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Algorithm visualization (AV) technologygraphically illustrates how algorithms work.
Despite the intuitive appeal of the technology, it has failed to catch on in mainstream
computer science education. Some have attributed this failure to the mixed results of
experimental studies designed to substantiate AV technology’s educational e¡ective-
ness. However, while several integrative reviews of AV technology have appeared,
none has focused speci¢cally on the software’s e¡ectiveness by analyzing this body of
experimental studies as a whole. In order to better understand the e¡ectiveness of AV
technology, we present a systematic meta-study of 24 experimental studies.We pursue
two separate analyses: an analysis of independent variables, in which we tie each study to a
particular guiding learning theory in an attempt to determine which guiding theory
has had the most predictive success; and an analysis of dependent variables, which enables
us to determine which measurement techniques have been most sensitive to the learn-
ingbene¢ts of AVtechnology. Our most signi¢cant ¢nding is thathow students useAV
technology has a greater impact on e¡ectiveness than what AV technology shows
them. Based on our ¢ndings, we formulate an agenda for future research into AV
e¡ectiveness.r 2002 Elsevier Science Ltd. All rights reserved

Keywords: Algorithm visualization; Software visualization; Empirical studies of
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1. Introduction

BY GRAPHICALLY representing computer algorithms in action, algorithm visualization
(AV) technology aims to help computer science students understand how algorithms
work. Since its advent in the late 1970s, AV technology has evolved from batch-oriented
software that enable instructors to construct animated ¢lms [1]; to highly interactive sys-
tems that enable students to explore dynamically con¢gurable animations of algorithms
on their own (e.g. [2, 3]); to interactive programming environments that enable students
to quickly construct their ownvisualizations (e.g. [4, 5]). Over the past two decades, this
evolution of software has endeavored to enhance computer science education in avariety
of capacities. For example, AVsoftware has been used:
1045-926X/02/$ - see front matterr 2002 Elsevier Science Ltd. All rights reserved
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* to help instructors illustrate algorithm operations in a lecture (e.g. [2]);
* to help students as they study and learn about fundamental algorithms in a computer

science course(e.g. [6]);
* to help instructors track down bugs in students’ linked-list programs during o⁄ce

hours (e.g. [7]) and
* to help students learn about the basic operations of an abstract data type in a computer

science laboratory (e.g. [8]).

Despite its intuitive appeal as a pedagogical aid, algorithm visualization technology
has failed to catch on in mainstream computer science education [4, 9].While those few
educators who are alsoAVtechnology developers tend to employ their own AV technol-
ogy, the majority of computer science educators tend to stick to more traditional peda-
gogical technologies, such as blackboards, whiteboards and overhead projectors.

Why do computer science educators tend not to use AV technology? Instructors
commonly cite several reasons, including the following

* They feel they do not have the time to learn about it.
* They feel that using it would take away time needed for other class activities.
* They feel that creating visualizations for classroom use requires too much time and

e¡ort. Note that, in the AV technology literature, this reason is frequently used
to motivate new technology that is easier to use, and that supports the more rapid
creation of visualizations (see, e.g. [10^12]).

* They feel that it is simply not educationally e¡ective.

All of these reasons certainly contribute, in some way, toAVtechnology’s failure to be
adopted. However, the fourth reasonFthat AVtechnology does not help students learn
algorithms better than conventional teaching methodsFstands out as particularly im-
portant. Indeed, the underlying purpose of AV technology is to be educationally e¡ec-
tive, so there certainly is no reason to adopt the technology if it is not e¡ective.

Given that the underlying purpose of AVtechnology is to be educationally e¡ective, it
is noteworthy that eight extant taxonomic reviews of AVand software visualization tech-
nology (seeTable 1) have focused largely on system expressiveness. In particular, these taxo-
nomies have focused on three main questions:

(1) What kinds of programs can be visualized with a given visualization system?
(2) What kinds of visualizations can a given visualization system produce?
(3) What methods can one use to produce and interact with visualizations?

Notably, in focusing on system expressiveness, these integrative reviews of AV tech-
nology have largely ignored a substantial body of over 20 experimental studies that have
attempted to substantiate the educational value ofAVtechnology.Acasual reviewof these
studies suggests that their results have been, as Gurka [7] aptly puts it,‘markedly mixed’.
Indeed, while some of the studies have demonstrated a pedagogical advantage for stu-
dents using AV technology (e.g. [13, 14]), others have found either (a) no advantage at all
(e.g. [15, 16] Chapter 2), or (b) an advantage that can be only partially attributed to AV
technology (e.g. [17]).

While computer science educators and technology critics tend to view the ‘markedly
mixed’ results of these studies as a reason not to adopt AVtechnology, we believe that, if



Table 1. The descriptive dimensions of the eight extant taxonomies of AV and software
visualization

SV taxonomy Descriptive Dimensions

Myers [54] Aspect (code, data, algorithms) � Form (static, animated)
Shu [55] What is visualized (data or information about data, program and/or

execution, software design)
Brown [56] Content (direct, synthetic) � Persistence (current, history) �

Transformation (incremental, discrete)
Stasko and Patterson [57] Aspect � Abstractness � Animation � Automation
Singh and Chignell [58] What is visualized (program, algorithm, data) � Form (static,

dynamic)
Kraemer and Stasko [59] Visualization task (data collection, data analysis, storage, display)

�Visualization purpose (debugging, performance evaluation or
optimization, program visualization)

Roman and Cox [60] Scope � Abstraction � Speci¢cation method � Interface � Presentation
Price etal. [18] Scope � Content � Form � Method � Interaction � E¡ectiveness
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we are willing to look below the surface of ‘markedly mixed,’ there are deeper lessons to
be learned from trends in these studies. However, aswe just pointed out, existing reviews
of AVtechnology have neglected to systematically analyze this body of AVempirical stu-
dies for the purpose of gaining further insight intoAVe¡ectiveness.

In this article, we aim to ¢ll this gap in the research by presenting a meta-studyof past
experimental studies of AVe¡ectiveness. Speci¢c research questions to be explored by
our meta-study include the following

* What factors have the studies posited to in£uence educational e¡ectiveness? Have
certain factors had more impact than others? Are there any notable trends?

* Howhave studies de¢ned andmeasured ‘educational e¡ectiveness?’Have those de¢ni-
tions and measurement techniques in£uenced the results?

In light of our answers to those questions, we are ultimately interested in addressing
two broader questions:

* Is AV technology educationally e¡ective?
* What are fruitful directions for future AV technology and e¡ectiveness research?

We begin, in Section 2, by de¢ning the boundaries of the meta-studyFthat is, by
specifyingwhat research falls within and outside of its scope. Section 3 brie£yoverviews
the 24 experimental studies that form the central data of our meta-study. In Section 4, we
outline the methods we employ to analyze our corpus of studies. Section 5 presents the
main ¢ndings ofour analysis. Finally, in Section 6, we synthesize those ¢ndings into a set
of conclusions and an agenda for future research.

2. Scope

The focus of this meta-study is on algorithmvisualization e¡ectiveness.We adopt a stan-
dard de¢nition of algorithmvisualization: a subclass ofsoftware visualization [18] concerned
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with illustrating computer algorithms in terms of their high-level operations, usually for
the purpose of enhancing computer science students’ understanding of the algorithms’
procedural behavior. The notion of e¡ectiveness, as it will be used here, concerns the
union of humans and technologywithin the context of a scenario of use. Associatedwith
such a scenario of use is

(a) a particular objective to be ful¢lled (e.g.‘learn how the target algorithmworks’);
(b) a particular individual or group having that objective;
(c) a particular algorithm visualization artifact that will be enlisted; and
(d) a particular target algorithm to be visualized.

Within this context, e¡ectiveness thus responds to the question:To what extent does
the algorithm visualization artifact assist the individual or group in ful¢lling the
objective?

2.1. AVScenarios of Use

Given that the notion of e¡ectiveness derives its meaning from the peculiarities of a
scenario of use, as just described, what scenarios of use might be the focus of studies of
AVe¡ectiveness? One of the original scenarios of AVuse envisioned by its pioneers was
algorithms research. For example, Brown [2] reports that his BALSA systemwas used to
analyze a novel, stable version ofMergesort. However, since such scenarios have notbeen
widely reported, and since we are unaware of e¡ectiveness studies of such scenarios, we
will not focus on them in this meta-study. Rather, our focus will be on scenarios of AV
use within computer science education. Indeed, AV technology has seen by far its most
usewithin computer science education, and educational scenarios of use have been by far
the most widely studied.

