
“A good decision is based on knowledge and not on
numbers.” – Plato

“Once you make a decision, the universe conspires
to make it happen.” – Ralph Waldo Emerson

“The quality of decision is like the well-timed swoop
of a falcon which enables it to strike and destroy its

victim.” – Sun Tzu

Class N-3

1. When might you precompute paths?
2. This is a single-source, multi-target shortest path

algorithm for arbitrary directed graphs with non-negative
weights. Question?

3. This is a all-pairs shortest path algorithm.
4. How can a designer allow static paths in a dynamic

environment?
5. When will we typically use heuristic search?
6. What is an admissible heuristic?
7. When/Why might we use hierarchical pathing?
8. Does path smoothing work with hierarchical?
9. How might we combat fog-of-war?

Class N-2

1. Steering vs flocking?

2. Steering Family Tree

3. How might we combine
behaviors?

4. What three steering mechanisms enable
flocking?

Buckland Fig 3.16

Millington Fig 3.29

Class N-1

1. How can we describe decision making?

2. What makes FSMs so attractive?

3. What might make us not choose an FSM?

4. Two drawbacks of FSMs, and how to fix?

5. What are the performance dimensions we
tend to assess?

6. What are two methods we discussed to learn
about changes in the world state?

OOB

• Decision Making: f(knowledge)  action

– N+2: Planning

– N+1: Rule-based Agents, Fuzzy, Markov

– N-0: Decision & Behavior Trees (M Ch5.2, 5.4)

– N-1: FSMs

– N-2: Steering

– N-3: Graphs, Search, and Movement

Decision Making: Trees

2016-06-07

DECISION TREES (M CH 5.2)

Decision Trees

• Fast, simple, easily implemented, easy to grok

• Modular

• Simplest decision making technique

• Used extensively to control

– Characters

– In-game decision making (eg animation)

• Can be learned (rare in games)

– Learned tree still easy to grok

D-Tree Structure

• Dtree made of
connected decision
points
– root == starting

decision
– leaves == actions

• For each decision, one
of 2+ options is
selected

• Typically use global
game state

Decisions

• Can be of multiple types

– Boolean

– Enumeration

– Numeric range

– etc.

• No explicit AND or OR, but representable

– Tree structure represents combinations

AND / OR in D-Tree

Branching

• N-ary trees

– Usually ends up as if/then statements

– Can be faster if using enums w/ array access

– Speedup often marginal & not worth the effort

• Binary trees

– Easier to optimize

– ML techniques typically require binary trees

– Can be a graph, so long as it’s a DAG

Knowledge Representation

• Typically work directly w/ primitive types

• Requires no translation of knowledge

– Access game state directly

– Can cause HARD-TO-FIND bugs

• Rare decisions

• Structure of game-state changes

– Cons avoidable w/ careful world interface

• See Millington CH 10

Tree Balancing
• More balanced  faster (theory)

– Balance ~= same number of leaves on each branch

– O(N) vs O(Log2 N)

• Short path to likely action  faster (practice)

– O(1)

– Defer time consuming decisions ‘til last

• Performance tuning

– Dark art – since fast anyway, rarely important

– Balance, but keep common paths short & bury
long decisions

See M Ch 5.2

class DecisionTreeNode:

def makeDecision() #recursively walk tree

class Action:

def makeDecision():

return this

class FloatDecision(Decision):

minValue

maxValue

def getBranch():

if max >= test >= min:

return trueNode

else:

return falseNode

class Decision(DecisionTreeNode):

trueNode

falseNode

testValue

def getBranch()

def makeDecision() :

branch = getBranch()

return branch.makeDecision()

Randomness

• Predictable == bad

• Can add a random decision node

• Keep track of decision from last cycle

• Reset after a timeout or new decision

• See M 5.2.10 for implementation deets

Learning Decision Trees

• Real power of D-trees comes from learning

• Problem: Construct a decision tree from
examples of inputs and actions

• Sol’n: Quinlan’s “Induction of Decision Trees”

– ID3, C4.5, See5

• http://en.wikipedia.org/wiki/ID3_algorithm

– J48 (GPL java implementation)

