Visual Perception

CS 7450 - Information Visualization
November 18, 2015
John Stasko

Agenda

- Visual perception
- Pre-attentive processing

Color

- Etc.

Semiotics

- The study of symbols and how they convey meaning
- Classic book:
J. Bertin, 1983, The Semiology of Graphics

Related Disciplines

- Psychophysics

Applying methods of physics to measuring human perceptual systems

How fast must light flicker until we perceive it as constant?
What change in brightness can we perceive?

- Cognitive psychology

Understanding how people think, here, how it relates to perception

Perceptual Processing

- Seek to better understand visual perception and visual information processing

Multiple theories or models exist

- Need to understand physiology and cognitive psychology

One (simple) Model

- Two stage process
- Parallel extraction of low-level properties of scene
Sequential goal-directed processing

Stage 2
Serial processing of
detection of detection of shape, spatial attributes
Stage 1
Early, parallel tos
object identification (using memory) and spatial layout, action

元

Stage 1 - Low-level, Parallel

- Neurons in eye \& brain responsible for different kinds of information

Orientation, color, texture, movement, etc.

- Arrays of neurons work in parallel
- Occurs "automatically"
- Rapid
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called "pre-attentive" processing

Stage 2 - Sequential, Goal-Directed

- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion \& action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements

Stage 2 Attributes

- Slow serial processing
- Involves working and long-term memory
- More emphasis on arbitrary aspects of symbols
- Top-down processing

Preattentive Processing

- How does human visual system analyze images?

Some things seem to be done preattentively, without the need for focused attention

- Generally less than 200-250 msecs (eye movements take 200 msecs)
Seems to be done in parallel by low-level vision system

Drawn from
C. Healey web article

How Many 3's?

1281768756138976546984506985604982826762
9809858458224509856458945098450980943585
9091030209905959595772564675050678904567
8845789809821677654876364908560912949686

How Many 3's?

> 1281768756138976546984506985604982826762 9809858458224509856458945098450980943585
> 9091030209905959595772564675050678904567
> $8845789809821677654876 \mathbf{3} 64908560912949686$

What Kinds of Tasks?

- Target detection

Is something there?

- Boundary detection

Can the elements be grouped?

- Counting

How many elements of a certain type are present?

Example

- Determine if a red circle is present
- (2 sides of the room)

Hue

Can be done rapidly (preattentively) by people Surrounding objects called "distractors"

Example

- Determine if a red circle is present

Shape

Can be done preattentively by people

Example

- Determine if a red circle is present

Hue and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjuction of features (shape and hue) causes it

Example

- Is there a boundary in the display?

Fill and Shape

- Left can be done preattentively since each group contains one unique feature
- Right cannot (there is a boundary!) since the two features are mixed (fill and shape)

Example

- Is there a boundary in the display?

Hue versus Shape

Left: Boundary detected preattentively based on hue regardless of shape
Right: Cannot do mixed color shapes preattentively

Example

- Is there a boundary?

Hue versus brightness

Left: Varying brightness seems to interfere
Right: Boundary based on brightness can be done preattentively

Example Applet

- Nice on-line tutorial and example applet
http://www.csc.ncsu.edu/faculty/healey/PP/index.html
Chris Healey, NC State
- Prior pictures taken from site

Preattentive Features

- Certain visual forms lend themselves to preattentive processing
- Variety of forms seem to work

3-D Figures

3-D visual reality has an influence

Emergent Features

Potential PA Features

length width
size
curvature
number
terminators
intersection
closure
hue
intensity
flicker
direction of motion
binocular lustre
stereoscopic depth
3-D depth cues
lighting direction

Discussion

What role does/should preattentive processing play in information visualization?

Gestalt Laws

- Background
- German psychologists, early 1900's
- Attempt to understand pattern perception
- Founded Gestalt school of psychology
- Provided clear descriptions of many basic perceptual phenomena
\rightarrow Gestalt Laws of Pattern Perception

Gestalt Laws

- Proximity

Things close together are perceptually grouped together

- Similarity

Similar elements get grouped together

- Connectedness

Connecting different objects by lines unifies them

- Continuity
- More likely to construct visual entities out of smooth, continuous visual elements

Gestalt Laws

- Symmetry

Symmetrical patterns are perceived more as a whole

- Closure

A closed contour is seen as an object

- Relative Size

Smaller components of a pattern as perceived as objects

- Figure \& Ground

Figure is foreground, ground is behind

Key Perceptual Properties

- Brightness
- Color
- Texture
- Shape

Luminance/Brightness

- Luminance
- Measured amount of light coming from some place
- Brightness
- Perceived amount of light coming from source

Brightness

- Perceived brightness is non-linear function of amount of light emitted by source
- Typically a power function

S = aIn
S - sensation
I - intensity

- Very different on screen versus paper

Grayscale

- Probably not best way to encode data because of contrast issues

Surface orientation and surroundings matter a great deal
Luminance channel of visual system is so fundamental to so much of perception
We can get by without color discrimination, but not luminance

Color

- Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4-0.7 micrometers

10^{-6}	10^{-1}	0.5	10^{5}	10^{8}
gamma	ultraviolet	visible	microwave	tv

Color Models

- HVS model
- Hue - what people think of color
- Value - light/dark, ranges black<--> white
- Saturation - intensity, ranges hue<-->gray

How Not to Use Color

Full Color Coverage
jon shuffles through the colors assigned to the candidates and
compares the gadgets of the cable news teams.
Tags: Super Tuesdav, Fox News, Ron Paul, Mit Romnev, Barack

Views: 113030
Posted: February e.