Figure 1 presents a taxonomy of scenarios of use within computer science educa-
tion. Each of these well-established scenarios distinguishes an educational use of AV
technology:

* Lectures. In high school classrooms and college lectures, computer science instructors
use graphic representations to help them explain aspects of the algorithms under
study (see, e.g. [2, Appendix A, 19]). As Gurka and Citrin [20] put it, AV in lectures
is essentially ‘an extension of the blackboard, but with more capabilities available’
(p. 183).
Scenarios of AV use in Education
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Figure 1. A taxonomy of scenarios of AVuse in education
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* Assignments. Students work on course assignments on their own time, and hand them
in before established deadlines. Several computer science educators have described
their use of assigments in which students construct their own visualizations of the
algorithms under study [2, Appendix A; 4, 5]. Goldenson and Wang [21] describe
course assignments for which students use the Pascal Genie programming environ-
ment, which has built-in design- and run-time SV tools.

* Class discussion. After completing assignments inwhich they construct their own visua-
lizations, students might use AV technology to present their visualizations to their
classmates and instructor for feedback and discussion [5]. In such scenarios, AV tech-
nology serves both to enable greater student participation in the class, and to mediate
student^instructor interaction.

* Laboratories. In AV laboratories, students interactively explore algorithms and data
structures through structured laboratory exercises [8]. Like assignments, laboratory
sessions have a concrete goal, embodied in a deliverable assignment. However, unlike
assignments, labs are constrained by both a location (a laboratory containing graphic
workstations) and a contiguous block of time (a session or sitting).

* Study. Students enrolled in computer science courses have the opportunity to study for
tests at any time. Depending on their individual preferences, students may elect to
enlist AVin their studybydrawing their ownvisualizations, by examining hard copies
of visualizations constructed byothers (professors or book authors), or by using inter-
active AVsoftware to which they have access.

* O⁄cehours. In college courses, professors and teaching assistants schedule weeklyo⁄ce
hours, during which students in need of assistance may visit them. In this setting,
instructors may use AV to help them diagnose bugs in students’ programs [20], or to
help them answer student questions. In the latter case, AV plays an explanatory role,
akin to its role in lectures.

* Tests. In closed test-taking conditions, AVcan be used to help pose questions. For ex-
ample, Brown ([2, Appendix A]) reports that exams in the algorithms courses at
BrownUniversity often included stills of algorithm animations discussed in class; stu-
dents would be asked to ‘name-that-algorithm’, just as students in an art history class
mightbe asked to identify paintings.Alternatively, one can imagine a test question that
has students to indicate the behavior of an algorithm by drawing a series of data struc-
ture snapshots.

2.2. AVresearchTechniques

The above scenarios of use provide a focal point for a body of research with a common
interest in studying, evaluating andultimately improving the e¡ectiveness ofAV technol-
ogy. Figure 2 presents a taxonomy of the general research techniques that this body of
research has employed:

* Anecdotal techniques aim to appeal to reader intuition by presenting instances and ex-
amples of AVsystem use, as recounted by the system’s authors. Nearly every paper and
article reporting on a novel AVsystem includes such an analysis.

* Programmatic techniques use the actual programs required to produce visualizations
within a given AV system as a basis for assessment. For example, Cox and Roman
[22] evaluate their Pavane system by summing the number of lines of code that are
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su⁄cient to specify a visualization within the systemFthe lower that number, the
better.

* Analytic evaluation techniques (e.g. [23, 24]) aim to provide a principled assessment
of an interactive system’s e¡ectiveness, while avoiding the overhead of extensive
empirical data collection. E¡ectiveness, in the case of analytic evaluation, boils
down to usabilityFthe fewer usability problems identi¢ed, the more e¡ective the
system.

* Empirical evaluation, in contrast to the other techniques, involves the collection of
actual data on humans involved in taskswithAVsystems. An analysis process attempts
to transform the data into a set of statements that respond to the research questions
posed by the evaluation.

In this meta-study, we focus on e¡ectiveness evaluations that employ empirical
techniques. Our position is that empirical techniques are ultimately the most informative
of the techniques, because they are rooted in observable, and often measurable,
phenomena.Althoughwebelieve that studies that employanyof the numerous empirical
techniques (see [25] for a review) have something potentially important to say about
AV e¡ectiveness, we restrict the analysis in this meta-study to those studies that use
controlled experimentation. Controlled experiments aim to assert a causal relationship
between factors (i.e. independent variables) and measures (i.e. dependent variables).
While there are many variants on controlled experiments, all of the published AV
experiments have been between-subjects experimental comparisons, in which two or
more groups of participants use alternative means to learn about an algorithm.
If statistically signi¢cant di¡erences can be detected between the groups’ perfor-
mances, then experimenters may conclude that the factors signi¢cantly a¡ect the
measures.

We limit our scope to experimental evaluations for two reasons: ¢rst, because they
constitute the largest, most mature subset of the empirical studies; and second, because
the evolution of their design reveals an evolution in thinking about why and howAV
technology is e¡ective, implying that we can gain considerable insight from considering
the legacy of these experiments as a whole.

3. Data

Our meta-study’s data consist of 24 experimental studies that have considered AV
e¡ectiveness. To the best of our knowledge, this corpus comprises close to the entire
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population, if not the entire population, of published AV e¡ectiveness experiments.
Table 2 provides a synopsis of these studies. For each experiment, the factors
(independent variables) appear in column 2; the measures (dependent variables) appear
in column 3; and a summary of the experiment’s key results appears in column 4.

Twenty-two of the 24 of the experiments attempt to determinewhether various factors
a¡ect learning within the ‘study’scenario of use described in Section 2. In these experi-
ments, learning is operationalized in terms of some sort of post-test, which participants
take upon completing their study session.The two other experiments [26, 27] consider
‘assignment’ scenarios in which participants use AV to solve problems. In these experi-
ments, problem-solving e⁄cacy is operationalized in terms of whether the problems
were solved, and how much time was needed.

Figure 3 summarizes the results of the 24 experiments. As the ¢gure illustrates, the
results have been widely mixed. Eleven of the 24 studies yielded a ‘signi¢cant’ resultF
that is, a statistically signi¢cant di¡erence between the performance of (a) a group of
students using some con¢guration of AV technology, and (b) another group of students
using either an alternative con¢guration of AV technology, or no AV technology at all.
For example, Lawrence [16, Chapters 6 and 9] found, in two separate experiments, that
students who explored algorithm animations driven by self-constructed input data sets
scored signi¢cantlyhigher than studentswho either watched the same animations driven
bydata supplied by the experimenter, or whohad no access to such animations. Likewise,
Crosby and Stelovsky [28] found that students who interacted with an algorithm anima-
tion performed signi¢cantly better than students who listened to a lecture, and that‘con-
crete’ learners (as measured by the Myers^Briggs-Type Indicator) bene¢ted signi¢cantly
more from the algorithm animation than did ‘abstract’ learners. Finally, Hansen etal. [14]
found that students who learned an algorithm using their HalVis hypermedia environ-
ment, which provides its viewers with multiple views and engages them in input data set
design, interactive prediction, and queston-answering, signi¢cantly outperformed stu-
dents who learned the same algorithm using (a) textual materials (Study I), (b) a lecture
(Study II), or (c) a conventional, one-view algorithm animation environment with no
facilities for interactive prediction or question-answering (StudyV). In follow-up studies,
Hansen et al. [14] additionally found that students who interacted with the HalVis con-
ceptual and detailed views performed signi¢cantlybetter than studentswho did not have
access to these views (StudiesVII andVIII).

In contrast, a roughly equal number of studies (10) did not have a signi¢cant result. In
other words, in these studies, no statistically signi¢cant di¡erences could be found be-
tween the performance of (a) groups of students using some con¢guration of AV tech-
nology, and (b) groups of students using either an alternative con¢guration of AV
technology, or no AV technology at all. For instance, Price [26] had two groups of stu-
dents debug a 7500 program using a debugger with and without an animated view. He
found no signi¢cant di¡erences in debugging e⁄cacybetween the two groups. Similarly,
Stasko et al. [15] had two groups of students learn the pairing heap data structure (a) by
interactingwith an algorithm animation, and (b) by studying textual materials. Although
the animation group performed better on a post-test, the di¡erence was not statistically
signi¢cant. Finally, Lawrence [16, Chapters 4 and 5] compared the post-test performance
of students who learned algorithms using animations with alternative representational
characteristics: sticks vs. dots; 9 vs. 24 vs. 41 data elements; and labels vs. no labels. She
found no signi¢cant di¡erences among the groups.



Table 2. Summary of controlled experiments that consider AVe¡ectiveness

Study Indep.Var. Depend.Var. Key Results

Price [26] Debugging medium (debugging with ani-
mated view vs. debugging without
animated view)

Debugging time
Whether bug found

No signi¢cant di¡erences were found.

