Hierarchies and Trees 2 (Space-filling)

CS 7450 - Information Visualization November 4, 2015 John Stasko

Hierarchies

- Definition
 - Data repository in which cases are related to subcases
 - Can be thought of as imposing an ordering in which cases are parents or ancestors of other cases

Last Time: Node-Link Reps

Node-link Shortcoming?

- Difficult to encode more variables of data cases (nodes)
 - Shape
 - Color
 - Size
 - ...but all quickly clash with basic node-link structure

Space-Filling Representation

Each item occupies an area

Children are "contained" under parent

One example: "Icicle plot"

Fall 2015 CS 7450 5

Exercise

Treemap

- Space-filling representation developed by Shneiderman and Johnson, Vis '91
- Children are drawn inside their parent
- Alternate horizontal and vertical slicing at each successive level
- Use area to encode other variable of data items

Fall 2015 CS 7450

Example

Fall 2015 CS 7450

Example

Fall 2015 CS 7450 9

Example

3	1	5		9
7	3	4	6	20
2	4			6

Treemap

Treemap Example

Treemap Algorithm


```
Draw()
{
    Change orientation from parent (horiz/vert)
    Read all files and directories at this level
    Make rectangle for each, scaled to size
    Draw rectangles using appropriate size and color
    For each directory
        Make recursive call using its rectangle as focus
}
```

Fall 2015 CS 7450 13

Nested vs. Non-nested

Non-nested Tree-Map

Nested Tree-Map

Applications

- Can use Treemap idea for a variety of domains
 - File/directory structures
 - Basketball statistics
 - Software diagrams
 - Tennis matches

Fall 2015 CS 7450 15

Software Visualization App

- SeeSys: Software Metrics Visualizing System
- Uses treemap-like visualization to present different software metrics
- Displays:
 - Size
 - Recent development
 - High fix-on-fix rates
 - History and growth

Baker and Eick JVLC '95

Sample View 1

Subsystems in a software system. Each rectangle represents the non-comment source code in a subsystem. Area means size

Sample View 2

Bug rates by subsystem and directory

Tennis Viewing Application

- Analyze, review and browse a tennis match
- Space-filling/treemap-like hierarchy representation for a competition tree
- Shows match,sets,games,points
- Uses lenses to show shot patterns
- Red/green to encode two players
- Composite colors on top of each other

Jin and Banks IEEE CG&A '97

Fall 2015 CS 7450

Visualization Make-up

19

Simulated Match Results

Treemap Affordances

- Good
 - Representation of two attributes beyond node-link: color and area
- Not as good
 - Representing structure
 - What happens if it's a perfectly balanced tree of items all the same size?
 - OAlso can get long-thin aspect ratios
 - Borders help on smaller trees, but take up too much area on large, deep ones

Fall 2015 CS 7450 23

Aspect ratios

Variation

- Can rectangles be made more square?
 think about it.....
- In general, a very hard problem!

Fall 2015 CS 7450 25

Variation: "Cluster" Treemap

- SmartMoney.com Map of the Market
 - Illustrates stock movements
 - "Compromises" treemap algorithm to avoid bad aspect ratios
 - Basic algorithm (divide and conquer) with some hand tweaking
 - Takes advantage of shallow hierarchy
 - www.smartmoney.com/marketmap

Image on next slide

Fall 2015

CS 7450

Wattenberg CHI '99

26

More recent times

Sept. 29, 2008

Newer One (also now defunct)

Fall 2015 CS 7450 31

SmartMoney Review

- Tufte-esque micro/macro view
- Dynamic user interface operations add to impact
- One of best applications of an InfoVis techniques that I've seen

Other Treemap Variations

- Squarified treemap
 - Bruls, Huizing, van Wijk, EuroGraphics '00
 - Alternate approach, similar results

Fall 2015 CS 7450 33

Square Algorithm Problems

- Small changes in data values can cause dramatic changes in layout
- Order of items in a group may be important

New Square Algorithms

Pivot-by-size and pivot-by-middle

Partition area into 4 regions
Pick pivot element Rp
Size: Largest element
Middle: Middle element
R₁ - elements earlier in list than
pivot

 R_2 - elements in list before R_3 and also that makes Rp have aspect ratio closest to 1

