
Graphs, Search, Pathfinding 

(behavior involving where to go)

Steering, Flocking, Formations

(behavior involving how to go)

















Class N-2

1. What are some benefits of path networks?
2. Cons of path networks?
3. What is the flood fill algorithm?
4. What is a simple approach to using path 

navigation nodes?
5. What is a navigation table?
6. How does the expanded geometry model work? 

Does it work with map gen features?
7. What are the major wins of a Nav Mesh?
8. Would you calculate an optimal nav-mesh?



Class N-1

1. When might you precompute paths?
2. This is a single-source, multi-target shortest path 

algorithm for arbitrary directed graphs with non-negative 
weights. Question?

3. This is a all-pairs shortest path algorithm.
4. How can a designer allow static paths in a dynamic 

environment?
5. When will we typically use heuristic search?
6. What is an admissible heuristic?
7. When/Why might we use hierarchical pathing?
8. Does path smoothing work with hierarchical?
9. How might we combat fog-of-war?



(kinematic) Movement, Steering, 
Flocking, Formations

2016-05-31



Basics

• Movement calculation often needs to interact with the 
“Physics” engine
– Avoid characters walking through each other or through 

obstacles

• Traditional: kinematic movement (not dynamic)
– Characters move (often at fixed speed) instantaneously
– No regard to how physical objects accelerate or brake
– Output: direction to move in

• Newer approach: Steering behaviors or dynamic movement 
(Craig Reynolds) –
– Characters accelerate and turn based on physics
– Take current motion of character into account
– Output: forces or accelerations that result in velocity change
– flocking ⊂ steering

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt



General Algorithm

Millington Fig 3.2



Assumptions

• Computed quickly

• Impression of intelligence, not a simulation

• Character position model: point + orientation

• Full 3D usually unnecessary (ie scalar Θ)
– 2D suffices, thanks to gravity 

• (x, y, Θ) … 3 degrees of freedom

– 2½ D (3D position, 2D orientation) covers most 
• (x, y, z, Θ) … 4 degrees of freedom

• Rotation is the process of changing orientation



Space

• Axes

• Orientation

• Local vs global 
coordinate systems

Millington Fig 3.4



Vector Form of Orientation

• Convenient to 
represent 
orientation as unit 
vector (len = 1)

• ωv = [sin s, cos s] 
Millington Fig 3.5
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z

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt



Statics

• Static, because no information about 
movement
– Position

• 2 or 3-dimensional vector

– Orientation
• 2-dimensional unit vector given by an angle, a single 

real value between 0 and 2



Kinematics

• We describe a moving character by
– Position: 2 or 3-D vector
– Orientation

• 2-dimensional unit vector given by an angle, a single 
real value between 0 and 2

– Velocity (linear velocity): 2 or 3-D vector
– Rotation (angular velocity)

• 2-dimensional unit vector given by an angle, a single 
real value between 0 and 2

• Movement behaviors output
– Velocity
– Rotation



Time & Variable Frame Rates

• Velocities are given in units per second rather 
than per frame

• Older games often used per-frame velocity

• Explicit update time supports VFR. E.g:

– character going 1 m/s

– Last frame was 20ms duration

– Next frame, character moves 20 mm



Kinematics

• Computing a new target velocity based on 
{x,z} + φ can look unrealistic 

– Can lead to abrupt changes of velocity

– Must smooth velocity, or use acceleration model

• {x,z} + φ + v  can increment velocity by 
some Δ from currv up to targetv

• Must track velocity in all dimensions plus 
rotation 



Facing

• Motion & facing need not be coupled

• Many games simplify & force character 
orientation to be in direction of the velocity

– Instant (can be awkward)

– Smoothing

Millington Fig 3.6



Changing Orientation

• Uses static data (position & Θ, no velocity)

• Outputs desired velocity

– On/off in target direction

– Smoothing may be done (without a)

• New v determines new Θ

– If v > 0, return atan2(-static.x, static.z)

– Else use current orientation



Kinematic Seek

• Input: character’s & target’s static data

• Output: velocity in direction from char to targ

 velocity = target.position – character.position

• Normalize velocity to maximum velocity

• Can ignore orientation, or update (prev slide)

