
Plans are worthless, but
planning is everything.

There is a very great distinction
because when you are planning
for an emergency you must
start with this one thing: the
very definition of "emergency"
is that it is unexpected,
therefore it is not going to
happen the way you are
planning.

Dwight D. Eisenhower

Sidebar – Architectures

• The “Game Loop”

while game is running

process inputs

update game world

generate outputs

while(user doesn't exit)
check for user input
run AI
move enemies
resolve collisions
draw graphics
play sounds

end while

https://en.wikipedia.org/
wiki/Game_programming

http://www.informit.com/articles/article.
aspx?p=2167437&seqNum=3

https://en.wikipedia.org/wiki/Game_programming
http://www.informit.com/articles/article.aspx?p=2167437&seqNum=3

Decision making

One-pass

Two-pass

BDI

Brooks Subsumption Arch.

(mdps)
See Multiagent Systems 2nd ed, Gerhard Weiss

An agent is a computational entity such as a software program or a robot that is situated in some

environment and that to some extent is able to act autonomously in order to achieve its design

objectives. As interacting entities, agents do not simply exchange data but are actively engaged in

cooperative and competitive scenarios. They may communicate on the basis of semantically rich

languages, and they achieve agreements and make decisions on the basis of processes such as

negotiation, argumentation, voting, auctioning, and coalition formation. As intelligent entities,

agents act flexibly, that is, both reactively and deliberatively, in a variety of environmental

circumstances on the basis of processes such as planning, learning, and constraint satisfaction. As

autonomous entities, agents have far-reaching control over their behavior within the frame of

their objectives, possess decision authority in a wide variety of circumstances, and are able to

handle complex and unforeseen situations on their own and without the intervention of humans

or other systems. And as entities situated in some environment, agents perceive their

environment at least partially and act upon their environment without being in full control of it.

Class N-2

1. How can we describe decision making?

2. What makes FSMs so attractive?

3. What might make us not choose an FSM?

4. Two drawbacks of FSMs, and how to fix?

5. What are the performance dimensions we
tend to assess?

6. What are two methods we discussed to learn
about changes in the world state?

Class N-1

1. How can we describe decision making?
2. What do the algorithms we’ve seen share?
3. What are the dimensions we tend to assess?
4. FSMs/Btrees: ____ :: Planning : _____
5. For the 2nd blank, we need m_____s.
6. When is reactive appropriate? Deliberative?
7. What is the ‘hot-potato’ passed around (KE)?
8. H______ have helped in most approaches.
9. Which approach should you use?

http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

Decision Making: Planning

2016-06-16

With extra thanks to Dana Nau,
Hector Munoz-Avila, and Mark Riedl

OOB Slides

• Now Decision Making

– Getting there: Steering

– Getting there: graphs, search, movement (path
planning)

– Classic AI vs Game AI

Decision Making

• Classic AI:

– making the optimal choice of action (given what is
known or is knowable at the time) that maximizes
the chance of achieving a goal or receiving a
reward (or minimizes penalty/cost)

• Game AI:

– choosing the right goal/behavior/animation to
support the experience

• Today: One of closest overlaps

Planning in Games

• Motivation: more realism

– Agents should be motivated by goals

• FSM vs. planning

– FSM tells the agent what to do

– With planning, agent is given a goal and

figures out what to do

Planning

• Finding a sequence of actions to achieve
a goal

• Basic planning comes down to search

• Need to find appropriate heuristic

Action Planning vs. Path planning

• Same algorithm

• Different action representation
– Pathplanning:

• Cells

• Node links

– Action planning:
• Action data structure

– Action name

– Precondition

– Effect (add/remove)

Representation

• Representation is key

• States

• Goals

• Actions

General-Purpose Planning: State & Goals

• Initial state: (on A Table) (on C A) (on B Table) (clear B)
(clear C)

• Goals: (on C Table) (on B C) (on A B) (clear A)

A

C

B C

B

AInitial state Goals

(Ke Xu)

General-Purpose Planning: Operators

?y

?x

No block on
top of ?x

transformation

?y

?x

…
…

No block on top
of ?y nor ?x

Operator: (Unstack ?x)
• Preconditions: (on ?x ?y) (clear ?x)
• Effects:

– Add: (on ?x table) (clear ?y)
– Delete: (on ?x ?y)

On table

Search Space (World States)

A

C

B
A B C

A C

B

C

B

A

B

A

C

B

A

C

B C

A

C

A

B

A

C

B

B

C

A

A B

C

A

B

C

A

B

C

(Michael Moll)

Some Examples

• Route search: Find a route between Lehigh University and
the Naval Research Laboratory

• Project management: Construct a project plan for
organizing an event (e.g., the Musikfest)

• Military operations: Develop an air campaign
• Information gathering: Find and reserve an airline ticket

to travel from Newark to Miami
• Game playing: plan the behavior of a computer

controlled player
• Resources control: Plan the stops of several of elevators

in a skyscraper building.

