Graphs and Networks 1

CS 7450 - Information Visualization November 9, 2015 John Stasko

Connections

- Connections throughout our lives and the world
 - Circle of friends
 - Delta's flight plans

- ...

Model connected set as a Graph

What is a Graph?

- Vertices (nodes) connected by
- Edges (links)

Fall 2015 CS 7450

Adjacency list

Graph Terminology

3

- Graphs can have cycles
- Graph edges can be directed or undirected
- The degree of a vertex is the number of edges connected to it
 - In-degree and out-degree for directed graphs
- Graph edges can have values (weights) on them (nominal, ordinal or quantitative)

Trees are Different

- Subcase of general graph
- No cycles
- Typically directed edges
- Special designated root vertex

Fall 2015 CS 7450

Graph Uses

- In information visualization, any number of data sets can be modeled as a graph
 - US telephone system
 - World Wide Web
 - Distribution network for on-line retailer
 - Call graph of a large software system
 - Semantic map in an AI algorithm
 - Set of connected friends
- Graph/network visualization is one of the oldest and most studied areas of InfoVis

Graph Visualization Challenges

- Graph layout and positioning
 - Make a concrete rendering of abstract graph
- Navigation/Interaction
 - How to support user changing focus and moving around the graph
- Scale
 - Above two issues not too bad for small graphs, but large ones are much tougher

Fall 2015 CS 7450 7

Layout Examples

- Homework assignment
- Let's judge!

Results

- What led to particular layouts being liked more?
- Discuss

Fall 2015 CS 7450

Graph Drawing

Entire research community's focus

Vertex Issues

- Shape
- Color
- Size
- Location
- Label

Fall 2015 CS 7450 11

Edge Issues

- Color
- Size
- Label
- Form
 - curved, planar, upward/downward, ...

Fall 2015 CS 7450 12

Aesthetic Considerations

- Develop a set of metrics to quantitatively rate the "goodness" of a graph layout
- What metrics would you use?

Fall 2015 CS 7450 13

Aesthetic Considerations

- Crossings -- minimize towards planar
- Total Edge Length -- minimize towards proper scale
- Area -- minimize towards efficiency
- Maximum Edge Length -- minimize longest edge
- Uniform Edge Lengths -- minimize variances
- Total Bends -- minimize orthogonal towards straight-line

Which Matters?

- Various studies examined which of the aesthetic factors matter most and/or what kinds of layout/vis techniques look best
 - Purchase, Graph Drawing '97
 - Ware et al, *Info Vis* 1(2)
 - Ghoniem et al, *Info Vis* 4(2)
 - van Ham & Rogowitz, TVCG '08

- ...

 Results mixed: Edge crossings do seem important

Fall 2015 CS 7450 15

Shneiderman's NetViz Nirvana

- 1) Every node is visible
- 2) For every node you can count its degree
- 3) For every link you can follow it from source to destination
- 4) Clusters and outliers are identifiable

Classic Problem

 With enough vertices and enough edges, you get...

A hairball! (ball-of-string)

http://visone.info/wiki/images/b/b7/Caltech36-hairball.png

Fall 2015 CS 7450 17

But What about User Tasks?

- So what do people want to do with or learn from network visualizations?
 - Recurring theme of this class: Too often this is neglected

Graph Vis Task Taxonomy

- Start with Amar et al '05 low-level tasks (retrieve value, find extreme, sort, etc.)
- Then add four types of other tasks (next pages)

Lee et al BELIV '06 15

Graph Vis Task Taxonomy

- 1. Topology-based tasks
 - Adjacency

Find the set of nodes adjacent to a node

Accessibility

Find the set of nodes accessible to a node

- Common connection
 Given nodes, find the set of nodes connected to all
- Connectivity
 Find shortest path
 Identify clusters
 Identify connected components

Graph Vis Task Taxonomy

- 2. Attribute-based tasks
 - On the nodes
 Find the nodes having a specific attribute value
 - On the edges
 Given a node, find the nodes connected only by certain kinds of edges

Fall 2015 CS 7450 21

Graph Vis Task Taxonomy

- 3. Browsing tasks
 - Follow pathFollow a given path
 - Revisit
 Return to a previously visited node
- 4. Overview task
 - Compound exploratory task
 Estimate size of a network
 Find patterns

Layout Heuristics

- Layout algorithms can be
 - polyline edges
 - planar
 - No edge crossings
 - orthogonal horizontal and vertical lines/polylines
 - grid-based
 vertices, crossings, edge bends have integer coords
 - curved lines
 - hierarchies
 - circular
 - ...

Fall 2015 CS 7450 23

Types of Layout Algorithms

12

Common Layout Techniques

- Hierarchical
- Force-directed
- Circular
- Geographic-based
- Clustered
- Attribute-based
- Matrix

We will discuss many of these further in the slides to come

Fall 2015 CS 7450 25

Scale Challenge

- May run out of space for vertices and edges (turns into "ball of string")
- Can really slow down algorithm
- Sometimes use clustering to help
 - Extract highly connected sets of vertices
 - Collapse some vertices together

Navigation/Interaction Challenge

- How do we allow a user to query, visit, or move around a graph?
- Changing focus may entail a different rendering

Fall 2015 CS 7450 27

Graph Drawing Uses

- Many domains and data sets can benefit significantly from nice graph drawings
- Let's look at some examples...