Posted:
2008

(\ddagger
$100 \%=0 \%$

Fall 2015
CS 7450
41

Color Categories

- Are there certain canonical colors?
- Post \& Greene '86 had people name different colors on a monitor
- Pictured are ones with > 75\% commonality

From Ware '04

Maybe Not All the Same?

http://www.boreme.com/posting.php?id=30670

Himba tribe

Article Discussion

Choosing Colors for Data Visualization

by Maureen Stone
Originally published January 17,2006

- Printer-finendiy
- Email to a friend
- Email to myse

The problem of choosing colors for data visualization is expressed by this quote from information
visualization guru Edvard Tufte
isualization guru Edward Tufte
. avoiding catastrophe becomes the first principle in bringing color to information: Above all, do no harm.
(Envisioning Information, Edward Tufte, Graphics Press, 1990)
Color used well can enhance and clarify a presentation. Color used poorly will obscure, muddle and confuse While there is a strong aesthetic component to color, using color well in information display is essentially about function. what information are trying to corvey, and how (or whether) color can enhance it.
The most important use of color in information presentation is to distinguish one element from another, a
function Edward Tufte calls 'to label. In Figure 1 , for ex example, the different colors in the scatter plot label Unnction Edward Tuffe calls to label 'in Figure 1, for example, the different colors in the scatter plor label
different products. But the use of color as a label goes beyond the distinctive data colors, for color in this
discussion includes black, white and shades of gray

http://www.b-eye-network.com/newsletters/ben/2235

Luminance

- Important for fg-bg colors to differ in brightness

Hello, here is some text. Can you read what it says? Hello, here is some text. Can you read what it says? Hello, here is some text. Can you read what it says? Hello, here is some text. Can you read what it says?

Color for Categories

- Can different colors be used for categorical variables?
- Yes (with care)
- Ware's suggestion: 12 colors
red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple

From Ware '04

Color for Sequences

Can you order these (low->hi)

Possible Color Sequences

48

Advice

Don't use the rainbow color scale for quantitative data

Fall 2015

ColorBrewer

Help with selecting colors for maps
http://colorbrewer2.org/

Color Purposes

- Call attention to specific data
- Increase appeal, memorability
- Increase number of dimensions for encoding data
Example, Ware and Beatty ' 88
x, y - variables $1 \& 2$
amount of $r, g, b-$ variables $3,4, \& 5$

Using Color

- Modesty! Less is more
- Use blue in large regions, not thin lines
- Use red and green in the center of the field of view (edges of retina not sensitive to these)
- Use black, white, yellow in periphery
- Use adjacent colors that vary in hue \& value

Using Color

- For large regions, don't use highly saturated colors (pastels a good choice)
- Do not use adjacent colors that vary in amount of blue
- Don't use high saturation, spectrally extreme colors together (causes after images)
- Use color for grouping and search
- Beware effects from adjacent color regions (my old house - example)

Are regions A and B the same color?

Tableau's Colors

Provides "default" colors for legend items Use NLP, Google n-grams \& images

Setlur \& Stone
TVCG (InfoVis) ' 15

More Choices

Fig. 9. Results for Lin's algorithm (A), expert (E) and our algorithm (G).

Color Challenge

Test your
color abilities

Good Color Advice

Maureen Stone's website Many references and links She frequently offers tutorials about color at conferences
http://www.stonesc.com

Color Resources

If We Assume

Texture

- Appears to be combination of
- orientation
- scale
contrast
- Complex attribute to analyze

Shape, Symbol

- Can you develop a set of unique symbols that can be placed on a display and be rapidly perceived and differentiated?
- Application for maps, military, etc.
- Want to look at different preattentive aspects

Glyph Construction

- Suppose that we use two different visual properties to encode two different variables in a discrete data set color, size, shape, lightness
- Will the two different properties interact so that they are more/less difficult to untangle?

Integral - two properties are viewed holistically
Separable - Judge each dimension independently

Integral-Separable

- Not one or other, but along an axis

Integral	red-green red-green	yellow-blue black-white
	shape height	shape width
shape	size	
	color	size
	direction motion	shape
	color	shape
	color	direction motion
	x,y position	size, shape, color

Ware '04

Encodings

- When you want to communicate one type of variable, which visual property should you use?

Accuracy ranking of quantitative perceptual tasks

Ranking of perceptual tasks

Fig. 14. Accuracy ranking of quantitative perceptual tasks. Higher tasks are accom plished more accurately than lower task Cleveland and McGill empirically verified th basic properties of this ranking

far

Change Blindness

- Is the viewer able to perceive changes between two scenes?
- If so, may be distracting

Can do things to minimize noticing changes

- Fun examples

Static pictures (Ron Rensink, UBC)
http://www.psych.ubc.ca/~rensink/flicker/download/
Videos (Dan Simons, Illinois)
http://www.simonslab.com/videos.html

Optical Illusions

Stage 2

- Missing here!
- Object recognition and locomotion/action
- Maybe in the future... :^)

Great Book

Information Visualization
 Perception for Design
 $2{ }^{\text {nd }}$ edition

Colin Ware
Morgan Kaufmann

HW 6 Return

- Plus some other older ones

Project

- Deliverables
- Demo to Ramik, Iulian \& John

Final exam week, sign up on t-square

- Video

5 minutes max, show in final exam period Wednesday $9^{\text {th }}$

Video Advice

- Use Camtasia
- Process

1. Develop script (rehearse timing)
2. Record script
3. Capture video of demo to script
4. Add effects

- You've seen examples all semester
-eg, http://www.cc.gatech.edu/gvu/ii/videos.html

Upcoming

- Evaluation

Papers
Carpendale '08

- Thanksgiving holiday

No class

- Review

Papers
Now You See It, chapter 13
Heer et al '10

Sources Used

Healey website and article
http://www.csc.ncsu.edu/faculty/healey/PP/index.html
Marti Hearst SIMS 247 lectures
C. Ware, Information Visualization

