
“Inaction breeds doubt and fear. Action breeds
confidence and courage. If you want to conquer
fear, do not sit home and think about it. Go out
and get busy.” -- Dale Carnegie

Hw 1.5

• Create pathnetwork as list of lines between all
pathnodes traversable by the agent

– For all pairs of pathnodes… (possible pathlines)

– perform a ray trace against every line in
worldlines, keeping those without intersections

– For those pathlines remaining, verify no world
point is within agent radius

Class N-2

1. When might you precompute paths?
2. This is a single-source, multi-target shortest path

algorithm for arbitrary directed graphs with non-negative
weights. Question?

3. This is a all-pairs shortest path algorithm.
4. How can a designer allow static paths in a dynamic

environment?
5. When will we typically use heuristic search?
6. What is an admissible heuristic?
7. When/Why might we use hierarchical pathing?
8. Does path smoothing work with hierarchical?
9. How might we combat fog-of-war?

Class N-1

1. Steering vs flocking?

2. Steering Family Tree

3. How might we combine
behaviors?

4. What three steering mechanisms enable
flocking?

Formations

• Coordinated Movement: M Ch 3.7

• Path plan for leader (naive)

– All others move toward leader

• Replace team with a virtual bot

– All members controlled by a joint animation

• Path plan for leader (alt)

– All team members path plan to an offset

– Flow around obstacles and through choke points

Fixed Formations

Line

V or Finger
Four

Defensive circle Two abreast in
cover

Decision Making – FSMs

2016-06-02

Decision Making

• Classic AI:
– making the optimal choice of action (given what is known

or is knowable at the time) that maximizes the chance of
achieving a goal or receiving a reward (or minimizes
penalty/cost)

• Game AI:
– choosing the right goal/behavior/animation to support the

experience

• Decision-making must connect directly to animation so
player can see the results of decision-making directly
(explainable AI)
– What animation do I play now?
– Where should I move?

FSM theory

• A (model of a) device which has
– a finite number of states (S)

– an input vocabulary (I)

– a transition function T(s,i)  s’

– a start state  I

– zero or more final states  I

• Behavior
– Can only be in one state at a given moment in time

– Can make transitions from one state to another or to
cause an output (action) to take place.

FSMs in Practice

• Each state represents some desired behavior

• Transition function often resides across states

– Each state determines subsequent states

• Can poll the world, or respond to events
(more on this later)

• Support actions that depend on state &
triggering event (Mealy) as well as entry & exit
actions associated with states (Moore)

Mealy & Moore
Mealy Output =
F(state, input)

Moore Output =
F(state)

State
State

OnEnter / OnExit

Idle

Search

Flee

P / Yelp

Idle
Relief / Startle

Search
Growl / Sigh

Flee
Yelp / Sigh

P

FSM as GAI

• Character AI
modeled as sequence
of mental states

• World events (can)
force a change in
state

• Mental model easy to
grasp (for all)

Gather
Treasure

Flee

Fight

Monster In Sight

No Monster

Monster Dead Cornered

Jarret Raim

State Transition Table

Current State Condition State Transition

Gather Treasure Monster Flee

Flee Cornered Fight

Flee No Monster Gather Treasure

Fight Monster Dead Gather Treasure

Gather
Treasure

Flee

Fight

Monster In Sight

No Monster

Monster Dead Cornered

Advantages

• Ubiquitous (not only in digital games)

• Quick and simple to code

• (can be) Easy* to debug

• Fast: Small computational overhead

• Intuitive

• Flexible

Debugging FSM’s

• Offline Debugging
– Logging

– Verbosity Levels

• Online Debugging
– Graphical

representation is
modified based on AI
state

– Command line to
modify AI behavior on
the fly.

EXAMPLES

* Usually animations are linked to states, transitions, or both.

Example 1

Hierarchical FSM Example

• Equivalent to regular FSMs
• Easier to think about encapsulation

FSM: Quake dog monster
SPAWN

IDLE

ATTACK

DIE

Main input event act. Dog specific act. (gen.) monster act.h
tt

p
:/

/a
i-

d
ep

o
t.

co
m

/F
in

it
eS

ta
te

M
ac

h
in

es
/F

SM
-F

ra
m

ew
o

rk
.h

tm
l

FSM Examples

• Red: Shadow, blinky

– “pursuer” or “chaser”

• Pink: Speedy, pinky

– “ambusher”

• Blue: Bashful, inky

– “whimsical”

