Example Tasks & Goals

- Which documents contain text on topic XYZ?
- Which documents are of interest to me?
- Are there other documents that are similar to this one (so they are worthwhile)?
- How are different words used in a document or a document collection?
- What are the main themes and ideas in a document or a collection?
- Which documents have an angry tone?
- How are certain words or themes distributed through a document?
- Identify "hidden" messages or stories in this document collection.
- How does one set of documents differ from another set?
- Quickly gain an understanding of a document or collection in order to subsequently do XYZ.
- Find connections between documents.
Related Topic - Sensemaking

- Sensemaking
 - Gaining a better understanding of the facts at hand in order to take some next steps
 - (Better definitions in VA lecture)

- InfoVis can help make a large document collection more understandable more rapidly
Today’s Agenda

• Move to collections of documents
 – Still do words, phrases, sentences
 – Add
 More context of documents
 Document analysis metrics
 Document meta-data
 Document entities
 Connections between documents
 Documents concepts and themes

Various Document Metrics

• Goals?
• Different variables for literary analysis
 – Average word length
 – Syllables per word
 – Average sentence length
 – Percentage of nouns, verbs, adjectives
 – Frequencies of specific words
 – Hapax Legomena – number of words that occur once

Keim & Oelke
VAST ‘07
Vis

Each block represents a contiguous set of words, eg, 10,000 words

Do partial overlap in blocks for a smoother appearance

Figure 2: Fingerprints of books of Mark Twain and Jack London. Different measures for authorship attribution are tested. If a measure is able to discriminate between the two authors, the visualprints of the books that are written by the same as the well written in other texts that are written by the other author.

Furthermore, it is interesting to observe that the book A Little History of the World is not written by Mark Twain.

The Bible

Figure 4: Visual Fingerprint of the Bible. Each pixel represents one chapter of the bible and color is mapped to the average verse length. Interesting characteristics such as the generally shorter verses of the poetry books, the homogeneity of the 1. Book of Chronicles or the difference between the Old Testament and the New Testament can be perceived.

Figure 6: Visual Fingerprint of the Bible. More detailed view on the bible in which each pixel represents a single verse and verses are grouped in chapters. Color is again mapped to verse length. The dashed line reveals some interesting patterns that are complicated in the enlarged version of fig. 4.
Follow-On Work

- Focus on readability metrics of documents
- Multiple measures of readability
 - Provide quantitative measures
- Features used:
 - Word length
 - Vocabulary complexity
 - Nominal forms
 - Sentence length
 - Sentence structure complexity

Visualization & Metrics

(a) The intention of TextBars [9] is to provide a compact but yet meaningful representation of Information Retrieval results, whereas the Featureless technique, presented in [8], was designed to explore interesting text patterns which are supported by the system, find meaningful co-occurrences of them, and identify their temporal evolution.

(b) This includes aspects like ensuring contextual coherence, avoiding unknown vocabulary and difficult grammatical structures.

Figure 5: Two example sentences whose overall readability score is about the same. The detail view reveals the different reasons why the sentences are difficult to read.

Uses heatmap style vis (blue-readable, red-unreadable)
Interface

Figure 3: Screenshot of the VisRA tool on 3 different aggregation levels. (a) Corpus View (b) Block View (c) Detail View. To display single features, the colormap is generated as described in section 3.4 and figure 2.

Their Paper (Before & After)

Figure 6: Revision of our own paper. (a) The first four pages of the paper as structure thumbnails before the revision. (b) Detail view for one of the sections. (c) Structure thumbnails of the same pages after the revision.
Comment from the Talk

- In academic papers, you want your abstract to be really readable

- Would be cool to compare rejected papers to accepted papers

Bohemian Bookshelf

Serendipitous browsing

Thudt et al

CHI ’12
Themail

- Visualize one’s email history
 - With whom and when has a person corresponded
 - What words were used
- Answer questions like:
 - What sorts of things do I (the owner of the archive) talk about with each of my email contacts?
 - How do my email conversations with one person differ from those with other people?

