
“A good decision is based on knowledge and not on
numbers.” – Plato

“Once you make a decision, the universe conspires
to make it happen.” – Ralph Waldo Emerson

“The quality of decision is like the well-timed swoop
of a falcon which enables it to strike and destroy its

victim.” – Sun Tzu

• Wikipedia: “Perfect is the enemy of good”

• “Everything should be as simple as possible, but
not simpler.” – Einstein

• Occam (of Razor fame – parsimony, economy,
succinctness in logic/problem-solving)

– “Entities should not be multiplied more than
necessary”

– “Of two competing theories or explanations, all
other things being equal, the simpler one is to be
preferred.”

• “All that is complex is not useful. All that is useful
is simple.” – Mikhail Kalashnikov (of AK-47 fame)

https://en.wikipedia.org/wiki/Perfect_is_the_enemy_of_good

Class N-4

1. When might you precompute paths?
2. This is a single-source, multi-target shortest path

algorithm for arbitrary directed graphs with non-negative
weights. Question?

3. This is a all-pairs shortest path algorithm.
4. How can a designer allow static paths in a dynamic

environment?
5. When will we typically use heuristic search?
6. What is an admissible heuristic?
7. When/Why might we use hierarchical pathing?
8. Does path smoothing work with hierarchical?
9. How might we combat fog-of-war?

Class N-3

1. Steering vs flocking?

2. Steering Family Tree

3. How might we combine
behaviors?

4. What three steering mechanisms enable
flocking?

Buckland Fig 3.16

Millington Fig 3.29

Class N-2

1. How can we describe decision making?

2. What makes FSMs so attractive?

3. What might make us not choose an FSM?

4. Two drawbacks of FSMs, and how to fix?

5. What are the performance dimensions we
tend to assess?

6. What are two methods we discussed to learn
about changes in the world state?

Class N-1

1. How many outcomes does a d-tree produce?

2. What are advantages of D-Trees?

3. Discuss the effects of tree balance.

4. Must d-trees be a tree?

5. Can d-trees translate into rules? If so how?

6. How can we use d-trees for prediction?

7. What is the notion of overfitting?

Quake D-Tree

http://research.cs.wisc.edu/graphics/Courses/638-f2001/lectures/cs638-17.ppt.

• Attributes: E=<t,f> L=<t,f>
S=<t,f> D=<t,f>

• Actions: Attack, Retreat, Chase,
Spawn, Wander

• Could add additional trees:

– If I’m attacking, which weapon
should I use?

– If I’m wandering, which way
should I go?

– Much like hierarchical FSMs

D?

Spawn E?

L? S?

WanderRetreat Attack L?

t

t t

f

f f

Retreat Chase

t f

ft

E: Enemy in sight; S: hear a sound;
D: dead; L: Low health

http://research.cs.wisc.edu/graphics/Courses/638-f2001/lectures/cs638-17.ppt

Quake FSM

Spawn

D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E

E,-D,-S,-L

E

Chase

-E,-D,S,-L

S

D

S

D

D

Retreat-E

E,-D,-S,L

L

-E

Retreat-S

-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES

E,-D,S,L

Attack-ES

E,-D,S,-L

E

E

-E

-L

-S

L

-E E

L
-L

-L

-L

L

D

http://web.eecs.umich.edu/~sugih/courses/eecs494/fall06/lectures/lecture13-gameai.pdf

http://web.eecs.umich.edu/~sugih/courses/eecs494/fall06/lectures/lecture13-gameai.pdf

OOB

• Decision Making: f(knowledge)  action

– N+2: Planning

– N+1: Rule-based Agents, Fuzzy, Markov

– N: Decision & Behavior Trees (M Ch5.2, 5.4)

– N-1: Decision & Behavior Trees (M Ch5.2, 5.4)

– N-2: FSMs

– N-3: Steering

– N-4: Graphs, Search, and Movement

Decision Making: Trees

2016-06-09

BEHAVIOR TREES (M CH. 5.4)

Behavior Trees

• Very popular/ubiquitous (Bungie’s Halo 2 –
2004)

• Synthesis of: HFSM, Scheduling, Planning

• Easy to understand

• Easy for non-programmers to create

• Aren’t good in all instances… (stay tuned)

• Composable, self contained

• Instead of state, employ tasks

BTree Tasks

• Range from looking up variable value to playing
animation

• Composed into sub-trees yielding higher-level
behaviors

• All task share common interface

• Tasks tend to be self-contained

• Given CPU time to execute, return
Success/Failure (error status, need more time)

• Keep each task as small as possible/useful

Behavior Trees

• Simple reactive planning
• Tree of behaviors specify what an agent should

do under all circumstances (manually provided)
• Leafs

– Actions: do something in the world
– Conditions: test property in the world

• Composite nodes (non-leafs): make a
choice/decision
– (?) Selectors: Prioritized list, (~?) ND
– () Sequence: List, Sequential-looping, (~) ND

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html

Behavior Tree Structure

• Behavior tree made of
connected tasks (not
states!)
– Conditions

– Actions

– Composites

• Tasks return success
or failure

• Decomposition allows
flexibility & easy GUI
integration

Class Task
{

children = []

boolean run ()
{

if (execution conditions not met) do {
return False

}
// Do whatever you need to do
return True or False

}
}

Class Selector extends Task
{

boolean run ()
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == True do {
return True

}
}
return False

}
}

Class Sequence extends Task
{

boolean run ()
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == False do {
return False

}
}
return True

}
}

Node Types

• Conditions

• Actions

• Composites

Node Types

• Conditions

– Test for some game property (e.g. proximity of
player to NPC)

– Each implemented as a task

• Actions

• Composites

Node Types

• Conditions

• Actions

– Alter game state

• (e.g. play animation, change character internal state,
run AI code, play audio sample, etc.)