Shneiderman & Wattenberg InfoVis '01

Fall 2015

CS 7450

35

New Variation

Strip treemap

Use strips to place items

Put new rectangle into strip
If it makes average aspect ratio
of all rectangles in strip go down,
keep it there

If it makes aspect ratio go up, put it back and move to next strip

Bederson, Shneiderman & Wattenberg *ACM Trans on Graphics* `02

Compare results

Compare

- slice and dice
- squarified
- strip
- pivot

techniques by

- aspect ratio width to height
- structural change metric designed to measure movements of items
- readability
 metric based on changes
 in direction of eye gaze as
 items scanned

Fall 2015 CS 7450 37

Slice-and-dice Cluster Squarified

Pivot-by-middle Pivot-by-size Strip

Showing Structure

- Regular borderless treemap makes it challenging to discern structure of hierarchy, particularly large ones
 - Supplement Treemap view
 - Change rectangles to other forms

Fall 2015 CS 7450 39

Variation: Cushion Treemap

Add shading and texture to help convey structure of hierarchy

Van Wijk & van de Wetering InfoVis '99

SequoiaView

www.win.tue.nl/sequoiaview/

File visualizer built using cushion treemap notion

Demo

Fall 2015 CS 7450 41

Internet News Groups

NetScan

Fiore & Smith Microsoft

Fall 2015 CS 7450 42

Product Sales

www.hivegroup.com/amazon.html

Fall 2015 CS 7450 43

News Stories

www.marumushi.com/apps/newsmap/newsmap.cfm

www.panopticon.com

Investment Portfolios

Fall 2015 CS 7450 45

www.nytimes.com/packages/html/newsgraphics/2011/0119-budget/

Federal Budget

2012 Presidential Election

http://www.treemap.com/datasets/uselections/?goback=.gde_80552_member_184123140 Fall 2015 CS 7450 47

Scaling Up

Fig. 5. Hierarchical Network Map displaying all 19,731 autonomous systems (one can still zoom in twice for details) on a large display wall (5.20m × 2.15m, 8.9 Megapixels, powered by eight projectors). The query interface on the top left shows the traffic distribution over time and specifies the selected data, in this case the traffic entering the gateway of the University of Konstanz on well-known ports (0-1023) on 29 November 2005 using "transferred bytes" as measure with logarithmic color mapping. One recognizes a heavy traffic load from AS 3320 (red) of "Deutsche Telekom" as well as to neighboring autonomous systems in Germany. A port histogram reveals high activity on the Web ports 80 and 443. For security and privacy reasons, the data was aggregated and sanitized.

Fall 2015 CS 7450 TVCG '06 48

Mansmann & Vinnik

Another Problem

- What if nodes with zero value (mapped to area) are very important?
 - Example: Stock or mutual fund portfolios:
 Funds you don't currently hold have zero value in your portfolio, but you want to see them to potentially buy them
- Solutions?

Fall 2015 CS 7450 49

FundExplorer

- Show mutual fund portfolios, including funds not currently held
 - Area maps to your relative investment in fund
- Want to help the user with portfolio diversification as well
 - If I add fund X, how does that overlap with my current fund holdings?

Solution

- Context Treemap Treemap with small distortion
 - Give zero-valued items (all together) some constant proportion of screen area
 - Provide dynamic query capabilities to enhance exploration leading to portfolio diversification

Fall 2015 CS 7450 51

FundExplorer

Voronoi Treemaps

www.cs.umd.edu/hcil/treemap-history/

The World of Treemaps

Maryland HCIL website devoted to Treemaps

Workshop in 2001 there on topic

Limitation?

- What is primary shortcoming of treemap as a hierarchical data set representation?
- How could we do better?
 - Keep advantages without incurring disadvantages

Fall 2015 CS 7450 55

Another Technique

- What if we used a radial rather than a rectangular space-filling technique?
 - We saw node-link trees with root in center and growing outward already...
- Make pie-tree with root in center and children growing outward
 - Radial angle now corresponds to a variables rather than area

Fall 2015 CS 7450

57

Radial Space-Filling

SunBurst

SunBurst

- Root directory at center, each successive level drawn farther out from center
- Sweep angle of item corresponds to size
- Color maps to file type or age
- Interactive controls for moving deeper in hierarchy, changing the root, etc.
- Double-click on directory makes it new root

Empirical Study

- Compared SunBurst to Treemap (borderless) on a variety of file browsing tasks
 - SunBurst performed as well (or better) in task accuracy and time
 - Learning effect Performance improved with Treemap on second session
 - Strong subjective preference (51-9) for SunBurst
 - Participants cited more explicit depiction of structure as an important reason

More to come on evaluation...

