Visual Perception

CS 7450 - Information Visualization November 18, 2015 John Stasko

Agenda

- Visual perception
 - Pre-attentive processing
 - Color
 - Etc.

Semiotics

- The study of symbols and how they convey meaning
- Classic book:
 - J. Bertin, 1983, *The Semiology of Graphics*

Fall 2015 CS 7450 3

Related Disciplines

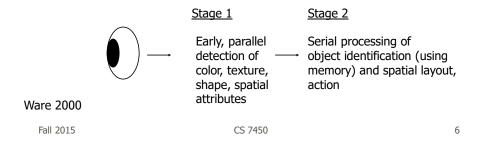
- Psychophysics
 - Applying methods of physics to measuring human perceptual systems

How fast must light flicker until we perceive it as constant?

What change in brightness can we perceive?

- Cognitive psychology
 - Understanding how people think, here, how it relates to perception

Perceptual Processing


- Seek to better understand visual perception and visual information processing
 - Multiple theories or models exist
 - Need to understand physiology and cognitive psychology

Fall 2015 CS 7450 5

One (simple) Model

- Two stage process
 - Parallel extraction of low-level properties of scene
 - Sequential goal-directed processing

Stage 1 - Low-level, Parallel

- Neurons in eye & brain responsible for different kinds of information
 - Orientation, color, texture, movement, etc.
- Arrays of neurons work in parallel
- Occurs "automatically"
- Rapid
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called "pre-attentive" processing

Fall 2015 CS 7450 7

Stage 2 - Sequential, Goal-Directed

- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion & action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements

Stage 2 Attributes

- Slow serial processing
- Involves working and long-term memory
- More emphasis on arbitrary aspects of symbols
- Top-down processing

Fall 2015 CS 7450

Preattentive Processing

- How does human visual system analyze images?
 - Some things seem to be done preattentively, without the need for focused attention
 - Generally less than 200-250 msecs (eye movements take 200 msecs)
 - Seems to be done in parallel by low-level vision system

Drawn from C. Healey web article

How Many 3's?

Fall 2015 CS 7450 11

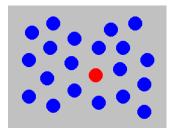
How Many 3's?

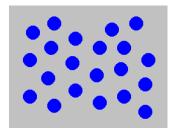
3330209905959595772564675050678904567 **3**

What Kinds of Tasks?

- Target detection
 - Is something there?
- Boundary detection
 - Can the elements be grouped?
- Counting
 - How many elements of a certain type are present?

Fall 2015 CS 7450 13


Example

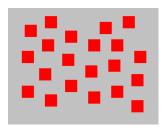


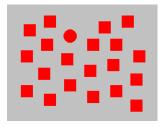
- Determine if a red circle is present
- (2 sides of the room)

Hue

Can be done rapidly (preattentively) by people Surrounding objects called "distractors"

Fall 2015 CS 7450 15


Example

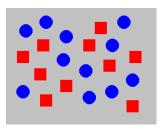


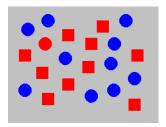
• Determine if a red circle is present

Shape

Can be done preattentively by people

Fall 2015 CS 7450 17


Example

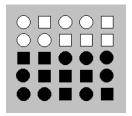


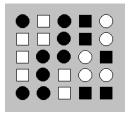
• Determine if a red circle is present

Hue and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjuction of features (shape and hue) causes it

Fall 2015 CS 7450 19


Example

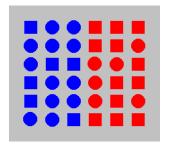


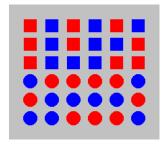
• Is there a boundary in the display?

Fill and Shape

- Left can be done preattentively since each group contains one unique feature
- Right cannot (there is a boundary!) since the two features are mixed (fill and shape)

Fall 2015 CS 7450 21


Example

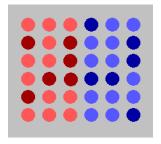


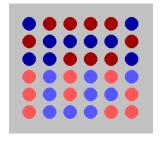
• Is there a boundary in the display?

