- "Everything should be as simple as possible, but not simpler." – Einstein
- Occam (of Razor fame parsimony, economy, succinctness in logic/problem-solving)
 - "Entities should not be multiplied more than necessary"
 - "Of two competing theories or explanations, all other things being equal, the simpler one is to be preferred."
- "All that is complex is not useful. All that is useful is simple." Mikhail Kalashnikov (of AK-47 fame)

Decision Making: Communication

2016-06-14

Questions

- 1. How can we describe decision making?
- 2. What do the algorithms we've seen share?
- 3. What are the dimensions we tend to assess?
- 4. FSMs/Btrees: _____ :: Planning : _____
- 5. For the 2nd blank, we need m____s.
- 6. When is reactive appropriate? Deliberative?
- 7. What is the 'hot-potato' passed around (KE)?
- 8. H_____ have helped in most approaches.
- 9. Which approach should you use?

DM: Communication. Why?

- Lens: Multi-agent system
 - Collection of collaborative agents
 - Communicate & cooperate
 - Retain autonomy
 - Need for negotiation / mutually acceptable agreements (cooperative problem solving)
- Reasoning decomposition: distributed expertise
 - Problems too large for single / centralized agent
 - Reactive agents rarely communicate / collaborate
 - Problem independence, partial result sharing
- Hope: Sum greater than parts

Distributed DM

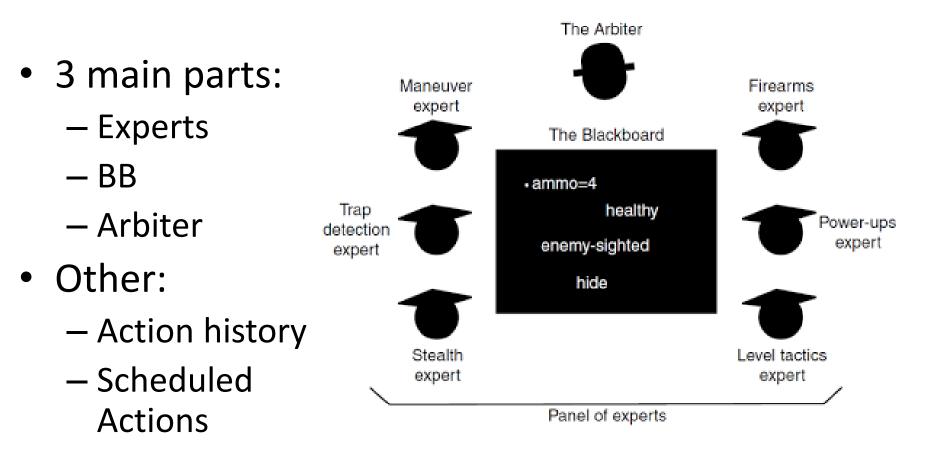
- 1. Decompose the task
- 2. Allocate subtasks to "experts"
- 3. Await task accomplishment
- 4. Synthesize & Arbitrate results

Information sharing needed for most/all!

Communication Types

- Point to Point
 - Experts directly communicate w/eachother
 - Where have we seen this?
- Broadcast
 - Send information to group of experts
 - Talk about today.
- Mediated
 - Experts go through facilitator/arbitrator

Communication Mediums


- Firm software interfaces
- Databases
- Protocol layers (e.g.: TCP/IP + JSON)
- Hierarchies (hybrids)
- Pub/Sub services

BLACKBOARD ARCHITECTURES

Blackboards

- Isn't a decision making algorithm
- Architecture / coord. mechanism / pattern
- Problem: Multiple decision making systems (experts). How to communicate (share data)?

Basic BB Architecture

Millington & Funge, Figure 5.54

Information on the BB

- Shared data
- Present task of each expert
- Current state of solution
- Intermediate results
- Next subproblems to be solved
- Requests for help
- Action scheduling

BB Data Format

- Often uses application specific organization
- Highly domain-dependent
 - 3D locations, maneuver (steering) info
 - FOL strings (flat, hierarchical)
 - Polymorphic data types
- Three typical features:
 - Value (e.g. 3)
 - Type (e.g. float)
 - Semantic Information (e.g. lives remaining)

BB Arbiter

- Advertises next problems to be solved
- Checks on progress of experts
- Assign pending problems
- Monitor change
 - Polling vs Observer patterns
 - Can notify experts of relevant changes

BB Uses

- Conflict detection
 - Task level
 - (incompatible) solution level
- Task sharing
- Result / information sharing

Includes both partial and complete results

Is a BB?

- RBS?
 - Experts: rules
 - BB: Facts DB
 - Arbiter: which rule(s) to fire
- FSMs?
 - Subset of RBS
 - Experts: transitions (rewrite state)
 - BB: current state + related info
 - Arbiter: which transition(s) to fire

Pros and Cons

- Pro:
 - Flexible, allowing for comm. + coop.; (n bb's)
 - Independent of cooperation strategy
 - Does not restrict internal structure of agent
- Con
 - Management code
 - Complicated data structures
 - Centralized structure (single point of failure)
 - System bottleneck
- Have a bad rep among game+academic AI. But they're used anyway, and "shall not be named"