• Orange: Pokey, Clyde

– “feigning ignorance”

http://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior

FSM Examples

• Pac-Man

• FPSs

FSM Examples

• Pac-Man

• FPSs

• Sports Simulations

FSM Examples

• Pac-Man

• FPSs

• Sports Simulations

• RTSs

UnrealScript Example

off on idle

1st 2nd

reverse

turn key on

turn key off

turn key on

turn key off

shift up

shift up

shift down

shift down

shift up

shift down

stall

stall

public void runStateMachine (Event e)

{

switch (state) {
case 0:

if (e.isTurnOn()) { power=true; state=1;}
break;

case 1:
if (e.isTurnOn()) { startEngine(); state=2;}
else if (e.isTurnOff()) { power=false; state=0;}
break;

case 2:
makeEngineSound();
if (e.isUpShift()) { gear=1; state=3;}
else if (e.isDownShift()) { gear=-1; state=9;}
else if (e.isTurnOff()) { stopEngine(); state=1;}
break;

…
}

}

FSM IMPLEMENTATIONS

Impl: Centralized Conditionals

• Simplest method

• After an action, the state
might change.

• Requires a recompile for
changes (hard-coded)

• No pluggable AI

• Not accessible to non-
programmers

• No set structure

• Can be a bottleneck.

void RunLogic(int *state) {

switch(*state) {

case 0: //Wander

Wander();

if(SeeEnemy())

*state = 1;

if(Dead())

*state = 2;

break;

case 1: //Attack

Attack();

*state = 0;

if(Dead())

*state = 2;

break;

case 3: //Dead

SlowlyRot()

break;

}

… in Game Loop (w/ enum)
public enum State {STATE1, STATE2, STATE3};
State state = State.STATE1;
void tick ()
{

switch (state) {
case STATE1:

PlayAnimation(…);
if (…) state = newstate;
else if (…) state = newstate;
else if …
else …

case STATE2:
PlayAnimation(…);
if (…) state = newstate;
else if…
else if…
else …

}
}

Implementation: Macros

…
BeginStateMachine

State(WANDER)
Begin:

Wander();
if (SeeEnemy()) GotoState(ATTACK);
if (Incapacitated()) GotoState(INCAPACITATED);

State(INCAPACITATED)
Begin:

…
Moan:

PlaySound(moan);
goto ‘Moan’;

EndStateMachine

Impl: State Transition Tables

Current
State

Condition
State

Transition

RunAway Safe Patrol

Attack WeakerThanEnemy RunAway

Patrol
Threatened &&

StrongerThanEnemy
Attack

Patrol
Threatened &&

WeakerThanEnemy
RunAway

If Kitty_Hungry AND NOT Kitty_Playful SWITCH_CARTRIDGE eat_fish

Impl: Tables Alt

Event 
State ↓

E1 E2 E3

S1 ---- A1/S2 A3/S1

S2 … … …

S3 … … …

S: state, E: event, A: action, ----: illegal transition

Implementation: Virtual FSM

State Name Conditions Actions

Current state
name

Entry Outputs…

Exit Outputs…

Condition 1… Outputs…

Condition 2… Outputs…

Next state name Condition X Outputs…

Next state name Condition Y Outputs…

… … …

https://en.wikipedia.org/wiki/Virtual_finite-state_machine

https://en.wikipedia.org/wiki/Virtual_finite-state_machine

Implementation: Virtual FSM

State Name Conditions Actions

Patrol Entry SwingKeys()

Exit DropClipboard()

Happy() Whistle()

NearDog() PetDog()

Flee Overwhelmed() Scream()

Attack !Overwhelmed() TakeOutGun()

… … …

Impl: Distributed

• Rules for transition contained within state

• Good encapsulation

• Can swap in/out states easier

• AKA

– “State Design Pattern” (Buckland italics)

– “Embedded rules” (Buckland subheading)

Eat_fish cartridge knows when to switch to Use_litterbox

Impl: Distributed
interface Entity

{

void update () ;

//void changeState (State newstate);

}

interface State

{

void execute (Entity thing);

void onEnter (Entity thing);

void onExit (Entity thing);

}

Where “thinking” happens.