• http://www.opentox.org/dev/documentation/compon
ents/j48

• See Weka (GNU GPL)

http://en.wikipedia.org/wiki/ID3_algorithm
http://www.opentox.org/dev/documentation/components/j48

Learning Decision Trees

• A simple technique whereby the computer learns to
predict human decision-making

• Can also be used to learn to classify

– A decision can be thought of as a classification problem

• An object or situation is described as a set of attributes

– Attributes can have discrete or continuous values

• Predict an outcome (decision or classification)

– Can be discrete or continuous

– We assume positive (true) or negative (false)

Basic Concept

• Given the current set of decisions, what
attribute can best split them?

• Choose the “best one” and create a new
decision node

– Best == most information gained

• Good attributes make homogeneous sets

• Recursively go down each edge

Example
Example Attributes Target

WaitAlt Bar Fri Hun Pat Price Rain Res Type Est

X1 T F F T Some $$$ F T French 0-10 T

X2 T F F T Full $ F F Thai 30-60 F

X3 F T F F Some $ F F Burger 0-10 T

X4 T F T T Full $ F F Thai 10-30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0-10 T

X7 F T F F None $ T F Burger 0-10 F

X8 F F F T Some $$ T T Thai 0-10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10-30 F

X11 F F F F None $ F F Thai 0-10 F

X12 T T T T Full $ F F Burger 10-60 T

Choosing an Attribute

• Idea: A good attribute splits the examples into
subsets that are (ideally) “all positive” or “all
negative”

• Patrons? is a better choice

Attack?

• Attributes:
– Bypass? Can be bypassed
– Loot? Has valuable items/treasure
– Achievement? Will unlock an achievement if you win
– On Quest? You are on a quest
– Experience. How much experience points you get
– Environment. How favorable is the terrain?
– Mini-boss? Is this a mini-boss, preventing further progress?
– Element. The elemental properties (earth, air, fire, water)
– Estimated Time. How long will this combat take (quick, short,

long, very long)?
– Team size. How many monsters in the team (none, small, large)?

Team size

Est. Time

Bypass? On quest?

Mini-boss? Achievement?

Loot?

Bypass?

Environment

No Yes

No Yes

Yes

No Yes

No Yes

Yes

Yes

No Yes

Single
Few

Many

Very long
Long Short

Quick

F T

F T

F T

F T

F T

F T

F T

Attack?

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

On quest?

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

TF

NO YES

NO

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

• Learned from the 12 examples

• Why doesn’t it look
like the previous tree?

– Not enough examples

– No reason to use
environment or mini-boss

– Hasn’t seen all cases

• Learning is only as good
as your training data

• Supervised learning

– Training set

– Test set

Team size

On quest?No Yes

Single
Few Many

Element

NoYes

water

fire

Yes

earth

Achievement?

air

No

T F

No Yes

F T

Which attribute to choose?

• The one that gives you the most information (aka
the most diagnostic)

• Information theory
– Answers the question: how much information does

something contain?

– Ask a question

– Answer is information

– Amount of information depends on how much you
already knew (information gain)

• Example: flipping a coin

Entropy

• Measure of information in set of examples

– That is, amount of agreement between examples

– All examples are in the same action, E = 0

– Even distributed and different, E = 1

• If there are n possible answers, v1…vn and
vi has probability P(vi) of being the right
answer, then the amount of information is:

H P(v1),...,P(vn)() = - P(vi)log2 P(vi)
i=1

n

å

• For a training set:
p = # of positive examples

n = # of negative examples

• For our attack behavior
– p = n = 6

– H() = 1

– Would not be 1 if training set weren’t 50/50 yes/no,
but the point is to arrange attributes to increase gain
(decrease entropy)

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷ = -

p

p+n
log2

p

p+n
-
n

p+n
log2

n

p+n

Probability of
a positive example

Probability of
a negative example

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Measuring attributes
• Remainer(A) is amount of entropy remaining after

applying an attribute
– If I use attribute A next, how much less entropy will I have?