Human Diseases

Music Artists

older

http://www.liveplasma.com/

newer

Fall 2015 CS 7450 31

http://mibi.deviantart.com/art/Death-and-Taxes-2007-39894058

US Budget

Social Analysis

- Facilitate understanding of complex socioeconomic patterns
- Social Science visualization gallery (Lothar Krempel):
 - http://www.mpi-fg-koeln.mpg.de/~lk/netvis.html
- Next slides: Krempel & Plumper's study of World Trade between OECD countries, 1981 and 1992

Fall 2015 CS 7450 33

17

Social Network Visualization

- Social Network Analysis
 - http://www.insna.org

Hot topic again Why? Terrorists Facebook

People connections

Steroids in MLB

Geo Applications

 Many problems and data sets have some geographic correspondence

Follow the Money

Where does a dollar bill go?

http://www.nsf.gov/news/special_reports/scivis/follow_money.jsp

3 Subway Diagrams

- Geographic landmarks largely suppressed on maps, except water (rivers in London & Paris) and asphalt (highways in Atlanta)
 - Rather fitting, no?
- These are more graphs than maps!

Fall 2015 CS 7450 45

But Is It InfoVis?

- I generally don't consider a pure graph layout (drawing) algorithm to be InfoVis
 - Nothing wrong with that, just an issue of focus
- For InfoVis, I like to see some kind of interaction or a system or an application...
 - Still, understanding the layout algorithms is very important for infovis
 - Let's look at a few...

Circular Layout

Ultra-simple May not look so great

Space vertices out around circle Draw lines (edges) to connect vertices

Fall 2015

http://www.nytimes.com/interactive/2007/12/15/us/politics/DEBATE.html?_r=0

Arc Diagram Layout

Wattenberg InfoVis '02

http://www.visualcomplexity.com/vc/index.cfm?method=Arc%20Diagrams

Fall 2015 CS 7450 49

Tree Layout

- Run a breadth-first search from a vertex
 This imposes a spanning tree on the graph
- Draw the spanning tree
- Simple and fast, but obviously doesn't represent the whole graph

Fall 2015 CS 7450 51

Hierarchical Layout

Often called Sugiyama layout

Try to impose hierarchy on graph Reverse edges if needed to remove cycles Introduce dummy nodes Put nodes into layers or levels Order I->r to minimize crossings

Figure: A graph showing a layered layout, created with the Sugiyama heuristic, with the layers shown. The bends in the edges correspond to dummy nodes.

Force-directed Layout

- Example of constraint-based layout technique
- Impose constraints (objectives) on layout
 - Shorten edges
 - Minimize crossings

— ...

- Define through equations
- Create optimization algorithm that attempts to best satisfy those equations

Fall 2015 CS 7450 53

Force-directed Layout

- Spring model (common)
 - Edges Springs (gravity attraction)
 - Vertices Charged particles (repulsion)
- Equations for forces
- Iteratively recalculate to update positions of vertices
- Seeking local minimum of energy
 - Sum of forces on each node is zero

Force-directed Example

Figure 2: A graph drawing through a number of iterations of a force directed algorithm.

http://www.cs.usyd.edu.au/~aquigley/3dfade/

Fall 2015 CS 7450 5

http://vis.stanford.edu/protovis/ex/force.html

In Action

Images from JUNG

Variant

- Spring layout
 - Simple force-directed spring embedder

ScringLayout V One component graph

Transforming V

Fall 2015 CS 7450 5

Variant

Images from JUNG

- Fruchterman-Reingold Algorithm
 - Add global temperature
 - If hot, nodes move farther each step
 - If cool, smaller movements
 - Generally cools over time

Variant

- Kamada-Kawai algorithm
 - Examines derivatives of force equations
 - Brought to zero for minimum energy

Fall 2015 CS 7450 59

Other Applications

- Email
- How would you visualize all email traffic in CoC between pairs of people?
- Solutions???

Possible Solutions

- Put everyone on circle, lines between
 - Color or thicken line to indicate magnitude
- Use spring/tension model
 - People who send a lot to each other are drawn close together
 - Shows clusters of communications

Fall 2015 CS 7450 61

http://www.visualcomplexity.com

Mucho Examples

Graph Drawing Support

- Libraries
 - JUNG (Java Universal Network/Graph Framework)
 - Graphviz (formerly dot?)
- Systems
 - Gephi
 - TouchGraph

Fall 2015 CS 7450 63

http://jung.sourceforge.net/

JUNG

32

Graphviz

Fall 2015 CS 7450 65

http://gephi.org

Gephi

TouchGraph

Graph Drawing Resources

- Book
 - diBattista, Eades, Tamassia, and Tollis, Graph Drawing: Algorithms for the Visualization of Graphs, Prentice Hall, 1999

- Tutorial (talk slides)
 - http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf
- Web links
 - http://graphdrawing.org

Upcoming

- Graphs and Networks 2
 - ReadingPerer & Shneiderman '06
- Visual Analytics
 - ReadingsKeim et al '08Stasko, Görg & Liu '08