Hue versus Shape

Left: Boundary detected preattentively based on hue regardless of shape Right: Cannot do mixed color shapes preattentively

Fall 2015 CS 7450 23


Example



• Is there a boundary?

Hue versus brightness

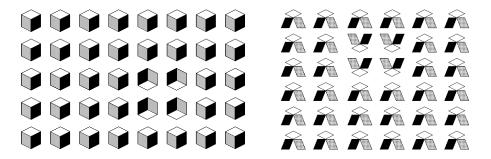
Left: Varying brightness seems to interfere Right: Boundary based on brightness can be done preattentively

Fall 2015 CS 7450 25

Example Applet

- Nice on-line tutorial and example applet
 - http://www.csc.ncsu.edu/faculty/healey/PP/index.html
 - Chris Healey, NC State
 - Prior pictures taken from site

Preattentive Features



- Certain visual forms lend themselves to preattentive processing
- Variety of forms seem to work

Fall 2015 CS 7450 27

3-D Figures

3-D visual reality has an influence

Emergent Features

Fall 2015 CS 7450

Potential PA Features

29

hue length intensity width flicker size direction of motion curvature binocular lustre number stereoscopic depth terminators 3-D depth cues intersection lighting direction closure

Discussion

 What role does/should preattentive processing play in information visualization?

Fall 2015 CS 7450 31

Gestalt Laws

- Background
 - German psychologists, early 1900's
 - Attempt to understand pattern perception
 - Founded Gestalt school of psychology
 - Provided clear descriptions of many basic perceptual phenomena
 - \rightarrow Gestalt Laws of Pattern Perception

Gestalt Laws

- Proximity
 - Things close together are perceptually grouped together
- Similarity
 - Similar elements get grouped together
- Connectedness
 - Connecting different objects by lines unifies them
- Continuity
 - More likely to construct visual entities out of smooth, continuous visual elements

Fall 2015 CS 7450 33

Gestalt Laws

- Symmetry
 - Symmetrical patterns are perceived more as a whole
- Closure
 - A closed contour is seen as an object
- Relative Size
 - Smaller components of a pattern as perceived as objects
- Figure & Ground
 - Figure is foreground, ground is behind

Key Perceptual Properties

- Brightness
- Color
- Texture
- Shape

Fall 2015 CS 7450 35

Luminance/Brightness

- Luminance
 - Measured amount of light coming from some place
- Brightness
 - Perceived amount of light coming from source

Brightness

- Perceived brightness is non-linear function of amount of light emitted by source
 - Typically a power function
 - $-S = aI^n$
 - S sensation
 - I intensity
- Very different on screen versus paper

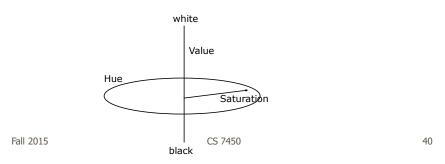
Fall 2015 CS 7450 37

Grayscale

- Probably not best way to encode data because of contrast issues
 - Surface orientation and surroundings matter a great deal
 - Luminance channel of visual system is so fundamental to so much of perception
 We can get by without color discrimination, but not luminance

Color

 Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4 - 0.7 micrometers

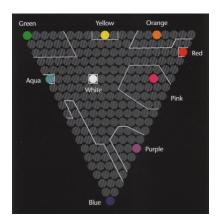

10-6	10 ⁻¹	0.5	10 ⁵	108	
gamma	ultraviolet	visible	microwave	tv	

Fall 2015 CS 7450 39

Color Models

- HVS model
 - Hue what people think of color
 - Value light/dark, ranges black<-->white
 - Saturation intensity, ranges hue<-->gray

How Not to Use Color



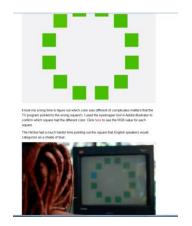
Fall 2015 CS 7450 41

Color Categories

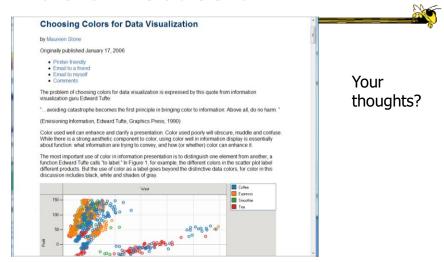
- Are there certain canonical colors?
 - Post & Greene '86 had people name different colors on a monitor
 - Pictured are ones with > 75%commonality