– Use this to compare attributes

pi +ni

p+n
H

pi

pi +ni
,
ni

pi +ni

æ

è
ç

ö

ø
÷

i=1

v

åRemainder(A) =

Different answers

attribute

Total answers

Instances of
the attribute

Positive examples
for this answer to A

Negative examples
for this answer to A

Examples classified by A

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Remainder(element) =

water fire air earth

= 1 bit

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

2

12
I

0

2
,
2

2

æ

è
ç

ö

ø
÷ +

4

12
I

4

4
,
0

4

æ

è
ç

ö

ø
÷ +

6

12
I

2

6
,
4

6

æ

è
ç

ö

ø
÷ Remainder(teamsize) =

single few many

≈ 0.459 bit

• Not done yet

• Need to measure information gained by an attribute

• Pick the biggest

• Example:
– Gain(element) = H(½,½) –

– Gain(teamsize) = H(½,½) –

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷Gain(A) = - remainder(A)

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

4

4
,
0

4

æ

è
ç

ö

ø
÷+

6

12
H

2

6
,
4

6

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

= 0 bits

≈ 0.541 bits

H
2

12
,

4

12

æ

è
ç

ö

ø
÷-

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
úGain(quest) =

= 0.959 – [0 + (4/12)(1)]

≈ 0.626 bits

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: 4 12
Neg: 2 5 9 10

Many

On Quest

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

T
F

no yes

teamsize=many, onquest=F

teamsize=many, onquest=T

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification

ELSE IF attributes is empty RETURN majority-value(examples)

ELSE

best = choose(attributes, example)

tree = new decision tree with best as root

m = majority-value(examples)

FOREACH answer vi of best DO

examplesi = {elements of examples with best=vi}

subtreei = decision-tree-learning(examplesi, attributes-{best}, m)

add a branch to tree based on vi and subtreei

RETURN tree

Where gain happens

How many hypotheses?

• How many distinct trees?

– N attributes

= # of boolean functions

= # of distinct truth tables with 2n rows

= 2^2^n

– With 6 attributes: > 18 quintillion possible trees

How do we assess?

• How do we know hypothesis ≈ true decision function?
• A learning algorithm is good if it produces hypotheses that do a

good job of predicting decisions/classifications from unseen
examples

1. Collect a large set of examples (with answers)
2. Divide into training set and test set
3. Use training set to produce hypothesis h
4. Apply h to test set (w/o answers)

– Measure % examples that are correctly classified

5. Repeat 2-4 for different sizes of training sets, randomly selecting
examples for training and test
– Vary size of training set m
– Vary which m examples are training

• Plot a learning curve
– % correct on test set, as a function of training set size

• As training set grows, prediction quality should increase
– Called a “happy graph”

– There is a pattern in the data AND the algorithm is picking it up!

Noise

• Suppose 2 or more examples with same
description (Same assignment of attributes) have
different answers

• Examples: on two identical* situations, I do two
different things

• You can’t have a consistent hypothesis (it must
contradict at least one example)

• Report majority classification or report
probability

Overfitting

• Learn a hypothesis that is consistent using irrelevant attributes
– Coincidental circumstances result in spurious distinctions among

examples
– Why does this happen?

• You gave a bunch of attributes because you didn’t know what would be
important

• If you knew which attributes were important, you might not have had to do
learning in the first place

• Example: Day, month, or color of die in predicting a die roll
– As long as no two examples are identical, we can find an exact

hypothesis
– Should be random 1-6, but if I roll once every day and each day results

in a different number, the learning algorithm will conclude that day
determines the roll

• Applies to all learning algorithms

Black and White

Black and White

• Creature must learn what to do in different situations
• Player can reward or punish the creature

– Tells the creature whether they made the right choice of
action or not

• Creature learns to predict the feedback it will receive
from the player

Continuous DTs must
discretize the variables
by deciding where to split
the continuous range.

No Free Lunch

• ID3
– Must discretize continuous attributes

– Offline only (online = adjust to new examples)

– Too inefficient with many examples

• Incremental methods (C4.5, See5, ITT, etc)
– Starts with a d-tree

– Each node holds examples that reach that node

– Any node can update self given new example

– Can be unstable (new trees every cycle; rare in
practice)

