Multivariate Visual Representations 1

CS 7450 - Information Visualization Aug. 31, 2015 John Stasko

Agenda

- General representation techniques for multivariate (>3) variables per data case
 - But not lots of variables yet...

Quick Quiz

- What type of dataset has three variables per case?
- What is a scatterplot matrix?

Fall 2015 CS 7450 3

How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data Focus Today

Fall 2015 CS 7450

Earlier

- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
 - Bar graph, line graph, pie chart, scatterplot, box plot, trellis display, crosstab, radar graph, heatmap
- Hinted at how to go above 3 dimensions

Fall 2015 CS 7450

Hypervariate Data

5

- How about 4 to 20 or so variables (for instance)?
 - Lower-dimensional hypervariate data
 - Many data sets fall into this category

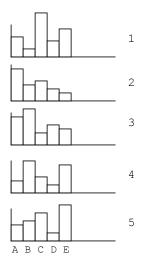
More Dimensions

- Fundamentally, we have 2 geometric (position) display dimensions
- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

Fall 2015 CS 7450 7

Wait a Second

- A spreadsheet already does that
 - Each variable is positioned into a column
 - Data cases in rows
 - This is a projection (mapping)
- What about some other techniques?
 - Already seen a couple

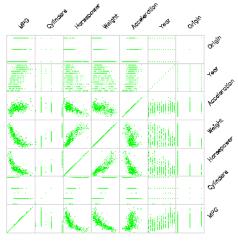

Multiple Views

Revisit

Give each variable its own display

	Α	В	С	D	Ε
1	4	1	8	3 2 4 1	5
2	6	3	4	2	1
3	5	7	2	4	3
4	2	6	3	1	5
5	3	4	5	1	7

Fall 2015 CS 7450

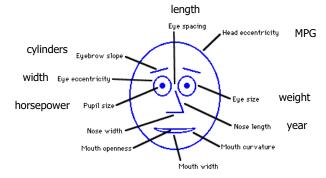

9

Scatterplot Matrix

Revisit

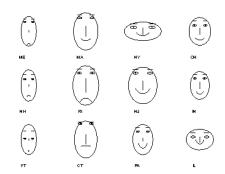
Represent each possible pair of variables in their own 2-D scatterplot

Key Principle (today)


- Handle all data sets generically
 - Examine techniques not specific to some data or domain
 - Technique can generally handle all data sets

Fall 2015 CS 7450 11

Chernoff Faces



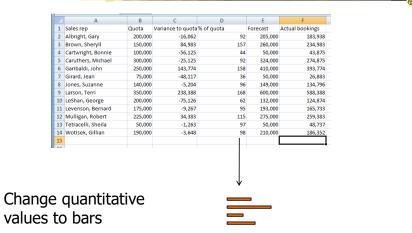
Encode different variables' values in characteristics of human face

Examples

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff/ http://hesketh.com/schampeo/projects/Faces/chernoff.html

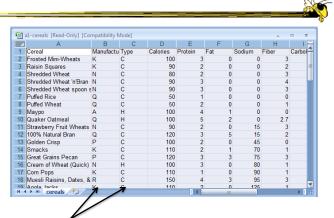
Fall 2015 CS 7450 13

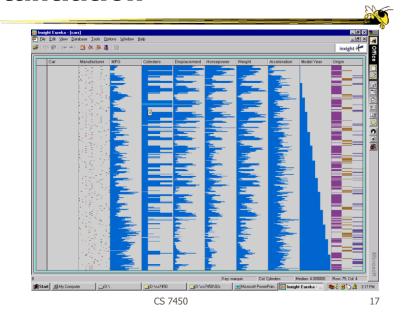
Table Lens



- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

Rao & Card CHI '94

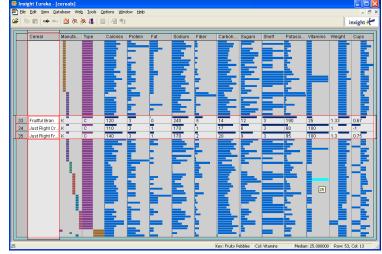

Visual Mapping


Fall 2015 CS 7450 15

Tricky Part

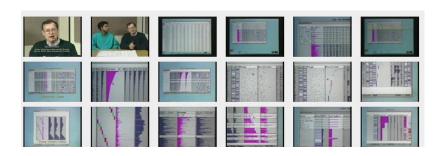
What do you do for nominal data?