• Flee = character.position – target.position

• O(1) in time and memory



Kinematic Arrival

• Seek with full velocity leads to overshooting

– Arrival modification

• Determine arrival target radius

• Lower velocity within target for arrival

Arrival Circle:

Slow down if 
you get here

steering.velocity = target.position – character.position;

if(steering.velocity.length() < radius) {

steering.velocity /= timeToTarget;

if(steering.velocity.length() > MAXIMUMSPEED)

steering.velocity /= steering.velocity.length();

}

else

steering.velocity /= steering.velocity.length();

http://www.cse.scu.edu/~tschwarz/coen266_09/PPT/Movement%20for%20Gaming.ppt



Kinematic Wander

• Move in current direction at max speed

• Vary orientation by some random amount 
each frame

Millington Fig 3.7



See also

• M website: www.ai4g.com

– Algorithms for K {wander, arrive, seek, flee}

– https://github.com/idmillington/aicore

• B Ch 3 (B Ch 1)

• Animations (for simple)

– http://www.red3d.com/cwr/steer/

• http://en.wikipedia.org/wiki/Radian

http://www.ai4g.com/
https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/
http://en.wikipedia.org/wiki/Radian


Steering Behaviors (Dynamic)

• Steering extends kinematic movement by adding 
acceleration and rotation
– Remember:

• p(t) – position at time t
• v(t) = p’(t) – velocity at time t
• a(t) = v’(t) – acceleration at time t

– Hence:
• p  v
• v  a

• Steering behaviors output accelerations
– Linear acceleration: 2 or 3-D vector
– Angular acceleration: single float value



Kinematic Updates 

• def update(steering, time)
– Assume frame rate is high enough 

– Steering is given as
• Steering.Linear – a 2D vector

– Represents changes in velocity (linear acceleration)

• Steering.Angular – a real value
– Represents changes in orientation (angular acceleration)

– Update at each frame (Newton-Euler-1)
• Position += Velocity * Time

• Orientation += Rotation * Time  

• Velocity += Steering.Linear * Time

• Rotation += Steering.Angular * Time



Dynamic Movement

• Dynamic movement update
– Accelerate in direction of target until maximum 

velocity is reached
– If target is close, lower velocity (Braking)

• Negative acceleration is also limited

– If target is very close, stop moving

• Dynamic movement update with Physics 
engine
– Acceleration is achieved by a force
– Vehicles etc. suffer drag, a force opposite to 

velocity that increases with the size of velocity
• Limits velocity naturally



Steering Input Basics

• Input: agent kinematic and target info
– Target collision info

– Target trajectory

– Target location

– Average flock information

• Steering behavior doesn’t attempt to do much
– Each alg. Does a single thing. Fundamental behaviors

– Combine simple behaviors to make complex

– No: avoid obstacles while chasing character and 
making detours to nearby power-ups



Steering Behaviors

• Variable Matching
– Seek (flee)

– Arrive (leave)

– Align

– Velocity Matching

• Best way to get a feel: run steering behavior 
program from source www.ai4g.com
– https://github.com/idmillington/aicore

http://www.ai4g.com/
https://github.com/idmillington/aicore


Variable Matching

• Simplest family: match one or more elements of 
source to target
– Match position (seek): accelerate toward target, 

decelerate once near
– Match orientation (align): rotate to align
– Match velocity: follow on a parallel path, copy 

movements, stay fixed distance away

• Match position and orientation? Ok
• Match position and velocity? Conflict
• Moral: have individual matching algorithms, and 

conflict-resolving combination algorithm



Basic Steering Behaviors

• Used as elements of more complex behaviors 

– Pursue = Seek based on target motion (instead of 
position)

– Collision avoidance = flee based on obstacle 
proximity

– Wander = Seek some fictitious moving object



Obstacle and Wall Avoidance

• Cast one or more 
(distance-bounded) rays 
out in direction of 
motion

• Use collisions to create 
sub-target for avoidance

• Perform basic seek on 
sub-target

Millington Fig 3.24



One is not enough

Millington Fig 3.25 & 3.26



Dynamic Seek

• Match position of character with the target
• Like kinematic seek, find direction to target and go 

there as fast as possible
– Kinematic outputs: velocity, rotation
– Dynamic output: linear and angular acceleration 

• Kinematic seek:
– velocity = target.position – character.position
– velocity = (velocity.normalize())*maxSpeed

• Dynamic seek:
– acceleration = target.position – character.position
– acceleration = (acceleration.normalize())*maxAcceleration



Composite Behaviors

• Pursue = Seek 
based on target 
motion (instead 
of position)

• Evade?