Interface
Characteristics

- Text analysis to seed visualization
- Monthly & yearly words

![Figure 2: Expanded view of Themeail showing the sporadic nature of a relationship. "Blank" spaces between columns of words stand for months when no messages were exchanged between the user and the selected email contact.](image)

Query UI

![Figure 3: Searching for words in Themeail. Here the user has typed "ex" (at the top of the screen) and Themeail has highlighted (in red) all the monthly words starting with these characters.](image)
PaperLens

- Focus on academic papers
- Visualize doc metadata such as author, keywords, date, ...
- Multiple tightly-coupled views
- Analytics questions
- Effective in answering questions regarding:
 - Patterns such as frequency of authors and papers cited
 - Themes
 - Trends such as number of papers published in a topic area over time
 - Correlations between authors, topics and citations

Lee et al
CHI '05 Short

Fall 2015
CS 7450
19

PaperLens

a) Popularity of topic
b) Selected authors
c) Author list
d) Degrees of separation of links
e) Paper list
f) Year-by-year top ten cited papers/ authors – can be sorted by topic
More Document Info

- Highlight entities within documents
 - People, places, organizations
- Document summaries
- Document similarity and clustering
- Document sentiment

Jigsaw

- Targeting sense-making scenarios
- Variety of visualizations ranging from word-specific, to entity connections, to document clusters
- Primary focus is on entity-document and entity-entity connection
- Search capability coupled with interactive exploration

Stasko, Görg, & Liu
Information Visualization '08
Document View

Wordcloud overview
Document summary
Selected document’s text with entities identified

List View

Entities listed by type
Document Cluster View

Document Grid View

Here showing sentiment analysis of docs
Calendar View

Temporal context of entities & docs

Jigsaw

• Much more to come on Visual Analytics day...
FacetAtlas

- Show entities and concepts and how they connect in a document collection
- Visualizes both local and global patterns
- Shows
 - Entities
 - Facets – classes of entities
 - Relations – connections between entities
 - Clusters – groups of similar entities in a facet

Cao et al
TVCG (InfoVis) ’10

Visualization
Intermission

Let’s look at some of your TV review designs

Up to Higher Level

• How do we present the contents, semantics, themes, etc of the documents
 – Someone may not have time to read them all
 – Someone just wants to understand them

• Who cares?
 – Researchers, fraud investigators, CIA, news reporters
Vector Space Analysis

• How does one compare the similarity of two documents?

• One model
 – Make list of each unique word in document
 Throw out common words (a, an, the, ...)
 Make different forms the same (bake, bakes, baked)
 – Store count of how many times each word appeared
 – Alphabetize, make into a vector

Vector Space Analysis

• Model (continued)
 – Want to see how closely two vectors go in same direction, inner product
 – Can get similarity of each document to every other one
 – Use a mass-spring layout algorithm to position representations of each document

• Some similarities to how search engines work
Wiggle

- Not all terms or words are equally useful
- Often apply TFIDF
 - Term frequency, inverse document frequency
- Weight of a word goes up if it appears often in a document, but not often in the collection

Process

Documents → Analysis: Decomposition, statistics
Vectors, keywords → Algorithms: Similarity, clustering, normalization
Data tables for vis → Visualization: 2D, 3D display
VIBE System

- Smaller sets of documents than whole library
- Example: Set of 100 documents retrieved from a web search
- Idea is to understand contents of documents relate to each other

Focus

- Points of Interest
 - Terms or keywords that are of interest to user
 - Example: cooking, pies, apples
- Want to visualize a document collection where each document’s relation to points of interest is show
- Also visualize how documents are similar or different
Technique

- Represent points of interest as vertices on convex polygon
- Documents are small points inside the polygon
- How close a point is to a vertex represents how strong that term is within the document

![Diagram](image)

Algorithm

- Example: 3 POIs
- Document \((P1, P2, P3)\) \((0.4, 0.8, 0.2)\)
- Take first two

\[
\frac{0.4}{0.4 + 0.8} = 0.333
\]