Stasko etal. [15] Learning medium (text only vs. text-
and-animation)

Post-test accuracy Non-signi¢cant trend was found favor-
ing the text-and-animation group
(t=1.111, df=18, po0.13)

Lawrence [16, Chapter 4.4] Data setsize (9, 25, or 41 elements) Post-test accuracy No signi¢cant di¡erences were found
Datarepresentationstyle (horizontal/vertical
sticks, dots)

Lawrence [16, Chapter 5] Order of algorithm presentation (Quick sort
¢rst vs. Selection sort ¢rst)

Post-test accuracy
Time to take post-test

No signi¢cant di¡erences were found
Spatial and verbal abilities not corre-
lated with performanceData representation style (labeled vs.

unlabeled)
Covariates: Spatial and verbal abilities

Lawrence [16, Chapter 6] Level of learner involvement (study text/pas-
sively view animation vs. study text /
actively view by constructing own input
data sets)

Post-test accuracy
Time to take post-test

Participants who viewed animations for
which they constructed their own data
sets scored signi¢cantly higher on
post-test

Lawrence [16, Chapter 7] Representation color (color vs. black-and-
white)
Representation labeling (algorithmic step
labels vs. no labels)

Post-test accuracy
Accuracy on a transfer
task

Participants who viewed black-and-
white animations scored signi¢cantly
higher
Participants whoviewed labeled anima-
tions scored signi¢cantly higher

Lawrence [16, Chapter 8] Order of medium (text-¢rst vs. animation-
¢rst)

Post-test accuracy No signi¢cant di¡erences detected

Orderofalgorithmpresentation (selection sort
¢rst vs. Kruskal MST¢rst)
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Lawrence [16, Chapter 9] Learning medium/Level of learner involvement
(lecture-only vs. lecture + passively
view animation vs. lecture + actively
view animation by constructing own
input data sets)

Free-response post-test
accuracy
Multiple choice/true-false
post-test accuracy

On free-response post-test, participants
who heard lecture and actively viewed
animation signi¢cantly outperformed
students who only heard lecture

Crosby and Stelovsky [28] Learning medium (lecture vs. multimedia)
Cognitive style (S/concrete vs. N/abstract)
Testquestion type (text vs. graphics)

Pre- to post-test improve-
ment

Participants who learned with multime-
dia signi¢cantly outperformed partici-
pants who learned through the lecture
Signi¢cant interaction e¡ect between
cognitive style and learning medium:
‘S’ participants performed signi¢cantly
better with multimedia

Byrne etal. [17, Study I] Learning medium (animation vs.
no animation)
Interactiveprediction (predict the next
algorithm step vs. no prediction)

Post-test accuracy
Prediction accuracy

On post-test’s ‘hard’ questions, partici-
pants who viewed the animation and/
or made predictions performed signi¢-
cantly better than participants who did
neither.

Byrne, et al. [17, Study II] Same as previous Same as previous Same as previous, except that di¡erence
was detected on post-test’s ‘procedural’
questions,

Gurka [20] Learning medium (animation vs. no ani-
mation) (Note:This experiment was an
attempt to improve upon a portion of
the Byrne etal. [17] experiment)

Post-test accuracy No signi¢cant di¡erences were found
between the two groups
Animation group appeared to be highly
motivated by the animation

Kann etal. [33] Level of learner involvement (program algo-
rithm vs. program algo./construct ani-
mation vs. program algo./view anim.
vs. program algo./view anim./construct
anim.)

Programming accuracy
Post-test accuracy

Participants who viewed animation
scored signi¢cantly higher on post-test
than participants who did not view
animation

A
L
G
O
R
IT

H
M

V
ISU

A
L
IZ

A
T
IO

N
E
F
F
E
C
T
IV

E
N
E
SS

267



Mulholland [27] Tracing medium (three textual tracers,
TPM)

Number of problems
solved (5min max per
problem)

Participants who used the graphical tra-
cer (TPM) solved signi¢cantly fewer
problems than participants who used
the textual tracers (Spy, PTP,TTT)

Hansen etal. [14, Study I] Learning medium (HalVis hypermedia vs.
text-only)

Pre- to post-test improve-
ment (pseudocode
reordering, algo. op. simu-
lation, and prediction
tasks)

Participants who learned with HalVis
signi¢cantly outperformed participants
who used text-only

Hansen etal. [14, Study II] Learning medium (HalVis hypermedia vs.
text-only)

Same as previous Participants who learned with HalVis
signi¢cantly outperformed participants
who used text-only

Hansen etal. [14, Study III] Learning medium (HalVis hypermedia vs.
carefully selected text + problem-
solving exercises)

Same as previous No signi¢cant di¡erences detected

Hansen etal. [14, Study IV] Learning medium (HalVis hypermedia vs
lecture)

Same as previous Participants who learned with HalVis
signi¢cantly outperformed participants
who viewed lecture

Hansen etal. [14, StudyV] Learning medium (HalVis hypermedia vs.
text + actively view animation by select-
ing own input data sets)

Same as previous Participants who learned with HalVis
signi¢cantly outperformed participants
whoread text and interactedwithXtango

Hansen etal. [14, StudyVI] Combination of HalVis features (full HalVis
vs. HalVis without animation chunking
vs. HalVis without pseudocode step
highlighting vs.HalViswithout interac-
tive questions)

Same as previous No signi¢cant di¡erences detected

Table 2 (Continued)

Study Indep.Var. Depend.Var. Key Results
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Hansen etal. [14, StudyVII] Combination of HalVis views (conceptual/
detailed/populated vs. conceptual/
detailed vs. conceptual/populated vs.
detailed/populated)

Same as previous Participants who interacted with con-
ceptual view signi¢cantly outper-
formed participants who did not
interact with the conceptual view

Hansen et al. [14, Study
VIII]

Combination of HalVis views (conceptual/
detailed/populated vs. conceptual only
vs. detailed only vs. populated only)

Same as previous Participants who had access to (a) all
three HalVis views, or (b) the Detailed
View, signi¢cantly outperformed the
conceptual view and populated view
groups
Conceptual view group signi¢cantly
outperformed the populated view
group

Hundhausen and Douglas
[31]

Level of Learner Involvement (self-construct
visualizations vs. actively view pre-
de¢ned visualizations)

Accuracy and time on tra-
cing and programming
tasks

No signi¢cant di¡erences were detected

Jarc etal. [32] Interactive prediction (use animation soft-
ware that enbles prediction of next algo-
rithm step vs. use animation software
with no prediction)

Post-test at end of three
weekly lab sessions

No signi¢cant di¡erences were detected
on post-test

Learning time The prediction group spent signi¢-
cantly more time using the animation
software than the no-prediction group
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Figure 3. Summary of the results of the 24 experiments in our corpus
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Two studies found a signi¢cant result in which the positive impact of visualization
could not be disentangled from another factor. In these studies, Byrne et al. [17] found
that students who made predictions regarding future animation frames while viewing
algorithm animations performed signi¢cantly better than students who did not view
animations ormake predictions; however, the individual e¡ects of prediction and anima-
tion could not be disentangled statistically.

Finally, one studyyielded a‘negative’result inwhich studentswho usedAVtechnology
actually performed signi¢cantlyworse than students who used text-based tools. In parti-
cular, Mulholland [27] found that, in Prolog tracing tasks, participants who used any of
three textual tracers solved signi¢cantlymore problems than participantswhousedTPM,
a graphical tracer.

4. Method

In the ¢eld of psychology, meta-analytical techniques (see, e.g. [29]) have been developed
for statistically analyzing abodyof related experimental studieswith similar independent
and dependent variables.The goal of these meta-analytical techniques is to infer invariant
cause^e¡ect relationships based on the ¢ndings of a corpus of related studies.To do so, a
statistical meta-analysis systematically combines and compares the studies in order to
determine the e¡ect size and signi¢cance level of their independent variables.

For example, in order to build a‘task-feature taxonomy’ that can guide the e¡ective use
of informationvisualization technology, Chen andYu [30] perform a statistical meta-ana-
lysis of a sample of 35 experimental studies of information visualization. However, the
diversity of the studies in their sample makes it di⁄cult to apply meta-analytic techni-
ques; they are ultimately forced to reduce their sample to six su⁄ciently homogeneous
studies focusing on information retrieval tasks. Interestingly, their analysis determines
that individual di¡erences have a larger and more consistent e¡ect on human perfor-
mance than does information visualization technology itself.