Instantiation



Details

in the state of th

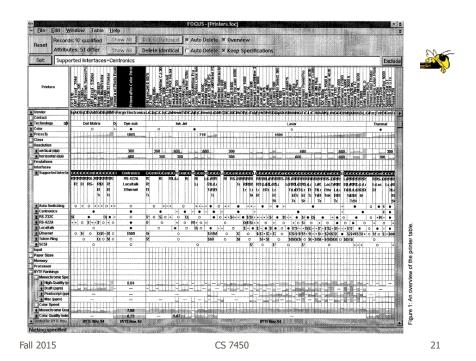

Focus on item(s) while showing the context

Fall 2015

See It

http://www.open-video.org/details.php?videoid=8304

Video

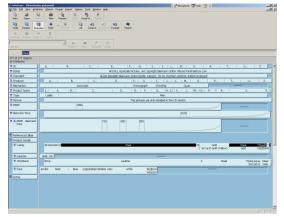

Fall 2015 CS 7450 19

FOCUS

- Feature-Oriented Catalog User Interface
- Leverages spreadsheet metaphor again
- Items in columns, attributes in rows
- Uses bars and other representations for attribute values

Spenke, Beilken, & Berlage UIST '96

Characteristics



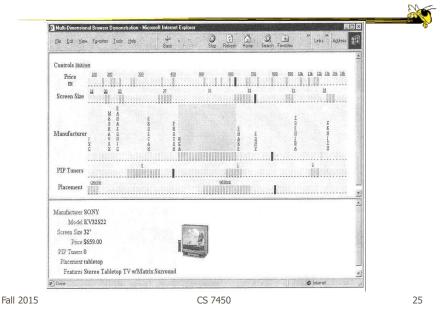
- Can sort on any attribute (row)
- Focus on an attribute value (show only cases having that value) by doubleclicking on it
- Can type in queries on different attributes to limit what is presented too

Manifestation

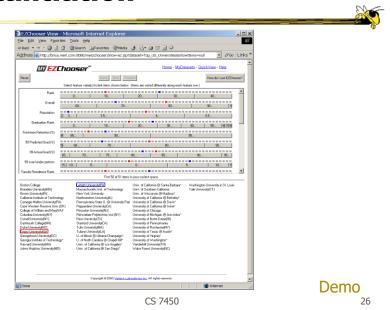
InfoZoom

Commercial product to be demo'ed coming up

Fall 2015 CS 7450 23


MultiNav

- Each different attribute is placed in a different row
- Sort the values of each row
 - Thus, a particular item is not just in one column
- Want to support browsing


Lanning et al AVI '00

Interface

Instantiation

Fall 2015

13

Alternate UI

- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

Fall 2015 CS 7450 27

Attributes as Sliding Rods

Limitations

- Number of cases (horizontal space)
- Nominal & textual attributes don't work quite as well

Fall 2015 CS 7450 29

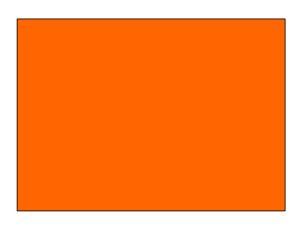

An Application

- What if you cared about ranking items?
 - Think of the attributes per item as contributing to some score or value for it
- Apply the representations we've seen earlier

LineUp

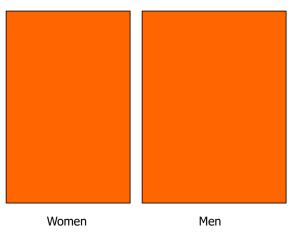
Video

Fall 2015 CS 7450 7VCG (InfoVis) `13

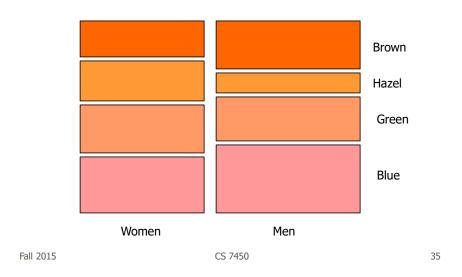

Categorical data?