Which of the following problems can be modeled as AI planning
problems?

Answer: ALL!

FSM vs AI Planning

P
la

n
n

in
g

O
p

e
ra

to
rs

•Patrol
Preconditions:

No Monster
Effects:

patrolled
•Fight

Preconditions:
Monster in sight

Effects:
No Monster

Patrol Fight

Monster In Sight

No Monster

FSM:

A resulting plan:

Patrol
patrolled

Fight

No MonsterMonster in sight

Neither is more
powerful than
the other

But Planning Gives More Flexibility
• “Separates implementation from data” --- Orkin

reasoning knowledge

P
la

n
n

in
g

O
p

e
ra

to
rs

•Patrol
Preconditions:

No Monster
Effects:

patrolled
•Fight

Preconditions:
Monster in sight

Effects:
No Monster

…

Many potential plans:

PatrolFight
PatrolFight
PatrolFight
PatrolFight

PatrolFight

…

If conditions in the state change making
the current plan unfeasible: replan!

FSMs vs. Planning

• FSMs tell agents how to behave in every
situation

• In planning systems, agents have goals and a
set of actions. Agent decides how to apply
those actions to goals.

But… Does Classical Planning Work for Games?

F.E.A.R. not!

Planning in F.E.A.R.

• Agents need to autonomously use
environment to satisfy their goals

• Agent will not do anything without a goal

• Agent types defined by what actions are
available to them

Benefits of Planning in F.E.A.R.

• Decoupled goals and actions

• Layered behaviors

• Dynamic problem solving

Decoupled Goals and Actions

• Each character has own Action Set

• Allows for late additions in character types

• Allows for shared information between goals

Layered Behaviors

• Developer Goals:

– Agents should always try to stay covered.

– Agents should never leave cover unless
threatened and other cover is available

– Agents should fire from cover as best they can

Layered Behaviors

• Basic Goal: KillEnemy

– Satisfied by Attack action

• Additional Goal: Dodge

– Satisfied by DodgeShuffle or DodgeRoll

• Goals and actions for melee attacks, taking
cover, etc.

• With planning, easy to add goals and actions

Dynamic Problem Solving

• Replanning gives the AI the power to adjust to
new scenarios

• AI records obstacles in memory and uses that
knowledge later during replanning

Differences from STRIPS

• Action costs

• World state representation

Other Games with Planning

• Empire: Total War

• Fallout 3

• Killzone

General Purpose vs. Domain-Specific

General purpose: symbolic descriptions of the problems and
the domain. The plan generation algorithm the same

Domain Specific: The plan generation algorithm depends on
the particular domain

Advantage: - opportunity to have clear semantics
Disadvantage: - symbolic description requirement

Advantage: - can be very efficient
Disadvantage: - lack of clear semantics

- knowledge-engineering for plan generation

Planning: find a sequence of actions to achieve a goal

Classes of General-Purpose Planners

General purpose planners can be classified according to the space
where the search is performed:

• SAT

• Hierarchical

• Disjunctive plans

• state

• plan We are going to discuss these forms

State- and Plan-Space Planning
• State-space planners transform the state of the world. These

planners search for a sequence of transformations linking the
starting state and a final state

State of the world

(total order)

• Plan-space planners transform the plans. These planners
search for a a plan satisfying certain conditions

(partial-order, least-commitment)

STRIPS (Fikes & Nilsson)

• States

– at(plane1, Atlanta)

• Goals

– A particular state, or part of a particular state

• Actions (“operators”)

– Action Schema

STRIPS actions

State: airport(LAX), airport(ATL), at(plane1, ATL),

at(plane2, LAX), path(ATL, LAX), ~at(plan1, LAX), …

Fly (?p, ?from, ?to)

Precondition: at(?p, ?from), plane(?p), airport(?from),

airport(?to), path(?from, ?to), ?from ≠ ?to

Effect: at(?p, ?to), ¬at(?p, ?from)

*Also a call to the game engine to play animation or run a
function

(All other things that are true or non-true)

Initial state: gunForSale, ammoForSale, possumAlive, ~gunLoaded, ~hasFood, ~hasGun,
~criminal, ~hasAmmo, ~rich, smellsFunny