We considered using statistical meta-analytic techniques in this meta-study, but ulti-
mately decided against them for two reasons. First, like the sample of Chen andYu, the
corpus of experimental studies on which we are focusing is quite diverse. Indeed, while
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their independent and dependent variablesmay appear similar on the surface, theways in
which those variables are manipulated and operationalized vary considerably. For exam-
ple,while some studies compare the use ofAVtechnologyagainst the use of conventional
learningmaterials (e.g. [15,17, 28]), others compare competing versions of AVtechnology
(e.g. [16, 31, 32]). Likewise, while some studies operationalize learning in terms of a post-
test consisting of exam-style questions (e.g. [15^17]), others opt to measure performance
in terms of accuracy on programming [31, 33], tracing [31], and prediction [14, 17] tasks.
Second, even if, like Chen and Yu, we were able to ¢nd a small number of su⁄ciently
homogenous studies on which to perform a statistical meta-analysis, we do not believe
that such a meta-analysis would be informative.This is not only because the sample that
we would ultimately consider would be small, but also because large discrepancies in
the results of the studies in our sample would give rise to statistically uninformative
conclusions.

For these reasons, we believe that anymeta-analysis of this corpus of studies must ¢nd
a principled way to classify the studies into smaller groups, such that each group’s results,
when taken as a whole, is more uniform.What might be the basis of such a principled
classi¢cation? In scrutinizing the studies in our corpus, we have observed (see also [5])
notable di¡erences in their choices of both independent variables (i.e. the factors they
posit to cause e¡ectiveness) and their choices of dependent variables (i.e. the ways in
which they measure e¡ectiveness). For example, some studies manipulate representa-
tional features of visualizations (e.g. color, shading, geometry), while others manipulate
the learner’s level of activity (e.g. learner views visualization; learner designs input data;
learner makes predictions regarding future visualization states). Likewise, the studies
measure e¡ectiveness in terms of di¡ering kinds of knowledge acquisitionFboth con-
ceptual and procedural.

The analysis method we employ in this meta-study, then, involves ¢rst classifying the
studies in various principled ways based on their independent and dependent variables,
and then scrutinizing the results of the studies vis-a-vis these classi¢cations. Our analysis
of study results includes both quantitative comparisons of the numbers of statistically
signi¢cant and non-signi¢cant results in opposing classes of studies, and qualitative as-
sessments of trends.

It is important to note that our analysis will notmake judgments about the validity of
each experimentFthat is, the extent to which each experiment’s results can be trusted.
Rather, we will make the simplifying assumption that the results of each experiment in
our corpus can be trusted roughly equally.While the experimental results on which we
base our analyses are clearly tempered by the soundness of their experimental designs,
and while there clearly are di¡erences in the soundness of the experiment designs in our
corpus, we believe that the di¡erences are minor. Hence, critiquing experimental design
would, we believe, constitute an unnecessary distraction from our focus on results.

5. Analysis

5.1. IndependentVariables

We begin our analysis by scrutinizing the studies’ independent variablesFthat is, the
factors they have posited to cause e¡ectiveness.We argue that the studies’di¡erences in
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independent variables actually re£ect deeper di¡erences in underlying theories of e¡ec-
tiveness: the studies’assumptions about howandwhyAVmightbe e¡ective. In the studies
in our corpus, AV technology is enlisted as a pedagogical tool; its goal is to enhance
learning. It follows that the theories of e¡ectiveness underlying the studies in our corpus
correspond with alternative theories of learning.

This section begins by presenting the four alternative learning theories adopted by the
studies in our corpus. Next, we link each study to a particular theory based on its choice
of independent variables. Following that, we quantitatively assess the robustness of each
theory by considering the number of signi¢cant vs. non-signi¢cant results of the studies
associated with it. Finally, we perform a reality check on our ¢ndings by assessing the
extent to which the empirical results of competing theories actually lend support to the
theory that our analysis found to have the greatest support. This ¢ner-grained analysis
enables us to draw more de¢nitive conclusions about the robustness of that theory.

5.1.1. FourTheories of E¡ectiveness

The varied designs of theAVexperimental studies re£ect a variety of underlying theories
of e¡ectiveness.While ¢ner distinctions may certainly be made among these studies’ the-
oretical underpinnings, the broad-brush analysis presented here places them into four
broad theoretical camps,whichwe labelEpistemicFidelity,Dual-coding, IndividualDif-
ferences, and Cognitive Constructivism. Below, we brie£y describe these theories; for a
fuller treatment, see [5].
Epistemic Fidelity. Epistemic Fidelity theory [5, 34, 35] has its roots in a representation-

alist epistemological framework (see, e.g. [36]), which assumes that humans carry around
in their heads symbolic models of the physical world, and that such symbolic models are
the basis for all of their reasoning and action.The key assumption of Epistemic Fidelity
theory, then, is that graphics have an excellent ability to encode an expert’s mental model
of an algorithm, leading to the robust, e⁄cient transfer of that mental model to the view-
er (see Figure 4).Thus, Epistemic Fidelity theory emphasizes the value of a good denota-
tional match between the graphical representation and the expert’s mental model. The
higher the ‘¢delity’of the match, the more robust and e⁄cient is the transfer of that men-
tal model to the viewer of the visualization, who non-problematically decodes and inter-
nalizes the target knowledge.
Dual-coding. Based on Mayer and Anderson’s [37] integrated dual-code hypothesis,

Dual-coding theory proceeds from Paivio’s [38] assumption that ‘cognition consists lar-
gely of the activity of two partly interconnected but functionally independent and dis-
tinct symbolic systems’ (p. 308). One encodes verbal events (words); the other encodes
non-verbal events (pictures). According to Mayer and Anderson’s hypothesis, visualiza-
tions that encode knowledge in bothverbal and non-verbal modes allow viewers to build
dual representations in the brain, and referential connections between those representations.
As a consequence, such visualizations facilitate the transfer of target knowledge more
e⁄ciently and robustly than do visualizations that do not employ dual-encoding.
IndividualDi¡erences. A legacy of psychological experiments have attempted to operatio-

nalize, and to better understand, individual di¡erences in human cognitive abilities and
learning styles (see, e.g. [39]).The key contribution of this research has been not only a
battery of instruments for rating and classifying individuals along several dimensions,
but also empirical results that make important statements about human performance
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Figure 4. A schematic of epistemic ¢delity theory’s view of knowledge transfer
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relative to individual di¡erences so measured. Thus, in the context of this analysis,
Individual Di¡erences theory asserts that measurable di¡erences in human abilities
and styles will lead to measurable performance di¡erences in scenarios of AVuse. For
example, within the scope of Epistemic Fidelity theory’s knowledge transfer model (see
Figure 4), IndividualDi¡erenceswith respect to learning style (see, e.g. [40])might enable
some individuals to decode visualizations more e⁄ciently and robustly than other indi-
viduals.
Cognitive Constructivism. Rather than regarding knowledge as representations of an ob-

jective reality that people carry around in their heads, Cognitive Constructivism (see, e.g.
[41]) asserts that there is no absolute knowledge. Instead, it holds that individuals con-
struct their own individual knowledge out of their subjective experiences in the world.
By becoming actively engaged with their environment, individuals actively construct
new understandings by interpreting new experiences within the context of what they
already know.

Note that Cognitive Constructivism’s emphasis on active learning has important im-
plications for the e¡ective use of AVtechnology. In particular, it suggests that individuals
do not stand to bene¢t from the technology by merely passively viewing visualizations,
nomatterhowhigh the level of their epistemic ¢delity. Instead,AVtechnology usersmust
become more actively engaged with the technology in order to bene¢t most from it.
The technology, on this view, is seen not as a conveyer of knowledge, but as a tool for
knowledge construction.

In order to highlight the key distinctions among the four theories just discussed,
Table 3 synopsizes the theories and the role they ascribe to an AV.

5.1.2. Linking Studies toTheories

The independent variables chosen by each of the 24 experimental studies summarized
earlier, aswell as theways inwhich those independent variables are manipulated, provide
insight into each study’s theoretical underpinnings. By examining each study’s experi-
mental manipulation, we can link it to one of the theories of e¡ectiveness just discussed.

Table 4 links each of the 24 experimental studies to an underlying theory of e¡ective-
ness. In four cases [16, Chapter 5 and 7, 28, 14, StudyVI], a study is linked to two under-
lying theories, because the study de¢ned independent variables, or performed
experimental manipulations, that were judged to support multiple underlying theories.