Impl: Distributed
class Troll implements Entity
{ int liveTime=0;

State currentstate, previousState;
@Override
void update () {

liveTime++;
currentstate.execute(this);

}
//@Override
void changeState (State newstate) {

previousState = currentState;
currentstate.onExit(this);
currentstate = newstate;
currentState.onEnter(this);

}
}

Class CoolState implements State
{ @Override

void execute (Entity thing) {}
void execute (Troll thing) {

if (thing.liveTime = 0) {
thing.playAnimation(ani1);
thing.changeState(new st);

}
else thing.doSomething();

}

@Override
void onEnter (Entity thing) {…}
@Override
void onExit (Entity thing) {…}

}

Impl: Consolidated, Distributed
class StateMachine //implements Entity?
{ State currSt, prevSt, globalSt;

Entity owner;

StateMachine(Entity e){ owner = e; }

void update () {
if(globalSt != null)

globalSt.execute(owner);
currentstate.execute(owner);

}
void changeState (State newstate) {

previousState = currentState;
currentstate.onExit(owner);
currentstate = newstate;
currentState.onEnter(owner);

}
void revertToPrev(){ changeState(prevSt); }
boolean isInState(State st) { …}

}

class Troll implements Entity

{ StateMachine fsm;

Troll(){

fsm = new StateMachine(this);

fsm.setGlobalState(

TrollGlobalState.singleton());

fsm.setLocalState(

TrollSleepInCave.singleton());

}

void update(){

liveTime++;

fsm.update();

}

StateMachine getFSM()(return fsm; }

}

Impl: Python-like
class StateMachine:

states #list of states
initST
curST = initST

def update():
triggeredT = None
for t in curST.transitions():

if t.isTriggered():
triggeredT = t
break

if triggeredT:
targetST = triggeredT.getTargetState()
actions = curST.getExitAction()
actions += triggeredT.getAction()
actions += targetST.getEntryAction()
curST = targetST
return actions

else: return curST.getAction()

class State:

actions

def getAction(): return actions

entryActs

def getEntryAction(): return entryActs

exitActs

def getExitAction(): return exitActs

transitions

def getTransitions(): return transitions

class Transition:

condition

def isTriggered(): return condition.test()

targetState

def getTargetState(): return targetState

actions

def getAction(): return actions

Global States

• May have multiple states that could happen at
any time

• Want to avoid authoring many transitions
from every other state to these

• Create a global state that is called every
update cycle

• State “blips” (return to previous after global)

FSM Extensions

• Extending States

– Adding onEnter() and onExit() states can help
handle state changes gracefully.

• Stack Based FSM’s

– Allows an AI to switch states, then return to a
previous state.

– Gives the AI ‘memory’

– More realistic behavior

– Subtype: Hierarchical FSM’s

Motivating FSM Stacks

• Original version
doesn’t remember
what the previous
state was.

• One solution is to
add another state
to remember if you
heard a sound
before attacking.

Spawn

D

Inspect

~E

D

Attack

E,~D~E

E

E

D

S
Patrol

E

~S

S

D

E

Attack-P

E,S,~D

~E

~S

S

D

E: Enemy in sight; S: hear a sound; D: dead

Motivating FSM Stacks (2)

Spawn

D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E

E,-D,-S,-L

E

Chase

-E,-D,S,-L

S

D

S

D

D

Retreat-E

E,-D,-S,L

L

-E

Retreat-S

-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES

E,-D,S,L

Attack-ES

E,-D,S,-L

E

E

-E

-L

-S

L

-E E

L
-L

-L

-L

L

D

Worst case:
Each extra state

variable can add 2n

extra states
n = number of
existing states

Using a stack would
allow much of this

behavior without the
extra states.

E: Enemy in sight; S: hear a sound; D: dead

Stack FSM – Thief 3

Stack allows AI to
move back and
forth between

states.

Leads to more
realistic behavior

without increasing
FSM complexity.

Hierarchical FSMs

• Expand a state into its own sub-FSM

• Some events move you around the same level
in the hierarchy, some move you up a level

• When entering a state, have to choose a state
for it’s child in the hierarchy

– Set a default, and always go to that

– Random choice

– Depends on the nature of the behavior

Hierarchical FSM Example

E: Enemy in sight; S: hear a sound; D: dead

Non-Deterministic Hierarchical FSM

Hierarchical FSMs in
Destroy All Humans 2

http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php

http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php

Hierarchical FSMs in
Destroy All Humans 2

• Active (blue), pending (orange)

• Only active behaviors update

• Only active behaviors have children

• If * children startable, rank

• States can be marked as non-

interruptable or non-blocking

Hierarchical FSMs in
Destroy All Humans 2

• Self-contained
behaviors
– When to activate

– What activates it,
interrupts it

– What to do on start, exit

– What children it starts

• Code-supported
behaviors exist for
complex, non-
generalizable cases

Hierarchical FSMs in
Destroy All Humans 2

More FSM Extensions
• Fuzzy State Machines

– Degrees of truth allow
multiple FSM’s to
contribute to character
actions.