Goal state: rich, hasFood

Action: RobBank
PRE: ~rich, hasGun, gunLoaded
EFFECT: rich, criminal

Action: ShootPossum
PRE: ~hasFood, hasGun, gunLoaded, possumAlive
EFFECT: hasFood, ~gunLoaded, ~possumAlive

Action: LoadGun
PRE: hasGun, hasAmmo, ~gunLoaded
EFFECT: gunLoaded, ~has Ammo

Action: BuyGun
PRE: gunForSale, ~hasGun, ~criminal
EFFECT: ~gunForSale, hasGun

Action: BuyAmmo
PRE: ammoForSale, ~hasAmmo
EFFECT: ~ammoForSale, hasAmmo

Action: TakeBath
PRE: smellsFunny
EFFECT: ~smellsFunny

Action: PlayInMud
PRE: ~smellsFunny
EFFECT: smellsFunny

GFS ~HF

AFS ~HA

PA ~HG

~GL ~C

SF ~R

~GFS ~HF

AFS ~HA

PA HG

~GL ~C

SF ~R

GFS ~HF

~AFS HA

PA ~HG

~GL ~C

SF ~R

buyAmmo

GFS ~HF

AFS ~HA

PA ~HG

~GL ~C

~SF ~R

~GFS ~HF

~AFS HA

PA HG

~GL ~C

SF ~R

buyAmmo

buyGun

GFS ~HF

AFS ~HA

PA HG

GL ~C

SF ~R

Initial state:
gunForSale,
ammoForSale,
possumAlive,
~gunLoaded,
~hasFood,
~hasGun,
~criminal,
~hasAmmo,
~rich,
smellsFunny

Action: ShootPossum
PRE: ~HF, HG, GL, PA
EFFECT: HF, ~GL, ~PA

Forward Planning

• State-space search

• Start with initial state

• Applicable actions are those whose
preconditions are satisfied by current state.

• Goal test

• Optional action cost

• Any complete graph search algorithm (e.g. A*)

Backward Planning

• State-space search

• Benefit: only consider relevant actions

• Actions must be consistent

• Graph search algorithm

Good, Bad, and Ugly

• Forward chaining

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

• Backward chaining

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

• Backward chaining

– Practical branching factor can be much lower
because it only considers necessary actions

– Total ordering susceptible to long backtracks when
effects negate earlier decisions

• Start thinking: More informed? Total order?

Heuristics

• f() = g() + h()

• g() is sum of action costs, which can be
arbitrary

• How do you estimate the distance to the goal?

Heuristics

• Informs decision into which node (state) to
expand

• Admissible heuristics allow for A*

– Relax the planning problem

– Subgoal independence assumption

Heuristic Search Planning

• Works using backward chaining

• Computes heuristic values for each
preconditions based on graph analysis
– Benefit: Only do it once as pre-computation step

• Heuristic
1. Cost of action is maximum over costs of

preconditions (admissible, but not informed)

2. Cost of action is sum over costs of preconditions
(informed, but not admissible)

Partial-Order Planning

• Avoid total ordering (previous examples)

• Partial ordering treats every precondition as a
sub-problem to be solved independently

• Reconcile solutions to sub-problems when
they interact with each other

• Don’t commit to any ordering before strictly
necessary

– Least-commitment planning

Why Plan-Space Planning?

• 1. Motivation: “Sussman Anomaly”

– Two subgoals to achieve:

(on A B) (on B C)

BA

C

C

B

A

Why Plan-Space Planning?

• Problem of state-space search:

– Try (on A B) first:

• put C on the Table, then put A on B

• Accidentally wind up with A on B when B is still on the Table

• We can not get B on C without taking A off B

• Try to solve the first subgoal first appears to be mistaken

A BC C B

A

C

B

A

Partial-Order Planning

• Plan-search rather than state-search

• Plans are made up of:

– Actions used

– Ordering constraints

– Causal links

– Open preconditions

Partial-Order Planning

• Conflict

– An action C conflicts with A -p--> B if C has ¬p as
an effect AND C can occur between A and B

• Consistent Plans

– No cycles in ordering constraints

– No conflicts with causal links

• Solution

– Consistent plan with no open preconditions

POP Algorithm

• Start with initial plan [Start, Finish] where
Start<Finish.

• Arbitrarily pick one open precond p

• Generate successor plans for every possible
consistent way of selecting an action A that
achieves p

• Add new causal link to plan, and resolve
conflicts (if necessary)

POP Heuristics

• Less understanding of how to create accurate
heuristics for POP than total-order planning.