As this table indicates, we judged ten studies to be aligned with Epistemic Fidelity
theory. These studies manipulated either (a) representational features of visualizations,
or (b) the order in which visualizations are presented.The hypothesis that these studies



Table 3. Juxtaposition of the four theories of e¡ectiveness

Theory Synopsis Role of AV

Epistemic
Fidelity

Graphics have an excellent ability to encode an
expert’s mental model, leading to the robust,
e⁄cient transfer of that mental model to viewers

Encoding of knowledge

Dual-coding Representations with dually coded information
(e.g. graphics and text) promote the most robust
and e⁄cient knowledge transfer

Encoding of knowledge

Individual
Di¡erences

Di¡erences in human cognitive abilities and
learning styles enable some to bene¢t from SV
more than others

Unspeci¢ed, but ‘encoding
of knowledge’ ¢ts in well
with the theory

Cognitive
Constructi-
vism

Active engagement with SVenables one to
construct one’s own understanding

Resource for knowledge
construction
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are positing is that certain representational features, or certain orderings of features, will
promote the knowledge decoding process more robustly and e⁄ciently than others.

In two separate studies, Lawrence [16, Chapters 5 and 7] compared the e⁄cacy of re-
presentations in which information is singly (graphics only) and doubly encoded (gra-
phics and textual labels). These studies are clearly inspired by Dual-coding theory,
which holds that the dually coded representationswill promote more robust and e⁄cient
knowledge transfer.

Lawrence [16] and Crosby and Stelovsky [28] considered the impact of spatial abilities,
cognitive abilities, and learning styles on one’s ability to learn from avisualization.These
studies were clearly in£uenced by Individual Di¡erences theory.

Finally,14 studies manipulated the way inwhich humans are engaged with their envir-
onment to accomplish some task for which AV is assumed to be bene¢cial. By varying
primarily the kinds of activities and forms of engagement, and not the representation,
these studies demonstrate a loyalty toCognitiveConstructivism,whichviews the bene¢ts
of AVtechnology not in its ability to transfer knowledge, but in its ability to promote the
construction of knowledge through active engagement.

5.1.3. Coarse-grainedAnalysis of TheoryRobustness

Given that each study shows a loyalty to one of the theories of e¡ectiveness, an important
question arises:What level of experimental support hasbeen demonstrated for each of the
four theories? To start to answer that question, Figure 5 presents a bar graph of the ex-
perimental results vis-a-vis each of the four theories. In this bar graph, each experimental
study is assumed to have equal weight.The length of each bar corresponds to the number
of studies that have been guided by the corresponding theory.The ¢lled-in portion of
each bar indicates the number of statistically signi¢cant results that were obtained in sup-
port of the theorya.The amount each bar is ¢lled in thus graphically indicates the propor-
tion of the results that were statistically signi¢cant.
a Note that the one study that obtained negative signi¢cant result [27] is counted as a non-signi¢cant result
in the Epistemic Fidelity bar.



Table 4. The experimental studies vis-a-vis the e¡ectiveness theories they were designed to
support

Epistemic Fidelity Dual Coding Individual
Di¡erences

Cognitive Constructivism

Price [26] Lawrence
[16, Chapter 5]

Lawrence
[16, Chapter 5]

Stasko etal. [15]

Lawrence [16, Chapter 4.4] Lawrence
[16,Chapter 7]

Crosby and
Stelovsky [28]

Lawrence [16, Chapter 6

Lawrence [16, Chapter 7] Lawrence [16, Chapter 9]
Lawrence [16, Chapter 8] Crosby and Stelovsky [28]
Gurka [20] Byrne et al. [17, Study I]
Mulholland [27] Byrne et al. [17, Study II]
Hansen etal. [14, Study III] Kann etal. [33]
Hansen etal [14, StudyVI] Hansen etal. [14, Study I]
Hansen etal. [14 StudyVII] Hansen etal. [14, Study II]
Hansen etal [14, StudyVIII] Hansen etal. [14, Study IV]

Hansen etal. [14, StudyV]
Hansen etal. [14, StudyVI]
Hundhausen and Douglas [31]
Jarc et al. [32]
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As Figure 5 illustrates, Cognitive Constructivism has been the most tested of the four
theories (14 studies), with Epistemic Fidelity theory trailing close behind (10 studies), and
Dual-coding theory and Individual Di¡erences theory lagging far behind. Moreover,
notice that studies in support of Cognitive Constructivism have obtained the greatest
number (10), and highest percentage (71%), of statistically signi¢cant di¡erences. Based
on this broad-brush analysis, one can conclude that Cognitive Constructivism has gar-
nered the most consistent empirical support.

5.1.4. Finer-grainedAnalysis of Cognitive Constructivism

Clearly, the conclusion reached by the above analysis must be considered tentative, be-
cause the analysis fails to consider the global case for a given theoryFthat is, whether
study results outside of a given theoretical camp lend support to, or weaken, a given
theory. Focusing on the case for Cognitive Constructivism, the analysis that follows scru-
tinizes its support across the entire corpus of studies. As we shall see, this analysis lends
further credence to the theory by illustrating its broader predictive success.

An important assumption of Cognitive Constructivist theory is that learner activity
matters; active learning is assumed to be superior to passive learning. Rather than pas-
sively viewing algorithmvisualizations, active learners augment their viewing with such
activities as

* constructing their own input data sets (e.g. [16, Chapter 9]);
* making predictions regarding future visualization states (e.g. [17]);
* programming the target algorithm (e.g. [33]);
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* answering strategic questions about the visualization (e.g. [14]); and
* constructing their ownvisualizations (e.g. [31]).

On the Cognitive Constructivist view, then, AV technology is seen as educationally
e¡ective to the extent that it actively engages learners in such activities.

Given this, an obvious question arises: Does the precise form of the activitymatter? In
other words, are some activities better at promoting ‘active learning’ than others? The
Cognitive Constructivist position is that, as long as the learner’s activity is salient to the
target knowledge or skill, the e¡ort required to engage in the activity is more important
than its actual form. Thus, assuming equal salience, Cognitive Constructivist theory
would predict that the more e¡ort required to engage in the activity, the more robust
the learning.

Applying this reasoning to controlled experimental comparisons, we ¢nd that Cogni-
tive Constructivism predicts an educational advantage only in cases inwhich the activity
of one treatment group is more e¡ortful than that of the other treatment group(s). Con-
versely, if all treatment groups’activity is roughly equivalent in terms of necessary e¡ort,
then the theory does not predict any learning di¡erences.

To further scrutinize the robustness of Cognitive Constructivism, we can examine the
results of the 24 experiments in our corpus vis-a-vis the equivalence of the e¡ort required
to perform the activities in their competing treatment groups. As a ¢rst step, we must
judge the equivalence of the e¡ort required to perform the activities in competing treat-
ment groups (seeTable 5). If, in a given experiment, the competing learning activities
require roughly equivalent cognitive e¡ort, we classify them as ‘E¡ort equivalent.’ For
example, we judge that viewing two alternative visualizations [16, Chapter 4.4] requires
roughly equivalent e¡ort. Likewise, we estimate that paper-and-pencil problem-solving
exercises require e¡ort roughly equivalent to that of interacting with the HalVis
hypermedia system [14, Study III], which engages users in equivalent problem-solving



Table 5. Classi¢cation of experiments based on the equivalence of the e¡ort required to
perform the activities in competing treatment groups

E¡ort Equivalent E¡ort not Equivalent

Price [26] Stasko etal. [15]
Lawrence [16, Chapter 4.4] Lawrence [16, Chapter 6]
Lawrence [16, Chapter 5] Lawrence [16, Chapter 9]
Lawrence [16, Chapter 7] Crosby and Stelovsky [28,]
Lawrence [16, Chapter 8] Byrne et al. [17, Study I]
Gurka [20] Byrne et al. [17, Study II]
Mulholland [27] Kann et al. [33]
Hansen etal. [14, Study III] Hansen et al. [14, Study I]
Hansen etal. [14, StudyVII] Hansen et al. [14, Study II]
Hansen etal [14, StudyVIII] Hansen et al. [14, Study IV]

Hansen et al. [14, StudyV]
Hansen et al. [14, StudyVII]
Hundhausen and Douglas [31]
Jarc etal. [32]
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activities. If, on the other hand, a notable di¡erence exists in the e¡ort levels required to
engage in the competing treatment groups of a given experiment, we classify the experi-
ment as ‘E¡ort not equivalent.’ For example, in our judgment, reading textual materials,
listening to a lecture, and passively viewing avisualization all require markedly less e¡ort
than actively using a visualization in conjunction with some sort of learning exerciseF
for example, prediction [17, 32], input data selection [16, Chapter 9], or programming [33].