Fall 2015 CS 7450 6

SunBurst Negative

 In large hierarchies, files at the periphery are usually tiny and very difficult to

Fall 2015

Fix: Objectives

- Make small slices bigger
- Maintain full circular space-filling idea
- Allow detailed examination of small files within context of entire hierarchy
- Don't alter ratios of sizes
- Avoid use of multiple windows or lots of scrollbars
- Provide an aesthetically pleasing interface in which it is easy to track changes in focus

Fall 2015 CS 7450 63

3 Solutions

- Three visualization+navigation techniques developed to help remedy the shortcoming
 - Angular detail
 - Detail outside
 - Detail inside

Stasko & Zhang InfoVis '00

Angular Detail

• Most configurable by user

Fall 2015 CS 7450 65

Detail Outside

- Exhibits non-distorted miniature of overview
- Somewhat visually disconcerting
- Focus is quite enlarged (large circumference and 360°)
- Relatively space efficient

Fall 2015 CS 7450 66

Detail Inside

- Perhaps least intuitive and most distorting
- Items in overview are more distinct (larger circumference)
- Interior 360° for focus is often sufficient

Fall 2015 CS 7450 67

See in Action

Video

Stasko & Zhang InfoVis '00

Key Components

- Two ways to increase area for focus region: larger sweep angle and longer circumference
- Smooth transitions between overview and focus allow viewer to track changes
- Always display overview
- Allow focus selections from anywhere: normal display, focus or overview regions

Fall 2015 CS 7450 69

Potential Follow-on Work

- Multiple foci
- Varying radii for different levels in hierarchy
- Use quick-keys to walk through neighboring files
- Smarter update when choosing new focus region from existing focus
- Fourth method: expand angle of focus in place by compressing all others

InterRing

Provides many of those follow-on capabilities and new operations

Yang, Ward & Rudensteiner InfoVis '02

Fall 2015

CS 7450 71

Even Sand Crabs Do It

http://www.flickr.com/photos/jkr1812/2234846316/in/gallery-49563472@N07-72157624817856060/lightbox/

Survey of Radial Techniques

Draper et al TVCG '09

Fall 2015 CS 7450 73

More Alternatives

- Combine space-filling hierarchy presentations (really nesting) with zooming
- Children drawn inside of parent, but not totally encompassing

Grokker

www.groxis.com

Defunct

Fall 2015 CS 7450 75

Zoomology

CS 7450 Spring '03 project

InfoVis '03 Contest Winner Best Student entry

Alternate View

Video

Fall 2015 CS 7450 77

Circle Packing

Wang, Wang, Dai & Wang CHI '06

Hybrid Approaches

Mix node-link and space-filling

Fall 2015 CS 7450 79

CHEOPS

(Saw last time)

Beaudoin, Parent, Vroomen, Vis '96

EnCon

- Explicit combination of node-link and treemap-like techniques
- Partition space into hierarchical regions, then draw node link into that

Fall 2015 CS 7450 81

EnCon Sample Views

Summary

- Node-link diagrams or space-filling techniques?
- It depends on the properties of the data
 - Node-link typically better at exposing structure of information structure
 - Space-filling good for focusing on one or two additional variables of cases

Fall 2015 CS 7450 83

Great Visual Summary

Downloadable poster

http://www.informatik.uni-rostock.de/~hs162/treeposter/oldposter/poster.html Fall 2015 CS 7450 84

Zoomed In

Version 2

http://treevis.net

HW 6

- Draw a graph
- 10-vertex abstract graph provided
- You draw a node-link representation
- Follow the directions!
 - Bring one copy
 - Name on back
- Due Monday 9th (no late submissions)
- Don't spend a lot of time

Fall 2015 CS 7450 87

Upcoming

- Graphs & Networks 1
 - ReadingLee et al '06
- Graphs & Networks 2
 - ReadingPerer & Shneiderman '06

References

- Spence and CMS texts
- All referred to papers