Graphs, Search, Pathfinding
(behavior involving where to go)

Steering, Flocking, Formations
(behavior involving how to go)

AN

2"

NN NN L

5" " A,

3
/
P
|
|

-t ?_ .’l .

7\ :

.. "’ .
1

3 S
8§ N

: ’“_k/_\x._*

&

e

S

= whh e

o U

Class N-2

What are some benefits of path networks?
Cons of path networks?
What is the flood fill algorithm?

What is a simple approach to using path
navigation nodes?

What is a navigation table?

How does the expanded geometry model work?
Does it work with map gen features?

What are the major wins of a Nav Mesh?
Would you calculate an optimal nav-mesh?

B W

O 0 N,

Class N-1

When might you precompute paths?

This is a single-source, multi-target shortest path
algorithm for arbitrary directed graphs with non-negative
weights. Question?

This is a all-pairs shortest path algorithm.

How can a designer allow static paths in a dynamic
environment?

When will we typically use heuristic search?
What is an admissible heuristic?

When/Why might we use hierarchical pathing?
Does path smoothing work with hierarchical?
How might we combat fog-of-war?

(kinematic) Movement, Steering,
Flocking, Formations

Basics

e Movement calculation often needs to interact with the
“Physics” engine

— Avoid characters walking through each other or through
obstacles

* Traditional: kinematic movement (not dynamic)
— Characters move (often at fixed speed) instantaneously
— No regard to how physical objects accelerate or brake
— OQOutput: direction to move in
 Newer approach: Steering behaviors or dynamic movement
(Craig Reynolds) —
— Characters accelerate and turn based on physics
— Take current motion of character into account
— OQOutput: forces or accelerations that result in velocity change
— flocking c steering

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt

General Algorithm

Movement request

Character |+

Position
(velocity)
Other state

Y

Movement algorithm

Game

Other characters
Level geometry
Special locations
Paths

Other game state

L |

Millington Fig 3.2

Movement request

New velocity
or
Forces to apply

Assumptions

Computed quickly
Impression of intelligence, not a simulation
Character position model: point + orientation

Full 3D usually unnecessary (ie scalar ©)

— 2D suffices, thanks to gravity
* (x,vy, ©) ... 3 degrees of freedom

— 2% D (3D position, 2D orientation) covers most
* (x,v, 2z, 0) ... 4 degrees of freedom

Rotation is the process of changing orientation

Space

e Axes
* Orientation

* Local vs global
coordinate systems

Character is at
X=2.2

zZ=2

orientation = 1.5

1.5 radians

Millington Fig 3.4

Vector Form of Orientation

e Convenient to
represent
orientation as unit

vector (len = 1)

- =
-
- -~
- ~
- Sw

1.5 radians

. —> . Millington Fig 3.5
w, = [sin a,, cos o]

Z A

(0)

N

»
|

X
http://www.cse.scu.edu/~tschwarz/coen266 09/PPT/Movement%20for%20Gaming.ppt

Statics

Static, because no information about
movement
— Position

e 2 or 3-dimensional vector

— Orientation

e 2-dimensional unit vector given by an angle, a single
real value between Oand 2 &t

Kinematics

 We describe a moving character by
— Position: 2 or 3-D vector

— Orientation

e 2-dimensional unit vector given by an angle, a single
real value betweenOand 2 &t

— Velocity (linear velocity): 2 or 3-D vector

— Rotation (angular velocity)

e 2-dimensional unit vector given by an angle, a single
real value between Oand 2 &t

* Movement behaviors output
— Velocity
— Rotation

Time & Variable Frame Rates

e Velocities are given in units per second rather
than per frame

* Older games often used per-frame velocity

* Explicit update time supports VFR. E.g:
— character going 1 m/s
— Last frame was 20ms duration

— Next frame, character moves 20 mm

Kinematics

 Computing a new target velocity based on
{x,z} + ¢ can look unrealistic

— Can lead to abrupt changes of velocity
— Must smooth velocity, or use acceleration model

e {x,2} + ¢ + v 2 can increment velocity by
some A from curr, up to target,

* Must track velocity in all dimensions plus
rotation

Facing

* Motion & facing need not be coupled

* Many games simplify & force character
orientation to be in direction of the velocity

— Instant (can be awkward)
— Smoothing

Frame 1 Frame 2 Frame 3 Frame 4

b & b e,

Millington Fig 3.6

Changing Orientation

* Uses static data (position & O, no velocity)

e Outputs desired velocity

— On/off in target direction

— Smoothing may be done (without a)
* New v determines new O

— If v> 0, return atan2(-static.x, static.z)
— Else use current orientation

Kinematic Seek

Input: character’s & target’s static data
Output: velocity in direction from char to targ