An important implication of Cognitive Constructivism is that experiments rated as
‘E¡ort not equivalent’ will show a signi¢cant learning advantage for the more e¡ortful
group . Conversely, the theory suggests that experiments rated as ‘E¡ort equivalent’ will
show no signi¢cant di¡erences between the treatment groupsb.The next step in the ana-
lysis is to seewhether these predictions are actuallyborne out. Under the assumption that
each experimental study has equal weight, Figure 6 carries out this step by plotting the
number of results and signi¢cant results vis-a-vis the ‘E¡ort not equivalent/E¡ort equiva-
lent’ classi¢cation presented in Table 5. In six of the nine studies in which competing
treatment group activities required roughly equivalent e¡ort, no signi¢cant results were
found. In contrast, in ten of the14 studies inwhich one of the treatment groups required
more e¡ort, the group expending the higher level of e¡ort signi¢cantlyoutperformed the
other group. These results accord reasonably well with the theory’s predictions. In the
case of ‘E¡ort equivalent’studies, Cognitive Constructivism predicts 67% of the results.
In the case of ‘E¡ort not equivalent’ studies, Cognitive Constructivism predicts 71% of
the results.
bOf course, these predictions assume that an experiment’s learning materials are well designed and
contain enough information to enable participants to performwell on the post-test. Indeed, if the experi-
mental materials are de¢cientFfor example, if the algorithm animation is poorly designed or lacks neces-
sary informationFthen no amount of e¡ort is likely to lead to a measurable learning di¡erence.
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This quantitative ¢nding is further reinforced by contrasting two studies classi¢ed as
‘E¡ort equivalent’with similarlydesigned studies classi¢ed as‘E¡ort not equivalent’.Gur-
ka [20] attempted to replicate one of the experiments of Byrne etal. [17], which obtained a
signi¢cant result in favor of participantswhomade predictions andviewed an animation.
However, Gurka eliminated the prediction conditions from her experiment, opting in-
stead to compare a group of participants who used an animation against a group of par-
ticipantswho did not, with no substantial di¡erences in the groups’ levels of engagement.
Both groups of participants, for example, engaged in group studyas part of their learning
session. As would be predicted by Cognitive Constructivist theory, Gurka’s de facto
equalization of participants’activities led to a non-signi¢cant result.

Likewise, in a series of studies,Hansen etal. [14] found that participantswho used their
HalVis multimedia environment, which actively engages its users by having them con-
struct their own input data sets, answer questions and make predictions, signi¢cantly
outperformed participants who learned from textual materials (Studies I and II), and
viewed a lecture (Study IV). In one of their studies (Study III), however, the researchers
attempted to equalize the activities of theHalVis and text-onlygroups byhaving students
in the text-onlygroup not only read articles on an algorithm, but also complete a series of
paper-and-pencil exercises. As would be predicted by Cognitive Constructivist theory,
the researchers’ decision to engage the text-only participants as actively as participants
in the HalVis group led to their failure to ¢nd a signi¢cant di¡erence between the two
groups’ learning outcomes.

In sum, our ¢ner-grained analysis shows that Cognitive Constructivism predicts not
only the greatest percentage of signi¢cant results (77%), but also a majority (60%) of the
non-signi¢cant results.This analysis lends further credence to our coarse-grained con-
clusion that Cognitive Constructivist theory is the most robust. In contrast, Epistemic
Fidelity theory has had the least predictive success, having predicted just 30% of the sig-
ni¢cant results, with another signi¢cant result running completelycounter to the theory’s
predictions. Finally, due to lownumbers of supporting studies, it is fair to say that the jury
is still out on Dual-coding and Individual Di¡erences theories.

5.2. DependentVariables

We now move to an analysis of the studies’ dependent variablesFthat is, the ways in
which they have measured e¡ectiveness. The two studies in our corpus that examined
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‘assignment’ scenarios measured e¡ectiveness in terms of participants’ success at solving
debugging and tracing problemswith the help ofAVtechnology [26, 27].Neither of these
experiments yielded a signi¢cant result. A survey of the remaining 22 studies’dependent
variables suggests that theymeasured e¡ectiveness in remarkably similar ways. Indeed, all
of these experiments elected to measure e¡ectiveness in terms of knowledge acquisition.
The underlying hypothesis was that the experimental manipulation will lead some ex-
perimental treatments to acquire target knowledge more robustly than others.

On closer inspection of the 22 studies thatmeasure e¡ectiveness in terms ofknowledge
acquisition, we ¢nd notable di¡erences both in terms of what they measure, and how they
measure it. Below, we further investigate these two key di¡erences, in an attempt to de-
termine whether certain choices of dependent variables have led to greater success in
detecting learning di¡erences.

5.2.1. Di¡erences inWhat Knowledge isMeasured

The ¢rst notable di¡erence among the studies’ dependent variables lies in the precise
types of knowledge they attempt to measure. Consistent with typical college exams in
computer science, the studies have aimed to measure two distinct types of knowledge:

* conceptual or declarativeFan understanding of the abstract properties of an algorithm,
e.g. its Big-O e⁄ciency, its range of output, or limits on the input data that it
can process. A sample test question might be ‘What is the worst-case e⁄ciency of
the algorithm?’

* proceduralFan understanding of the procedural, step-by-step behavior of an algo-
rithm, that is, how it operates on a set of input data. A sample test question might
involve tracing an algorithm’s key variables and data structures for a given set of input
data.

It is important to note that these two forms of knowledge are not necessarily distinct.
Frequently, a high level of conceptual knowledge is needed to be able to understand an
algorithm’s procedural behavior. For example, in order to understand how theQuicksort
algorithmworks, one needs a conceptual understandingof recursion. Conversely, under-
standing procedural operations can helpwith conceptual questions. For example, grasp-
ing the pattern of Quicksort’s divide-and-conquer strategy can give one insight into the
algorithm’s e⁄ciency.

Table 6 classi¢es the 22 knowledge-measuring studies according towhether their eva-
luation instruments test (a) conceptual andproceduralknowledge, (b) conceptualknowledge only, or (c)
proceduralknowledge only. (Note that some studies include multiple dependent measures that
test more than one of these combinations.These studies are listed multiple timesFonce
for each respective combination.) Since most visualizations focus on the procedural be-
havior of an algorithm, it is no surprise that a majority of the studies have attempted to
measure procedural knowledge alone. For the same reason, only a small number (3) of
the studies have measured conceptual knowledge alone. Nine studies have forged a mid-
dle ground by measuring both forms of knowledge.

Under the assumption that each experimental study has equal weight, Figure 7 carries
the analysis further by graphically presenting the number of signi¢cant and non-signi¢-
cant results vis-a-vis the three classes of experiments categorized inTable 6. As the ¢gure
illustrates, all three knowledge measures garnered comparable levels of experimental



Table 6. Classi¢cation of experimental studies based on the type of knowledge required to
answer the questions on their evaluation instruments

Conceptual and procedural Conceptual only Procedural only

Stasko etal. [15] Lawrence [16, Chapter 7] Lawrence [16, Chapter 7]
Lawrence [16, Chapter 4.4] Lawrence [16, Chapter 9] Lawrence [16, Chapter 8]
Lawrence [16, Chapter 5] Byrne etal. [17, Study II] Crosby & Stelovsky [28]
Lawrence [16, Chapter 6] Kann et al. [33]
Lawrence [16, Chapter 9] Byrne et al. [17, Study I]
Gurka [20] Byrne et al. [17, Study II]
Kann et al. [33] Hundhausen and Douglas [31]
Jarc etal. [32] Hansen et al. [14, Study I]

Hansen et al. [14, Study II]
Hansen et al. [14, Study III]
Hansen et al. [14, Study IV]
Hansen et al. [14, StudyV]
Hansen et al. [14, StudyVI]
Hansen et al. [14, StudyVII]
Hansen et al. [14, StudyVIII]

Note: Some studies are listed more than once, because they employedmultiple measurement
instruments.
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support; no one measure appears to be more sensitive to learning e¡ects than any other.
Given that algorithm visualizations illustrate the procedural behavior of algorithms, it is
perhaps somewhat surprising that two out of the three studies that measured conceptual
knowledge exclusively obtained signi¢cant results. However, the sample size (3) is clearly
too small for general conclusions to be drawn.

Of the other twoknowledgemeasurements, proceduralknowledgeonlyappears tohavebeen
more sensitive to learning di¡erences than conceptual and procedural knowledge, although this



ALGORITHM VISUALIZATION EFFECTIVENESS 281
result is di⁄cult to interpret. One might speculate that the conceptual portion of the
conceptual-and-procedural tests iswhatdiminished their sensitivity. If thatwere the case,
we would expect the conceptual-only tests to be even less sensitive than procedural-and-
conceptual tests.That is not the case, however. Indeed, we ¢nd that combining the con-
ceptual-only results with the conceptual-and-procedural results actually raises the overall
sensitivity of conceptual-and-procedural tests to 45% (¢ve of the11signi¢cant results). In
spite of these inconsistent results, procedural test questions still appear to be somewhat
more sensitive toAV technology’s educational bene¢ts than conceptual questions.