- How about multivariate categorical data?
- Students
 - Gender: Female, male
 - Eye color: Brown, blue, green, hazel
 - Hair color: Black, red, brown, blonde, gray
 - Home country: USA, China, Italy, India, ...

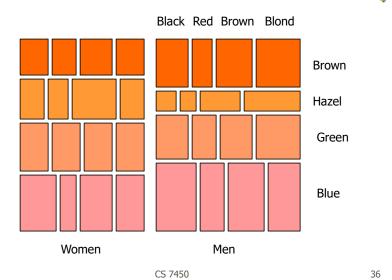
Mosaic Plot



Fall 2015 CS 7450 33


Mosaic Plot

Mosaic Plot



Mosaic Plot

Fall 2015

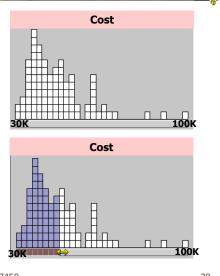
Attribute Explorer

 General hypervariate data representation combined with flexible interaction

Spence & Tweedie Inter w Computers '98

Fall 2015 CS 7450 3

Characteristics

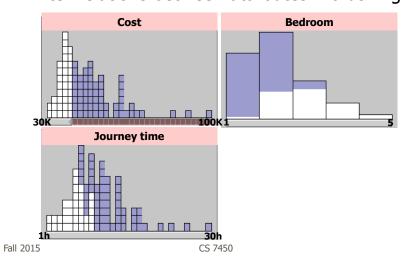


- Multiple histogram views, one per attribute (like trellis)
- Each data case represented by a square
- Square is positioned relative to that case's value on that attribute
- Selecting case in one view lights it up in others
- Query sliders for narrowing
- Use shading to indicate level of query match (darkest for full match)

Features

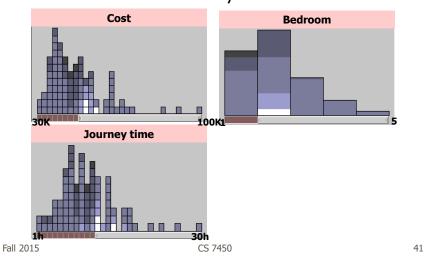
- Attribute histogram
- All objects on all attribute scales

 Interaction with attributes limits


Fall 2015 CS 7450 39

Features

40


• Inter-relations between attributes – brushing

Features

Color-encoded sensitivity

Attribute Explorer

Video

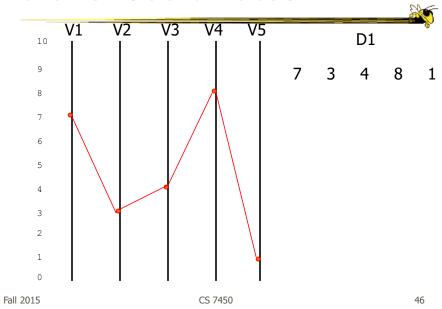
http://www.open-video.org/details.php?videoid=8162

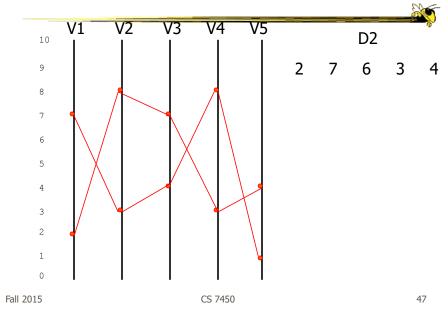
Summary

- Summary
 - Attribute histogram
 - Attribute relationship
 - Sensitivity information
 - Especially useful in "zero-hits" situations or when you are not familiar with the data at all
- Limitations
 - Limits on the number of attributes

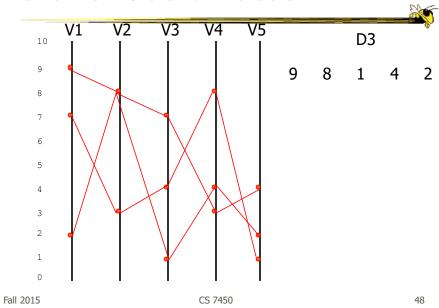
Fall 2015 CS 7450 43

Parallel Coordinates

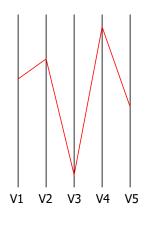

- What are they?
 - Explain...