From Ware '04

CS 7450 Fall 2015 42


Maybe Not All the Same?

http://www.boreme.com/posting.php?id=30670



Himba tribe

Fall 2015 CS 7450 43

Article Discussion

http://www.b-eye-network.com/newsletters/ben/2235

Luminance

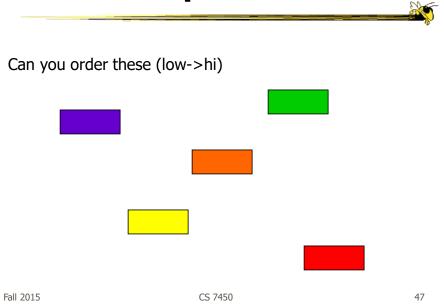
 Important for fg-bg colors to differ in brightness

Hello, here is some text. Can you read what it says?
Hello, here is some text. Can you read what it says?
Hello, here is some text. Can you read what it says?
Hello, here is some text. Can you read what it says?
Hello, here is some text. Can you read what it says?
Hello, here is some text. Can you read what it says?

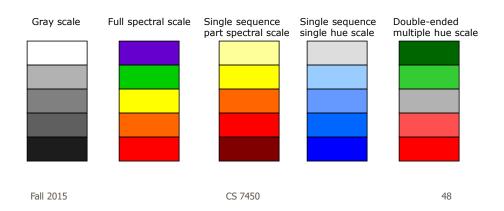
Hello, here is some text. Can you read what it says?

Fall 2015 CS 7450 45

Color for Categories

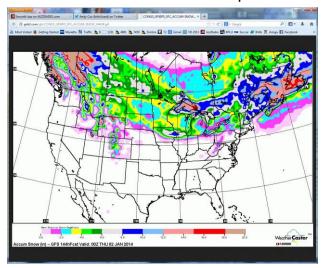


- Can different colors be used for categorical variables?
 - Yes (with care)
 - Ware's suggestion: 12 colors
 red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple


From Ware '04

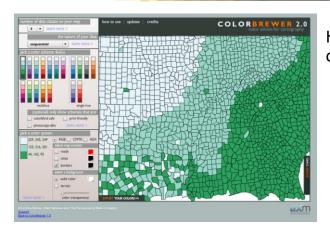
Color for Sequences

Possible Color Sequences



Advice

Don't use the rainbow color scale for quantitative data



Fall 2015

49

ColorBrewer

Help with selecting colors for maps

http://colorbrewer2.org/

Color Purposes

- Call attention to specific data
- Increase appeal, memorability
- Increase number of dimensions for encoding data
 - Example, Ware and Beatty '88
 x,y variables 1 & 2
 amount of r,g,b variables 3, 4, & 5

Fall 2015 CS 7450 51

Using Color

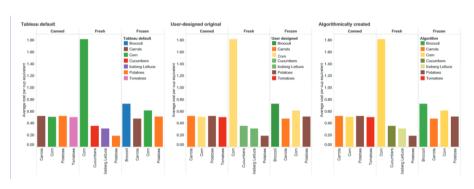
- Modesty! Less is more
- Use blue in large regions, not thin lines
- Use red and green in the center of the field of view (edges of retina not sensitive to these)
- Use black, white, yellow in periphery
- Use adjacent colors that vary in hue & value

Using Color

- For large regions, don't use highly saturated colors (pastels a good choice)
- Do not use adjacent colors that vary in amount of blue
- Don't use high saturation, spectrally extreme colors together (causes after images)
- Use color for grouping and search
- Beware effects from adjacent color regions (my old house - example)

Fall 2015 CS 7450 53

 $\verb|https://en.wikipedia.org/wiki/Checker_shadow_illusion| \\$



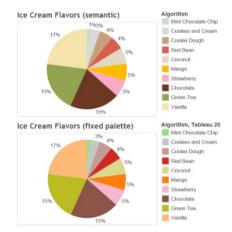
Are regions A and B the same color?