5.2.2. Di¡erences inHowKnowledgeAcquisition isMeasured

The methodology employed to measure knowledge acquisition constitutes the second
notable di¡erence in the studies’dependent variables. In thirteen of the 22 studies (see
Table 7), a post-test designed to measure knowledge acquisition formed the sole basis of
measurement. Post-test scores constituted the data that are statistically analyzed. In con-
trast, the other nine studies (seeTable 7) gave participants both a pre-test and a post-test.
In these studies, pre-test to post-test improvement formed the basis of the statistical
analyses.

As Figure 8 illustrates, the results of experiments employing these two alternative mea-
surement techniques di¡er noticeably. Seven of 13 (54%) of the studies that measured
learning using a single post-test found a statistically signi¢cant di¡erence between treat-
ment groups. In contrast, seven of the nine (78%) studies that measured learning based
on pre- to post-test improvement found statistically signi¢cant di¡erences. In interpret-
ing the 78% success rate of pre- to post-test improvement, one should keep inmind that it
is based almost entirely on the work of a single line of studies. Nonetheless, given the
di¡erence in success rates, one can cautiously conclude pre- to post-test improvement
may be more sensitive to learning di¡erences than simple post-test performance.
Table 7. Classi¢cation of experimental studies based on their method of measuring learning

Post-test only Pre- to post-test improvement

Stasko etal. [15] Crosby and Stelovsky [28]
Lawrence [16, Chapter 4.4] Lawrence [16, Chapter 5]
Lawrence [16, Chapter 5] Hansen etal. [14, Study II]
Lawrence [16, Chapter 6] Hansen etal. [14, Study III]
Lawrence [16, Chapter 7] Hansen etal. [14, Study IV]
Lawrence [16, Chapter 8] Hansen etal. [14, StudyV]
Lawrence [16, Chapter 9] Hansen etal. [14, StudyVI]
Gurka [20] Hansen etal. [14, StudyVII]
Kann et al. [33] Hansen etal. [14, StudyVIII]
Byrne etal. [17, Study I]
Byrne etal. [17, Study II]
Hundhausen and Douglas [31]
Jarc etal. [32]
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Viewing these results in light of Cognitive Constructivism’s predictions lends further
credence to this ¢nding. Just two experimental studies [14, Studies III andVI] that mea-
sured pre- to post-test improvement actually failed to obtain a signi¢cant di¡erence. Of
those two studies, Cognitive Constructivism would have predicted only one of the stu-
dies to ¢nd a signi¢cant di¡erence between treatment groups.Thus, according to Cog-
nitive Constructivism, the pre- to post-test improvement measure failed just once. In
contrast, the post-test only measure failed three times. Indeed, of the six ‘post-test only’
studies that failed to ¢nd a signi¢cant di¡erence, Cognitive Constructivism would have
predicted three [15, 31, 32] to have found a signi¢cant di¡erence.

6. Conclusions

In this article, we have presented an integrative review of empirical studies of algorithm
visualization e¡ectiveness, in order to uncover trends in the research that might help us
better understand how and whyAV technology is e¡ective.The focus of our review has
been on one particular class of empirical studies: controlled experiments of AV technol-
ogy in educational scenarios of use.We have pursued two separate analyses of 24 such
experimental studies. Our ¢rst analysis examined their results vis-a-vis their independent
variables in an attempt to better understand what factors have most consistently caused
e¡ectiveness. Conversely, our second analysis looked at the studies’ results vis-a-vis their
dependent variables, in order to understandboth howe¡ectiveness has been de¢ned, and
what measures are best able to detect it.What exactly have we learned from our meta-
study’s review and analysis? We conclude by revisiting our four original research ques-
tions in light of our results.

6.1. What Factors have had the Most Impact on E¡ectiveness?

Four general theories of e¡ectiveness, encompassing di¡ering epistemological assump-
tions about knowledge and its relationship to an AV, have been embraced by our sample
of experimental studies: Epistemic Fidelity, Dual-coding, Individual Di¡erences, and
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Cognitive Constructivism. By far the greatest number of studies have been guided by
either Epistemic Fidelity or Cognitive Constructivism. The other two theories, Dual-
coding and Individual Di¡erences, have not been explored thoroughly enough for de¢-
nitive conclusions to be drawn. As our coarse-grained analysis indicates, experimental
manipulations of AV learner activities, indicative of adherence to Cognitive Constructi-
vist theory, have had more signi¢cant and consistent impact on experiments’dependent
variables than have experimental manipulations of AVrepresentation, indicative of ad-
herence to Epistemic Fidelity theory. Moreover, an analysis of participant groups’ en-
gagement e¡ort equivalence with respect to experimental results across all experiments
further substantiates the pedagogical impact of using AVtechnology to engage students
actively in their own learning.Thus, according to our analysis, how students useAV tech-
nology, rather than what students see, appears to have the greatest impact on educational
e¡ectiveness.

6.2. What Measures have been Most Sensitive to E¡ectiveness?

Twenty-two of the 24 studies in our corpus operationalize e¡ectiveness in terms of con-
ceptual knowledge, procedural knowledge, or both. An analysis of experimental results
based on type of knowledgemeasured suggests that procedural knowledgemay serve as a
more sensitive measure of AVtechnology’s bene¢ts than conceptual knowledge.We take
comfort in the fact that this ¢nding is borne out in other non-experimental studies of AV
technology not included in our corpus (e.g. [42]).

Closer inspection of the studies’dependent variables suggests that they have measured
knowledge using two di¡erent techniques: post-test performance only, and pre- to post-
test improvement Assuming that a learning di¡erence truly exists between treatment
groups, our analysis suggests that pre- to post-test improvement will be more likely to
¢nd such a di¡erence than post-test performance alone. It is important to qualify this
¢nding in two ways. First, it is biased in the sense that it is based largely on the results
of one particular line of studies [14]. Second, we believe that measuring pre- to post-test
improvement introduces a methodological problem that has not been addressed by the
studies that employed it: The pre-test may give participants knowledge of the
target algorithm outside of the treatment condition.Thus, we believe that studies that
use this method to measure e¡ectiveness need to address this methodological issue.

Finally, we would be remiss not to point out that our conclusions are limited in that
they are based on a corpus of studies that considered an extremely limited range of de-
pendent variables. A few studies employed alternative measuresFfor example, time
spent learning [32], the time spent taking the post-test [31] and success on graphical vs.
textual questions [28]. By and large, however, the studies in our corpus operationalized
learning in terms of conceptual and procedural knowledge acquisition.

6.3. Is avTechnology E¡ective?

Clearly, answers to the previous two questions provide a backdrop for addressing the all-
important question of whether AV technology is educationally e¡ective. In light of our
meta-study ¢ndings, our answer to this question would have to be a quali¢ed ‘yes’. In
what ways is AVtechnology educationally e¡ective, and inwhat ways is it not education-
ally e¡ective?
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Let us begin with the ways in which it is not e¡ective.With few exceptions, we found
that studies in which students merely viewed visualizations did not demonstrate signi¢-
cant learning advantages over students who used conventional learning materials. Per-
haps contrary to conventional wisdom, this observation suggests that the mere presence
of AVtechnologyFhowever well-designed and informative the visual representations it
presents may appear to beFdoes not guarantee that students will learn an algorithm.To
state this in terms of the learning theory (Epistemic Fidelity) underlying this form of AV
technology use, our ¢ndings suggest that algorithmvisualizations do not merely transfer
an expert mental model of an algorithm to a student’s brain. In successful applications of
AV technology, something else appears to be going on.

In particular, our meta-study suggests that the most successful educational uses of AV
technology are those in which the technology is used as a vehicle for actively engaging
students in the process of learning algorithms. For example, aswe have seen, AV technol-
ogy has been successfully used to actively engage students in such activities as

* what-if analyses of algorithmic behavior (e.g. [16, Chapter 9]);
* prediction exercises (e.g. [17]) and
* programming exercises (e.g. [33]).

Notice that, in such cases, rather than being an instrument for the transfer of knowl-
edge, AV technology serves as catalyst for learning.To state this in terms of the learning
theory (Cognitive Constructivism) underlying this form of AV technology use, our re-
sults suggest that algorithm visualizations are educationally e¡ective insofar as they en-
able students to construct their own understandings of algorithms through a process of
active learning.

In sum, our meta-study suggests that AVtechnology is educationally e¡ective, but not
in the conventional way suggested by the old proverb ‘a picture is worth 1000 words’.
Rather, according to our ¢ndings, the form of the learning exercise inwhichAV technol-
ogy is used is actually more important than the quality of the visualizations produced by
AVtechnology.This is not to say that visualization quality does notmatterFin a success-
ful learning activity, a well-designed visualization certainly contributesFbut rather to
say that the form of activity is more important than the form of the visualization.