1/3 of way from P2 to P1
Algorithm

- Combine weight of first two 1.2 and make a new point, P'
- Do same thing for third point

\[
\frac{1.2}{1.2+0.2} = 0.86
\]

0.14 of way from P' to $P3$

Sample Visualization
VIBE Pro’s and Con’s

- Effectively communications relationships
- Straightforward methodology and vis are easy to follow
- Can show relatively large collections
- Not showing much about a document
- Single items lose “detail” in the presentation
- Starts to break down with large number of terms

Visualizing Documents

- VIBE presented documents with respect to a finite number of special terms
- How about generalizing this?
 - Show large set of documents
 - Any important terms within the set become key landmarks
 - Not restricted to convex polygon idea
Basic Idea

- Break each document into its words
- Two documents are “similar” if they share many words
- Use mass-spring graph-like algorithm for clustering similar documents together and dissimilar documents far apart

Kohonen’s Feature Maps

- AKA Self-Organizing Maps
- Expresses complex, non-linear relationships between high dimensional data items into simple geometric relationships on a 2-d display
- Uses neural network techniques

Lin
Visualization '92
Map Attributes

- Different, colored areas correspond to different concepts in collection
- Size of area corresponds to its relative importance in set
- Neighboring regions indicate commonalities in concepts
- Dots in regions can represent documents

More Maps

Interactive demos

Xia Lin
Work at PNNL

- Group has developed a number of visualization techniques for document collections
 - Galaxies
 - Themescapes
 - ThemeRiver
 - ...

Wise et al
InfoVis ’95

Galaxies
Presentation of documents where similar ones cluster together
Themescapes

- Self-organizing maps didn’t reflect density of regions all that well -- Can we improve?
- Use 3D representation, and have height represent density or number of documents in region

Themescape
Related Topic

- Maps of Science
- Visualize the relationships of areas of science, emerging research disciplines, the impact of particular researchers or institutions, etc.
- Often use documents as the “input data”
Stanford Diss. Browser

9,000 Stanford PhD theses

Rather than overall semantic map, you choose a focus and all update to show their relationship

Demo at

http://nlp.stanford.edu/projects/dissertations/

Chuang et al

CHI '12

Wonderful Book and Website

Atlas of Science
Visualizing What We Know

K. Börner

http://scimaps.org
Some Examples

Boyack & Klavans

http://scimaps.org/maps/map/map_of_scientific_pa_55/

Klavans & Boyack

http://scimaps.org/maps/map/maps_of_science_fore_50/
Temporal Issues

- Semantic map gives no indication of the chronology of documents
- Can we show themes and how they rise or fall over time?
ThemeRiver

Representation

- Time flows from left->right
- Each band/current is a topic or theme
- Width of band is “strength” of that topic in documents at that time
More Information

- What’s in the bands?
- Analysts may want to know about what each band is about

Topic Modeling

- Hot topic in text analysis and visualization
- Latent Dirichlet Allocation
- Unsupervised learning
- Produces “topics” evident throughout doc collection, each modeled by sets of words/terms
- Describes how each document contributes to each topic
TIARA

- Keeps basic ThemeRiver metaphor
- Embed word clouds into bands to tell more about what is in each
- Magnifier lens for getting more details
- Uses Latent Dirichlet Allocation to do text analysis and summarization

Liu et al
CIKM '09, KDD '10, VAST '10

Representation

Figure 1. Annotated TIARA created visual summary of 10,000 emails in the year of 2008. Here, the x-axis encodes the time dimension, the y-axis encodes the importance of each topic. Each layer represents a topic, which is described by a set of keywords. These topic keywords are distributed along the time, summarizing the topic content and the content evolution over time. The tool tip shows the aggregated content of the top-most topic (green one).
Features

Documents containing “citable”

TextFlow

Showing how topics merge and split

Cui et al
TVCG (InfoVis) ’11
Upcoming

- Time Series Data
 - Reading
 Aigner et al ‘08
 - Video (no class)
 Stasko, EuroVis ‘14

I’m away all next week