CS 7450

Paper 1

- Case study of early use
- System uses
 - Visual analytics
 - Sociability
 - Generating personal and collective mirrors
 - Sending a message

Viégas et al HICSS `08

CS 7450

Start

8

Use Characteristics

Data Topic/Area	Percentage	Comment Type	Percentage
Society	14.0	Observation	46.3
Economics	12.7	Question	15.8
Obscured/Anon	12.4	Affirmation	13.7
Art & culture	10.8	Hypothesis	11.6
Web & new modia	10.3	Socializing	11.6
web & new media	10.5	System design	11.6
Science	10.0	Data integrity	9.5
Test data	9.5	Testing	4.2
Politics	7.4	Tips	4.2
Technology	6.6	To do	4.2

Fall 2015

CS 7450

83

Paper 2

- Interview-based study
- Individual phone interviews with 20 users

CS 7450

- Lots of quotes in paper
- Bloggers vs. regular users
- Also includes stats from usage logs
 - 3069 users
 - 1472 users who uploaded data
 - 5347 datasets
 - 972 users who created visualizations
 - 3449 visualizations
 - 222 users who commented
 - 1268 comments

Fall 2015

Danis et al CHI '08

Findings

- User motivations
 - Analyzing data
 - Broadening the audience, sharing data
- Lots of collaborative discussion
 - Much off the ManyEyes site
- Concerns about data and other eyes

Fall 2015

CS 7450

Specific to Infovis?

 How about evaluation techniques specifically focused on infovis?

CS 7450

Saraiya, North, Duca *TVCG* '05

Insight

- Insight: An individual observation about the data by the participant, a unit of discovery
- Characteristics
 - Observation
 - Time
 - Domain Value
 - Hypotheses
 - Directed vs Unexpected
 - Category

Fall 2015

CS 7450

Insight Characteristics

- Complex
 - Involving large amounts of data in a synergistic way
- Deep
 - Builds over time, generates further questions
- Qualitative
 - Can be uncertain and subjective
- Unexpected
 - Often unpredictable, serendipitous
- Relevant
 - Deeply embedded in data domain, connecting to existing domain knowledge

North CG&A `06

Fall 2015

CS 7450

Experiment Design

• Data: Timeseries, Virus, Lupus

Tool	Visual Representations	Interactions
Cluster/ Treeview	Heat-map, Clustered heat-map	O+D
Time- Searcher	Parallel coordinates, line graph	Brushing, O+D, DQ
HCE	Cluster dendrogram, parallel coordi- nates, heat-map, scatterplot, histogram	Brushing, Zooming, O+D, DQ
Spotfire® 7.2 Functional Genomics	Parallel coordinates, heat-map, scat- terplots (2D/3D), histogram, bar/pie chart, tree view, spreadsheet view, Clustered parallel coordinates	Brushing, Zooming, O+D, DQ
GeneSpring ® 5.0	Parallel coordinate, heat-map, scatter- plots (2D/3D), histogram, bar chart, block view, physical position view, array layout view, pathway view, spreadsheet view, compare gene to gene, Clusterested parallel coordinates	Brushing, Zooming

Fall 2015

CS 7450

Results

Discussion

- Methodology difficulties
 - Labor intensive
 - Requires domain expert
 - Requires motivated subjects
 - Training and trial time
- Weakness: Short session time (2 hours) when long-term use more desirable

- Insight with visualization
 - Is not spontaneous "aha!" moments (eg, in cognitive science)
 - Is knowledge-building and modelconfirmation
 - Like a substance that people acquire with the aid of systems

		Chang et al CG&A `09
Fall 2015	CS 7450	95

Rethinking Methodology

 Do controlled lab experiments really tell us very much in information visualization?

Start

MILC Technique

- **M**ulti-dimensional
 - observations, interviews, surveys, logging
- In-depth
 - intense engagement of researchers with domain experts so as to almost become a partner
- Long-term
 - longitudinal use leading to strategy changes
- **C**ase Study
 - detailed reporting about small number of people working on their own problems in their own domain Shneiderman & Plaisant

Fall 2015

CS 7450

97

BELIV '06

Influences

- Ethnography
 - Preparation
 - Field study
 - Analysis
 - Reporting

Guidelines

- Specify focused research questions & goals
- Identify 3-5 users
- Document current method/tool
- Determine what would constitute professional success for users
- Establish schedule of observation & interviews
- Instrument tool to record usage data

- Provide attractive log book for comments, problems, and insights
- Provide training
- Conduct visits & interviews
- Encourage users to continue using best tool for task
- Modify tool as needed
- Document successes and failures

Fall 2015

SocialAction Evaluation inspired by MILC ideas goals Interview (1 hour) Training (2 hours) Early use (2-4 weeks) Mature use (2-4 weeks) Outcome (1 hour)

CS 7450

Perer & Shneiderman CHI '08

Fall 2015

CS 7450

Methodology

- Four case studies
 - Senatorial voting patterns
 - Medical research knowledge discovery
 - Hospital trustee networks
 - Group dynamics in terrorist networks
- Named names
 - I like it!
- Tell what they did with system

Fall 2015

CS 7450

My Reflections

- Nice paper
- Stark contrast to comparative, controlled experiments
- We likely need more of this in InfoVis

CS 7450

1

- Many small, controlled experiment user studies don't adequately assess true utility of a visualization
- Alternative: Detailed usage scenarios with identification of system's value along four dimensions

		Stasko BELIV `14
5	CS 7450	103

Value Definition

$$V_{alue} = T + I + E + C$$

Fall 20:

Ability to minimize the total **time** needed to answer a wide variety of questions about the data

(Without formal queries, Interaction really helps)

Fall 2015

CS 7450

105

(Would be very difficult with only the data)

 $V_{alue} = T + I + E + C$

Ability to convey an overall essence or take-away sense of the data

(The big picture: Whole is greater than the sum of the parts)

Fall 2015

CS 7450

107

Value Definition $V_{alue} = T + I + E + C$ Ability to generate **confidence** and trust

about the data, its domain and context

(Beneficial data analysis process side effects)

Recommendation

- Provide one or more case studies that illustrate how a system/technique contributes along each of these four dimensions
- Explain how the system will provide value and utility in data analysis situations

Fall 2015

CS 7450

109

Summary

- Why do evaluation of InfoVis systems?
 - We need to be sure that new techniques are really better than old ones
 - We need to know the strengths and weaknesses of each tool; know when to use which tool

Challenges

- There are no standard benchmark tests or methodologies to help guide researchers
 - Moreover, there's simply no one correct way to evaluate
- Defining the tasks is crucial
 - Would be nice to have a good task taxonomy
 - Data sets used might influence results
- What about individual differences?
 - Can you measure abilities (cognitive, visual, etc.) of participants?

Fall 2015

CS 7450

111

Challenges

- Insight is important
 - Great idea, but difficult to measure
- Utility is a real key
 - Usability matters, but some powerful systems may be difficult to learn and use
- Exploration
 - InfoVis most useful in exploratory scenarios when you don't know what task or goal is So how to measure that?!

Exam Preview

- Course concepts
 - Class, readings, assignments
- Short answer questions
 - Define x
 - Explain y
 - Critique a vis
 - Design a vis

Fall 2015

CS 7450

113

Upcoming

Review & recap

Reading
 Few chapter 13
 Heer et al '10