6.4. What Directions for Future Research Appear Most Fruitful?

Finally, our meta-study ¢ndings suggest several directions for future research into AV
e¡ectiveness.We conclude by highlighting what we see as the most important of these,
organizing our discussion around the topics of independent variables, dependent vari-
ables, and scope.

6.4.1. IndependentVariables

As we have seen, the majority of AVe¡ectiveness research over the past decade has been
guided by just two theories: Epistemic Fidelity and Cognitive Constructivism. In the
interest of gaining deeper insight into AVe¡ectiveness, we believe that future research
would dowell to explore other alternatives. One obvious place to start is with Dual-cod-
ing and Individual Di¡erences theories, both of which have alreadygarnered support by
studies in our corpus. Dual-coding theory has, in fact, had predictive success in a legacy



Table 8. Two alternative theories of e¡ectiveness that appear to be promising avenues for future
research

Theory Synopsis Role of AV

Situated Action AV is a communicative resource
for building a shared under-
standing of algorithms

Communicative resource akin to
speech, gesture, and gaze

Sociocultural
Constructivism

AVenable people to participate
in a community in increasingly
central ways

Community artifacts that grant
access to central community
activities
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of experimental studies investigating the pedagogical bene¢ts of instructional hyper-
media (e.g. [37]); we would be interested to see it pursued further within the scope of
pedagogical AV.

We believe another promising source of theoretical inspiration is recent anthropolo-
gical research into the social and situated nature of learning and communication. In the
style of Table 3 (p. 33), Table 8 outlines two other general theories of e¡ectiveness that
come from that line of work. Building on Situated Action Theory (see, e.g. [43]),
Roschelle [35] argues that visualizations are one of a multitude ofmediational resources that
help groups of people to negotiate a shared understanding of the topics under study.
Alternatively, Sociocultural Constructivism (e.g. [44]) views AVe¡ectiveness at the level
of the community of practice, rather than the individual. In particular, AVtechnology is
seen as e¡ective insofar as it provides studentswith access to the kinds of expert activities
normally carried out by algorithms teachers. Hundhausen [5] uses Sociocultural theory
to guide his study of the use of AV technology in an undergraduate algorithms course.

6.4.2. DependentVariables

Measuring procedural and conceptual knowledge in terms of test performance has a solid
foundation in practice; indeed, it is the same measure used in traditional computer
science courses to evaluate student performance. However, in order to obtain a deeper
understanding of AV technology’s educational bene¢ts, future empirical studies should,
in our opinion, have the courage to explore alternative measuresFpreferably in concert
with traditional measures so as not to disenfranchise themselves from the mainstream.

Since a study’s dependent measures are a logical consequence of the learning theory
that informs it, alternative measures can be explored within the context of alternative
theories. In stark contrast to the learning theories that in£uenced the studies in our cor-
pus, the two alternative learning theories introduced above (seeTable 8) situate knowl-
edge not in the head, but in the broader realms of social interaction (SituatedAction) and
community reproduction (Sociocultural Constructivism). According to these theories,
individual knowledge acquisition does not serve as an adequate measure of learning,
whichmust be measured within the broader context of social interactionwithin commu-
nities of practice.

For example, Situated Action theory would recommend evaluating an algorithm vi-
sualization by creating a social situation in which two learners use the visualization to
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establish a shared understanding of the underlying algorithm. In such an interaction, con-
versationanalysiswouldbe used to determine the extent towhich the visualization serves as a
mediational resource for the learners. For example, Douglas etal. [45] use this evaluation
measure in their studies of the human visualization of sorting algorithms.

Likewise, Sociocultural Constructivism would recommend evaluating an algorithm
visualization within the scope of its use as a cultural artifact in a community of practice
such as the one being reproduced in an undergraduate algorithms course. In such a set-
ting, the e¡ectiveness of the visualization would be judged according to its ability to
enable learners gradually to participate more fully in the communityFthat is, to increas-
ingly take on the identity and roles of the course instructor. For example,within the scope
of a junior-level algorithms course, Hundhausen [5] uses ethnographic ¢eld techniques
to qualitatively evaluate e¡ectiveness in this way.

6.4.3. Scope

We intentionally limited the scope of our meta-study to experimental studies of AV in
educational scenarios of use. In so doing, we clearly neglected important lines of related
empirical work that are grist for future analysis. Below, we describe three of the most
important of these.
Other research techniques. Our meta-study focuses exclusively on experimental studies of

AVe¡ectiveness. However, as we pointed out in Section 2.2, controlled experimentation
is just one of several empirical evaluation techniques that one might use to study AV
e¡ectiveness. Four other relevant empirical techniques that have been employed by past
AVe¡ectiveness research include:

* Usability testsFthese endeavor to identify, diagnose, and ultimately remedy problems
with an interactive system’s user interface by videotaping a small number of partici-
pants as they complete representative tasks with the system (see, e.g. [46]).

* Ethnographic ¢eld techniquesFthese include any of the qualitative techniques one might
use to conduct a ¢eld study [47] in a naturalistic settingFe.g. participant observation,
interviews, and artifact collection.

* Questionnaires and surveysFthese are often used as a complementary source of data in
empirical studies.They elicit written responses to a set of questions in which the re-
searcher is interested (see, e.g. [48]).

* ObservationalstudiesFthese investigate some activity of interest in an exploratory, quali-
tative fashion, often through analysis of videotaped footage of humans interacting
with AV technology (see, e.g. [25]).

We believe that each of these alternative empirical methods can play a valuable role in
helping us to gain insight into AVe¡ectiveness. For example, usability tests can tell us
whether an AV system’s user interface is preventing its users from reaping the bene¢ts
of a visualization (see, e.g. [49]). Likewise, ethnographic ¢eld techniques and observa-
tional studies can help us understand how and whyAV technology might be e¡ective in
a real classroom (e.g. [5]), or in a realistic study session (e.g. [42]). Questionnaires and
surveys can help us understand AV technology users’ preferences, opinions, and advice
regardingAVtechnologydesign anduse (see, e.g. [50]).Thus, an important area for future
research is to perform a meta-study that includes the published empirical studies that
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employ these alternative techniques to studyAVe¡ectiveness. According to our estimates,
close to 30 such studies have been published. .
Otheraspectsofscenarios.The experimental studies in our corpus have maintained a narrow

focus on speci¢c parts of a given scenario of use. For example, in the ‘study’ scenario
considered by most of the experiments, the focus has been on students’ use of the tech-
nology.The other tasks that must be done ‘behind the scenes’, such as preparing the vi-
sualizations for student use and integrating the technology into a course curriculum, are
left unexplored.

While the actual use ofAVtechnology for learning is plainly the cruxof any scenario of
AVuse, the studies’narrow focus on that use has prevented them fromobtaining abroad-
er perspective of e¡ectiveness. Even ifAVtechnology is found tobe e¡ective as a learning
aid, a whole host of other considerations could ¢gure equally prominently in an overall
assessment of e¡ectiveness. For example, how long did it take to prepare and set up the
AVtechnology?Given the choice between using conventional materials andAV technol-
ogy, which will instructors choose, and what considerations do they deem important in
making that choice? In his ethnographic ¢eldwork, Hundhausen [5] began to address
these questions within the broader scope of an undergraduate algorithms course.
Otherscenarios. Although AV has applications outside of educational scenariosFfor ex-

ample, in algorithms analysis and software engineeringFour meta-study has neglected
those scenarios.We are, in fact, unaware of a body of research that has empirically eval-
uated AV technology in non-educational scenarios.We suspect that this is because such
research does not, in fact, exist.The empirical evaluation of AVe¡ectiveness in non-edu-
cational scenarios is thus an important open area of research.

Notice also that AV is a subarea of software visualization, which encompasses not only the
visualization of algorithms, but also the visualization of entire software systems.Visuali-
zations of software systems are designed tohelpmembers of programming teams do such
things as improve system performance [51], comprehend the structure and evolution of
software systems [52], and track down bugs [53]. A future meta-study would do well to
consider the e¡ectiveness of software visualization in such industrial scenarios. Pertinent
guiding questions include the following:

* Towhat extent has software visualization been e¡ectively applied in industry?
* Has software visualization increased productivity?
* Has software visualization bene¢ted the large software teams typical in industry?
* Has software visualization bene¢ted the kinds of distributed programming teams that

are common today?

Our suspicion is that few empirical studies that address such questions have been pub-
lished. If this is indeed true, then an important direction for future research is to subject
industrial software visualization systems to the same kind of systematic e¡ectiveness eva-
luation that educational AV technology has undergone.
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