• Face?

• Looking where 
going?

• Wander?

Millington Fig 3.11 & 3.12



Composite Behaviors

• Pursue / Evade

• Face / Look 
where going

• Wander

• Collision 
Avoidance

• Obstacle 
Avoidance

• Separation
Millington Fig 3.29



Combining Steering Behavior

• (Weighted) Blending
– Execute all steering behaviors

– Combine results by calculating a compromise 
based on weights
• Example: Flocking based on separation and cohesion

• Arbitration
– Selects one proposed steering 

• Not mutually exclusive

• Emergent Behavior



Weighted Blending

• Simplest way to combine steering behaviors

• Weighted linear sum of accelerations from all 
involved steering behaviors

• Post-processing velocity threshold

• E.g. rioting crowd may have 1*sep + 1*cohes

• Finding “right” weight can be challenging

– Characters can get stuck (equilibrium)

– Constrained environments (conflicts)

– Jidder



Millington Fig 3.35 & 3.36



Flocking and Swarming

• Craig Reynold’s “boids” (Flocking != Swarming)

• Simulated (apparent behavior of) birds, 1986

• Blends three steering mechanisms (ordered)

– Separation

» Move away from other birds that are too close

– Cohesion

» Move to center of mass of flock

– Alignment

» Match orientation and velocity of flock

• Equal Weights for simple flocking behavior



Won’t you be my neighbor

Millington Fig 3.31

Buckland Fig 3.18

Millington Fig 3.32



Recall findNearestWaypoint()

• Most engines provide a rapid “nearest” 
function for objects

• Spatial partitioning w/ special data structures:

– Quad-trees (2d), oct-trees (3d), k-d trees

– Binary space partitioning (BSP tree)

– Multi-resolution maps (hierarchical grids)

• The gain over all-pairs techniques depends on 
number of agents/objects

Buckland Fig 3.18



Separation

• Steer to avoid crowding local flockmates

– Neighborhood is a sphere of certain radius, or 
possibly a cone of perception

http://www.red3d.com/cwr/boids/



Cohesion

* Center of mass is the average position (X,Y,Z) of boids in neighborhood.

• Steer to average position of local flockmates

http://www.red3d.com/cwr/boids/



Alignment

* Average heading and velocity of other boids in neighborhood

• Steer towards average heading

http://www.red3d.com/cwr/boids/



Buckland Fig 3.16



Flocking Demos

• http://www.red3d.com/cwr/boids/

• http://www.red3d.com/cwr/boids/applet/

http://www.red3d.com/cwr/boids/
http://www.red3d.com/cwr/boids/applet/


See Also

• M Ch 3, B Ch 3 (& Ch 1)

• Source from Millington

– https://github.com/idmillington/aicore

• Java-based animations (combined behaviors)

– http://www.red3d.com/cwr/steer/

• http://www.cse.scu.edu/~tschwarz/coen266_09/PPT
/Movement%20for%20Gaming.ppt

https://github.com/idmillington/aicore
http://www.red3d.com/cwr/steer/


Formations

• Coordinated Movement: M Ch 3.7

• Path plan for leader (naive) 

– All others move toward leader

• Replace team with a virtual bot

– All members controlled by a joint animation

• Path plan for leader (alt)

– All team members path plan to an offset

– Flow around obstacles and through choke points



Fixed Formations

Line

V or Finger 
Four

Defensive circle Two abreast in 
cover



Entities of different sizes

• Large entities can be surrounded by smaller 
entities and collision boxes can parallelize
large entities

• Path plan without regard

• Send messages for smaller entities to move 
out of the way



Next Class

• Finite state machines

• Read: Buckland, CH 2 (M Ch 5.1-4)