– Each is a task

• Composites

Node Types

• Conditions

• Actions

• Composites

– Differentiates BTs from decision trees

– Allows for the combination of tasks without
concern for what else is in the tree

– Each is a Task (?)

Composite Nodes: Selector

• Selector

– Run child tasks until one of them succeeds

– Return failure if all tasks fails

Millington Fig 5.22

Composite Nodes: Sequence

• Selector

• Sequence

– Series of tasks that all must succeed

Millington Fig 5.23

Example

Enter room where player is standing.
Player may close the door.

Example

What if the door is locked?
Millington Fig 5.25

Example

Millington Fig 5.27

Non-deterministic Composites

• Strict order == predictable

• We saw partial-orders help this

• Fake partial-order with random shuffle

• 2 new (sub)types of composites

– ND Selector

– ND Sequence

– The original selector/sequence are deterministic
(that is, totally ordered)

Node summary (so far)

• Conditions
• Action: leaf, alter state of game, move, play

animation, etc.
• Composites:

– Prioritized list: choose subtask, with priority given to
certain “questions”

– Sequence: do all subtasks in order
– Sequential-looping: sequence, start over when done
– Probabilistic: randomly choose a subtask
– One-off: pick one subtask (prioritized or random), but

never repeat the choice

4th node type: Decorators

• See M CH 5.4.3

• Wraps other composites

• Has a single child task and modifies it in some
way

– Filters (allows child to run (or not))

– Run Until Fail

– Inverter

– Guard Resource (semaphores)

Example

Millington Fig 5.29

Semaphores

• Check for restricted resources

– Keeps a tally of available resources and number of
users

– e.g. animation engine, pathfinding pool, etc.

• Typically provided in a language library

Guarding Resources

Millington Fig 5.30

Concurrency & Timing

• Concurrency (tasks run on threads or via
multitasking & scheduling algorithms)

– Essential to make BTs useful

– Most common practical implementation

– Millington codebase has example w/ cooperative
multitasking

• Blackboard communication for sharing data

• New composite task: Parallel

Why Parallel?

Millington Fig 5.31

Millington Fig 5.34

Blackboard Agents

Class SelectTarget extends Task
{

Blackboard bb

boolean run ()
{

character = bb.get(‘me’)
candidates = enemy_vis_to(character)
if (candidates.length > 0) {

targ = biggest_threat(candidates, character)
bb.set(‘target’, targ)
return True

}
return False

}
}

BTs in Halo 2

Root

Self-preservation

Engage

Search

Charge

Fight

Guard

Grenade

Cover

Presearch

Uncover

Guard

Grenade

Vehicle

Investigate

Suppressing fire

Grenade

Postcombat

Shoot corpse

Check corpse

Idle Guard

Retreat Flee

BTs in Halo 2

• Determining which behaviors are relevant can
be costly (in terms of time)

– Why? We’re constantly checking relevancy of
behaviors that are not actually running

• How can we overcome that?

– Behavior tagging – Move commonly used checks
to decision-time

BT Pros and Cons

• Cons
– Clunky for state-based behavior

• That is, changing behavior based on external changes

– Isn’t really thinking ahead about unique situations
– Only as good as the designer makes it (just follows the recipes)

• Pros
– Better when pass/fail of tasks is central

• Sound familiar? (harder to think about state…)

– Appearance of goal-driven behavior
– Multi-step behavior
– Fast
– Recover from errors

• Hybrid system may be answer
– Adds authorial + toolchain burden

Reactive Planning

• Behavior trees implement a simple form of
reactive planning

– Real-time decision making by performing one
action every instant

Reactive Planning

• Where a state-action table gives us:

s1 --> a1

s2 --> a2

…

we get this from reactive plans:

s1 --> a11 a12 a13…

s2 --> a21 a22…

…

Reactive Planning

• Advantages

– Try things, fail, and fall back

– Appearance of goal-driven behavior without a
formal definition of goals

– Fast

Reactive Planning

• Advantages

– Try things, fail, and fall back

– Appearance of goal-driven behavior without a
formal definition of goals

– Fast

• Disadvantages

– Can’t really think ahead

– Only as forward-thinking as the designer makes it

See Also

• Links on previous slides

• AIGPW 4

• http://www.gamasutra.com/blogs/ChrisSimps
on/20140717/221339/Behavior_trees_for_AI
_How_they_work.php

• http://www.gamasutra.com/blogs/BenWeber
/20120308/165151/ABL_versus_Behavior_Tre
es.php

• Unity or UE4

http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.gamasutra.com/blogs/BenWeber/20120308/165151/ABL_versus_Behavior_Trees.php