Tableau's Colors

Provides "default" colors for legend items Use NLP, Google n-grams & images

Setlur & Stone TVCG (InfoVis) '15

Fall 2015 CS 7450 55

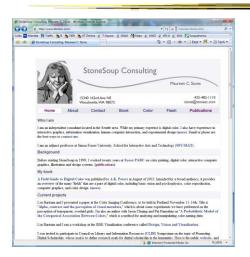

More Choices

https://vimeo.com/136205858

Fall 2015 CS 7450 56

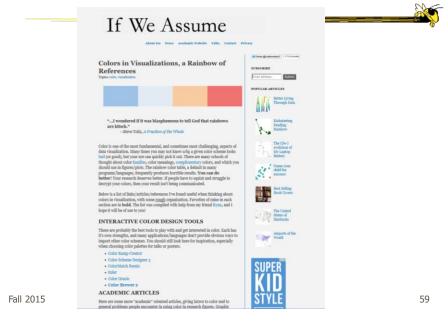
Color Challenge

http://color.method.ac/


Test your color abilities

Fall 2015 CS 7450

Good Color Advice


57

Maureen Stone's website
Many references and links
She frequently offers
tutorials about color at
conferences

http://www.stonesc.com

Color Resources

Texture

- Appears to be combination of
 - orientation
 - scale
 - contrast
- Complex attribute to analyze

Shape, Symbol

- Can you develop a set of unique symbols that can be placed on a display and be rapidly perceived and differentiated?
- Application for maps, military, etc.
- Want to look at different preattentive aspects

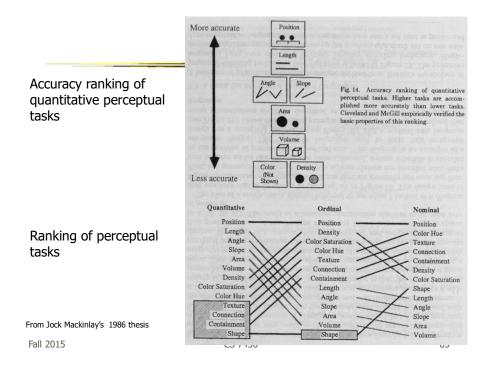
Fall 2015 CS 7450 61

Glyph Construction

- Suppose that we use two different visual properties to encode two different variables in a discrete data set
 - color, size, shape, lightness
- Will the two different properties interact so that they are more/less difficult to untangle?
 - Integral two properties are viewed holistically
 - Separable Judge each dimension independently

Integral-Separable

Not one or other, but along an axis


Ware '04

Fall 2015 CS 7450 63

Encodings

 When you want to communicate one type of variable, which visual property should you use?

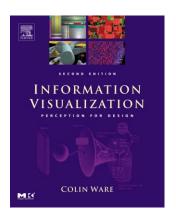
Change Blindness

- Is the viewer able to perceive changes between two scenes?
 - If so, may be distracting
 - Can do things to minimize noticing changes
- Fun examples
 - Static pictures (Ron Rensink, UBC)
 http://www.psych.ubc.ca/~rensink/flicker/download/
 - Videos (Dan Simons, Illinois)

http://www.simonslab.com/videos.html

Optical Illusions

Fall 2015 CS 7450 67


Stage 2

- Missing here!
- Object recognition and locomotion/action
- Maybe in the future... :^)

Great Book

*Information Visualization Perception for Design*2nd edition

Colin Ware Morgan Kaufmann

Fall 2015 CS 7450 69

HW 6 Return

Plus some other older ones

Project

- Deliverables
 - Demo to Ramik, Iulian & John
 Final exam week, sign up on t-square
 - Video

5 minutes max, show in final exam period Wednesday 9th

Fall 2015 CS 7450 71

Video Advice

- Use Camtasia
- Process
 - 1. Develop script (rehearse timing)
 - 2. Record script
 - 3. Capture video of demo to script
 - 4. Add effects
- You've seen examples all semester

Upcoming

- Evaluation
 - PapersCarpendale '08
- Thanksgiving holiday
 - No class
- Review
 - PapersNow You See It, chapter 13Heer et al '10

Fall 2015 CS 7450 73

Sources Used

Healey website and article

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Marti Hearst SIMS 247 lectures C. Ware, *Information Visualization*