	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2


Fall 2015 CS 7450 45

Parallel Coordinates



Parallel Coordinates

Encode variables along a horizontal row

Vertical line specifies different values that variable can take

Data point represented as a polyline

Fall 2015

CS 7450

49

Issue

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

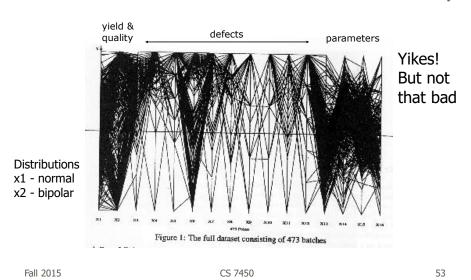
Application

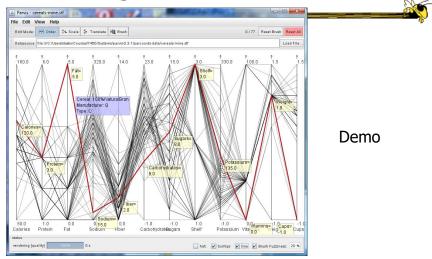
- System that uses parallel coordinates for information analysis and discovery
- Interactive tool
 - Can focus on certain data items
 - Color

Taken from:

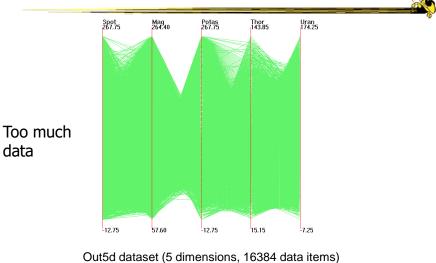
"Multidimensional Detective" A. Inselberg, InfoVis '97

Fall 2015 CS 7450 51


The Problem

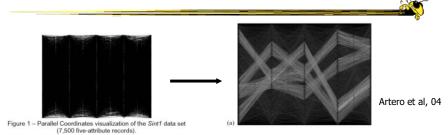

- VLSI chip manufacture
- Want high quality chips (high speed) and a high yield batch (% of useful chips)
- Able to track defects
- Hypothesis: No defects gives desired chip types
- 473 batches of data

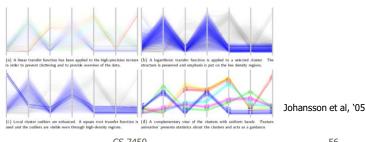
Parallel Coordinate Display



ParVis System

http://www.mediavirus.org/parvis/

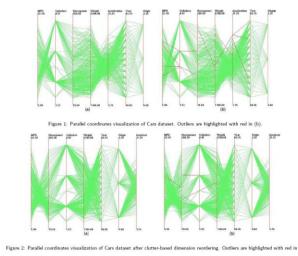

Challenges



(courtesy of J. Yang) Fall 2015 CS 7450

Reducing Density

Jerding and Stasko, '95, '98 Wegman & Luo, '96



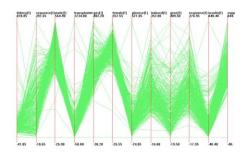
Fall 2015 CS 7450 56

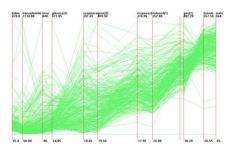
Dimensional Reordering

Can you reduce clutter and highlight other interesting features in data by changing order of dimensions?

Peng et al InfoVis '04

Fall 2015


CS 7450


57

Dimensional Reordering

Which dimensions are most like each other?