• Multiple FSM’s
– High level FSM

coordinates several
smaller FSM’s.

• Polymorphic FSM’s
– Allows common behavior

to be shared.
– Soldier -> German ->

Machine Gunner

Polymorphic FSMs

• Small changes to low level behaviors may be
needed for different types of entities

• Polymorphism allows multiple versions of a
single FSM to be executed on NPC state

Polymorphic FSM Example

Soldier

Rifleman Officer

British Soviet

American German

Machine Gunner

British Soviet

American German

British Soviet

American German

Impl: Data Driven

• Developer creates scripting language to
control AI.

• Script is translated to C++ or bytecode.

• Requires a vocabulary for interacting with the
game engine.

• A ‘glue layer’ must connect scripting
vocabulary to game engine internals.

• Allows pluggable AI modules, even after the
game has been released.

Scripted AI

• Many game engines are virtual machines

• Script is a program written in a programming
language that makes calls into the game
engine

• AI is the script

• Examples: Lua, Ruby, UnrealScript

• Powerful when paired with trigger systems

Game Engine Interfacing

• Simple hard coded approach
– Allows arbitrary parameterization

– Requires full recompile

• Function pointers
– Pointers are stored in a singleton

or global

– Implementation in DLL
• Allows for pluggable AI.

• Data Driven
– An interface must provide glue

from engine to script engine.

Engine AI

Engine AIDLL

Engine

S. Interface

AI

Compiler

Byte Code

Processing Paradigms

• Polling
– Simple and easy to debug.
– Inefficient since FSM’s are always evaluated.

• Event Driven Model
– FSM registers which events it is interested in.
– Requires Observer model in engine.
– Hard to balance granularity of event model.

• Multithreaded
– Each FSM assigned its own thread.
– Requires thread-safe communication.
– Conceptually elegant.
– Difficult to debug.
– Can be made more efficient using microthreads.

Single-threaded execution

Object 1 Object 2

Multi-threaded execution

Object 1 Object 2 Object 3

Messaging/Triggers vs Polling

• Well-designed games tend to be event driven

• Examples (broadcast to relevant objs)

– Wizard throws fireball at orc

– Football player passes to teammate

– Character lights a match (delayed dispatch match)

• Events / callbacks, publish / subsribe,
Observers (GoF)

– See Buckland Ch 2: Adding Messaging (pp69)

Time Management

• Helps manage time spent in processing FSM’s.

• Scheduled Processing
– Assigns a priority that decides how often that

particular FSM is evaluated.

– Results in uneven (unpredictable) CPU usage by
the AI subsystem.
• Can be mitigated using a load balancing algorithm.

• Time Bounded
– Places a hard time bound on CPU usage.

– More complex: interruptible FSM’s

FSM Pros and Cons

• Advantages:
– Very fast – One array access
– Can be compiled into compact data structure

• Dynamic memory: Current state
• Static memory: State diagram – Array implementation

– Can create tools so non-programmer can build behavior
– Non-deterministic FSM can make behavior unpredictable

• Disadvantages:
– Number of states can grow very fast

• Exponentially with number of events: s=2e

– Number of arcs can grow even faster: a=s2

– Hard to encode complex memories or sequences of action
– Propositional representation

• Difficult to put in “pick up the better weapon,” attack the closest
enemy

References / See Also

• AI Game Programming Wisdom 2
• Web

– http://ai-depot.com/FiniteStateMachines
– http://www.gamasutra.com/view/feature/130279/creating_all_huma

ns_a_datadriven_.php
– https://en.wikipedia.org/wiki/Virtual_finite-state_machine

• Buckland Ch 2
– http://www.ai-junkie.com/architecture/state_driven/tut_state1.html

• Millington Ch 5
• Jarret Raim’s slides (Dr. Munoz-Avila’s GAI class 2005)

– http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.p
pt

• Mark Riedl, Brian O’Neill, and Brian Magerko

http://ai-depot.com/FiniteStateMachines/FSM-Framework.html
http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php
https://en.wikipedia.org/wiki/Virtual_finite-state_machine
http://www.ai-junkie.com/architecture/state_driven/tut_state1.html
http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.ppt

Trajectory Update

• Start next homework, ASAP!

• To come: More decision making

– Planning

– Decision trees

– Behavior trees

– Rule based systems

– Fuzzy Logic

– Markov Systems