= velocity = target.position — character.position
Normalize velocity to maximum velocity

Can ignore orientation, or update (prev slide)
Flee = character.position — target.position
O(1) in time and memory

Kinematic Arrival

* Seek with full velocity leads to overshooting

— Arrival modification

* Determine arrival target radius
* Lower velocity within target for arrival

steering.velocity = target.position - character.position;
if (steering.velocity.length() < radius) {
steering.velocity /= timeToTarget;
if (steering.velocity.length() > MAXIMUMSPEED)
steering.velocity /= steering.velocity.length();

Arrival Circle:

Slow down if
you get here

}
else
steering.velocity /= steering.velocity.length();

http://www.cse.scu.edu/~tschwarz/coen266 09/PPT/Movement%20for%20Gaming.ppt

Kinematic Wander

* Move in current direction at max speed

* Vary orientation by some random amount
each frame

Millington Fig 3.7

See also

M website: www.aidg.com

— Algorithms for K {wander, arrive, seek, flee}
— https://github.com/idmillington/aicore

BCh3(BCh1l)
Animations (for simple)

— http://www.red3d.com/cwr/steer/

http://en.wikipedia.org/wiki/Radian

http://www.ai4g.com/
https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/
http://en.wikipedia.org/wiki/Radian

Steering Behaviors (Dynamic)

e Steering extends kinematic movement by adding
acceleration and rotation

— Remember:
* p(t) — position at time t
e v(t) = p’(t) — velocity at time t
e a(t) =Vv'(t) — acceleration at time t
— Hence:
c Ap=vVv
* Avxa
e Steering behaviors output accelerations
— Linear acceleration: 2 or 3-D vector
— Angular acceleration: single float value

Kinematic Updates

e def update(steering, time)
— Assume frame rate is high enough

— Steering is given as

* Steering.Linear —a 2D vector
— Represents changes in velocity (linear acceleration)

e Steering.Angular — a real value
— Represents changes in orientation (angular acceleration)
— Update at each frame (Newton-Euler-1)
e Position += Velocity * Time
* Orientation += Rotation * Time
* Velocity += Steering.Linear * Time
* Rotation += Steering.Angular * Time

Dynamic Movement

* Dynamic movement update

— Accelerate in direction of target until maximum
velocity is reached

— If target is close, lower velocity (Braking)
* Negative acceleration is also limited

— If target is very close, stop moving

* Dynamic movement update with Physics
engine
— Acceleration is achieved by a force

— Vehicles etc. suffer drag, a force opposite to
velocity that increases with the size of velocity

 Limits velocity naturally

Steering Input Basics

* |nput: agent kinematic and target info
— Target collision info
— Target trajectory
— Target location
— Average flock information

* Steering behavior doesn’t attempt to do much
— Each alg. Does a single thing. Fundamental behaviors
— Combine simple behaviors to make complex

— No: avoid obstacles while chasing character and
making detours to nearby power-ups

Steering Behaviors

* Variable Matching
— Seek (flee)
— Arrive (leave)

— Align
— Velocity Matching

e Best way to get a feel: run steering behavior
program from source www.aidg.com

— https://github.com/idmillington/aicore

http://www.ai4g.com/
https://github.com/idmillington/aicore

Variable Matching

Simplest family: match one or more elements of
source to target

— Match position (seek): accelerate toward target,
decelerate once near

— Match orientation (align): rotate to align

— Match velocity: follow on a parallel path, copy
movements, stay fixed distance away

Match position and orientation? Ok
Match position and velocity? Conflict

Moral: have individual matching algorithms, and
conflict-resolving combination algorithm

Basic Steering Behaviors

* Used as elements of more complex behaviors

— Pursue = Seek based on target motion (instead of
position)

— Collision avoidance = flee based on obstacle
proximity

— Wander = Seek some fictitious moving object

Obstacle and Wall Avoidance

* Cast one or more
(distance-bounded) rays
. . . Collision
out in direction of point
motion

Single ray cast

Collision
e o I
* Use collisions to create norma
sub-target for avoidance
* Perform basic seek on Millington Fig 3.24

sub-target

One is not enough

Position of character
at undetected collision

OM)
ray cast

Triple ray cast

Parallel side rays

Central ray with short
fixed length whiskers

Whiskers only

Detected
collision

Single only

[y

Millington Fig 3.25 & 3.26

Dynamic Seek

Match position of character with the target

Like kinematic seek, find direction to target and go
there as fast as possible

— Kinematic outputs: velocity, rotation

— Dynamic output: linear and angular acceleration
Kinematic seek:

— velocity = target.position — character.position

— velocity = (velocity.normalize())*maxSpeed

Dynamic seek:

— acceleration = target.position — character.position

— acceleration = (acceleration.normalize())*maxAcceleration

Composite Behaviors

Target character

O @

Pursue = Seek

based on target \ [Seek outpu
. . Most efficient
motion (instead direction
of position) O
Chasing character
Evade?
Fa C e ? Seek route

Looking wher
going?
Wa n d e r? Chasgharacter

Millington Fig 3.11 & 3.12

Composite Behaviors

LookWhereYoureGoing
Pursue / Evade Mgn =" -
ace
Face / Look
. Wander
where going / ——
ursu
Evade
Wander — / e
Collision e R ——
. CollisionAvoidance
Avoidance \
ObstacleAvoidance
Obstacle =
AV 0 | d ance VelocityMatch Arrive
. ForceField Separation
Separation P

Millington Fig 3.29

Combining Steering Behavior

(Weighted) Blending
— Execute all steering behaviors

— Combine results by calculating a compromise
based on weights

* Example: Flocking based on separation and cohesion

Arbitration
— Selects one proposed steering

Not mutually exclusive
Emergent Behavior

Weighted Blending

Simplest way to combine steering behaviors

Weighted linear sum of accelerations from all
involved steering behaviors

Post-processing velocity threshold
E.g. rioting crowd may have 1*sep + 1*cohes

Finding “right” weight can be challenging
— Characters can get stuck (equilibrium)

— Constrained environments (conflicts)
— Jidder

Result

Wall
avoidance /(/' O

< Pursue

Pursued enemy

~a Resulting acceleration

Collision '\

ray Route of character
I
® Target

Millington Fig 3.35 & 3.36

Flocking and Swarming

* Craig Reynold’s “boids” (Flocking != Swarming)
e Simulated (apparent behavior of) birds, 1986

* Blends three steering mechanisms (ordered)
— Separation
» Move away from other birds that are too close
— Cohesion
» Move to center of mass of flock
— Alignment
» Match orientation and velocity of flock

* Equal Weights for simple flocking behavior

Won’t you be my neighbor

Average

Q ———— velocity

Center of Millington Fig 3.32

Cohesinn
gravity
O—-—-—F Flesult O
Match velocity/align e |[®
Separatmn = Y
Millington Fig 3.31 [y
»
4

Buckland Fig 3.18

Recall findNearestWaypoint()

* Most engines provide a rapid “nearest”
function for objects

» Spatial partitioning w/ special data structures:
— Quad-trees (2d), oct-trees (3d), k-d trees
— Binary space partitioning (BSP tree)
— Multi-resolution maps (hierarchical grids)

* The gain over all-pairs techniques depends on

v

number of agents/objects it

Buckland Fig 3.18

Separation

* Steer to avoid crowding local flockmates

— Neighborhood is a sphere of certain radius, or
possibly a cone of perception

b
-

4 7

1
.-'":
-.-""“-. 3 [_E
.
-"H. .-'.-..

http://www.red3d.com/cwr/boids/

Cohesion

e Steer to average position of local flockmates

o Ty
e e
A N
.-.- .-'-
' %
I. .-
r i
¥ L
| § L
| 5
A |

I. | ;I'. [
|II 'I]
d L% -‘H zl y E

* Center of mass is the average position (X,Y,Z) of boids in neighborhood.

http://www.red3d.com/cwr/boids/

Alignment

e Steer towards average heading

* Average heading and velocity of other boids in neighborhood

http://www.red3d.com/cwr/boids/

| -
Separation
4
v
» > 7
|
Alignment
<
» v A

Cohesion Buckland Fig 3.16

Flocking Demos

* http://www.red3d.com/cwr/boids/
* http://www.red3d.com/cwr/boids/applet/

http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/applet/

See Also

M Ch 3, B Ch 3 (& Ch 1)

Source from Millington
— https://github.com/idmillington/aicore

e Java-based animations (combined behaviors)

— http://www.red3d.com/cwr/steer/

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT
/Movement%20for%20Gaming.ppt

https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/

Formations

e Coordinated Movement: M Ch 3.7

e Path plan for leader (naive)
— All others move toward leader

* Replace team with a virtual bot

— All members controlled by a joint animation

e Path plan for leader (alt)
— All team members path plan to an offset
— Flow around obstacles and through choke points

Fixed Formations

0000 O
Line ‘ ' .‘

' ' Defensive circle Two abreast in

V or Finger ’ cover
Four

Entities of different sizes

* Large entities can be surrounded by smaller
entities and collision boxes can parallelize
large entities

e Path plan without regard

* Send messages for smaller entities to move
out of the way

Next Class

* Finite state machines
 Read: Buckland, CH 2 (M Ch 5.1-4)