Same dimensions ordered according to similarity

Yang et al InfoVis '03

Fall 2015

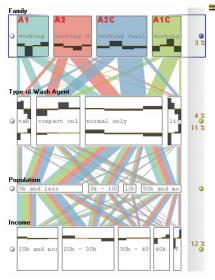
CS 7450

58

Different Kinds of Data

- How about categorical data?
 - Can parallel coordinates handle that well?

Fall 2015 CS 7450 59

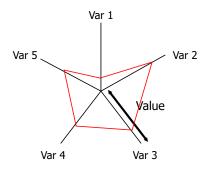

Parallel Sets

TVCG'05

- Visualization method adopting parallel coordinates layout but uses frequencybased representation
- Visual metaphor
 - Layout similar to parallel coordinates
 - Continuous axes replaced with boxes
- Interaction
 - User-driven: User can create new classificationsKosara, Bendix, & Hauser

Representation

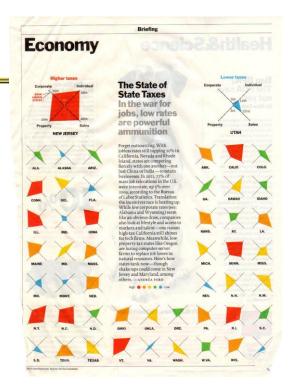
Color used for different categories


Those values flow into the other variables

Fall 2015 CS 7450

Star Plots

61


Space out the n variables at equal angles around a circle

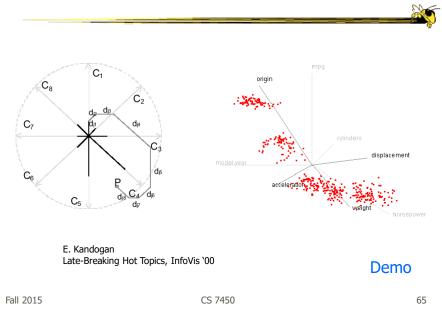
Each "spoke" encodes a variable's value

Alternative Rep.

Data point is now a "shape"

Example

Time April 16, 2012


Fall 2015

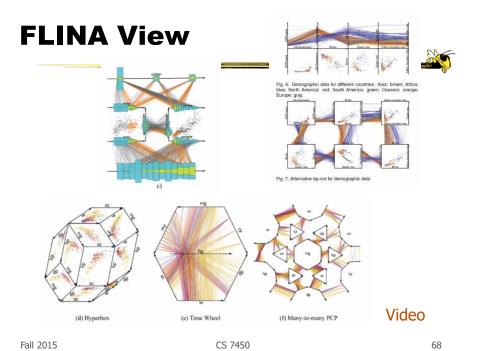
Star Coordinates

- Same ideas as star plot
- Rather than represent point as polyline, just accumulate values along a vector parallel to particular axis
- Data case then becomes a point

Star Coordinates

Star Coordinates

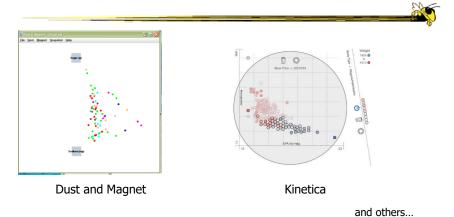
- Data cases with similar values will lead to clusters of points
- (What's the problem though?)
- Multi-dimensional scaling or projection down to 2D


Generalizing the Principles

- General & flexible framework for axisbased visualizations
 - Scatterplots, par coords, etc.
- User can position, orient, and stretch axes
- Axes can be linked

Claessen & van Wijk TVCG (InfoVis) '11

Fall 2015 CS 7450 67


34

- Technique
 - Strengths?
 - Weaknesses?

Fall 2015 CS 7450 69

More to Come

On Interaction day

Design Challenge

Project

- Teams & Topics due 14th
 - Bring 3 copies
- Next time
 - Topic ideas
 - Help with team formation
 - On t-square wiki

Upcoming

- Multivariate Visual Representations 2
 - Reading:Keim et al, '02
- Labor Day holiday
- Visualization Programming Tutorial
 - ReadingMurray online book