• Obvious heuristic: number of open
preconditions

• Most-constrained-variable

BuyGun BuyAmmo

LoadGun

Init

Goal

RobBank

ShootPossum

Temporal constraints

Dummy action
(sets up initial state,

CWA applies)

Dummy action
(sets up goal situation)

• When it comes time to execute the plan, create a total ordering
• Partial-order plan is a set of total-order plans
• How many total-order plans?

POP Algorithm

• Plan space search (AKA refinement search)

• Where do you start?

• Where do you end?
(how do you know when
you are looking at a valid
solution?)

• How do you move
through space?
(how do you generate
successors?)

Where do you start?

• The empty plan

initial step

GunForSale, AmmoForSale, possumAlive

Goal step

rich, hasFood

Plan has a flaw: a reason why it
cannot be a solution

Two flaws: Nothing makes either goal
condition true

Where do you stop?

• When you see a plan with no flaws

How do you move?

• Pick a flaw (any flaw)
• Successors are all ways of fixing the flaw
• May introduce new flaws

initial step

GunForSale, AmmoForSale, possumAlive

Goal step

rich, hasFood

initial step

GunForSale, AmmoForSale, possumAlive

Goal step

rich, hasFood

RobBank

hasGun, gunLoaded

rich

* All the ways of making rich true
* Does it matter what order I pick flaws?

initial step

GunForSale, AmmoForSale, possumAlive

Goal step

rich, hasFood

initial step

GunForSale, AmmoForSale, possumAlive

Goal step

rich, hasFood

RobBank

hasGun, gunLoaded

rich

Open condition flaw:
- A precondition that is not satisfied
- Pick an operator that has an effect unifying with the condition

- Strategy #1: Add a new action
- Strategy #2: Reuse an action

Causal link
- Tells us that a precondition is satisfied
- A protected interval
- Nothing can be put in this interval that

negates the condition

R, HF

Goal

Init

R, HF

Goal

Init

HG, GL

RobBank

R

R, HF

Goal

Init

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

R, HF

Goal

Init

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

GFS, AFS

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

sk

si

sj

GFS, AFS

Causal threat
- Effect of an action could negate causal link
- Promote: sk ordered before si

- Demote: sk ordered before sj

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG, HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

GFS, AFS

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG, HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

GFS, AFS

What is world state at this point?

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG, HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

GFS, AFS

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

BuyGun

~HG, GFS

~GFS, HG

GFS, AFS

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

BuyGun

~HG, GFS

~GFS, HG

GFS, AFS

R, HF

Goal

HG, GL

RobBank

R

LoadGun

HG. HA, ~GL

GL, ~HA

GL, HG

ShootPossum

HF, ~GL

Init

BuyGun

~HG, GFS

~GFS, HG

GFS, AFS

agenda = { make_empty_plan(init, goal) }
current = pop(agenda)

WHILE agenda not empty and current has flaws DO:
flaw = pick_flaw(current)
IF flaw isa open condition flaw DO:

FOREACH op in library that has an effect that unifies with o.c. DO:
successors += make_new_plan_from_new(…)

FOREACH op in current that is before and has an effect that uifies with o.c.
DO:

successors += make_new_plan_reuse(…)
IF a condition in init unifies with o.c. DO:

successors += make_new_plan_from_init(…)
IF a condition is negative and CWA applies DO:

successors += make_new_plan_from_cwa(…)
ELSE IF flaw isa causal threat flaw DO:

successors += make_new_plan_promote(…)
successors += make_new_plan_demote(…)

agenda = agenda + successors
current = pop(agenda)

END WHILE

RETURN current or nil

Insert sort

POP Heuristic

• Domain independent heuristic

– # flaws

– Length of plan (# of actions)

• Domain dependent heuristic

– Preference for certain properties of the solution
(don’t rob banks)

HTN PLANNING

• F.E.A.R AI: https://www.youtube.com/watch?v=rf2T_j-FlDE

• Dana Nau HTN and games presentation
http://www.cs.umd.edu/~nau/papers/nau2013g
ame.pdf

• Killzone 2 AI:
https://www.youtube.com/watch?v=7oWKCLdsG
TE

• http://www.ign.com/boards/threads/killzone-2-
enemy-a-i-is-it-up-there-with-fear-as-
1.177634641/

https://www.youtube.com/watch?v=rf2T_j-FlDE
http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
https://www.youtube.com/watch?v=7oWKCLdsGTE
http://www.ign.com/boards/threads/killzone-2-enemy-a-i-is-it-up-there-with-fear-as-1.177634641/

Hierarchical Task Network Planning

• Sometimes you know how to do things
• Example: going on a trip

– Domain-independent planner: lots of combinations of
vehicles and routes

– Experienced human: a few recipes
• Buy air plane ticket
• Go from home to airport
• Fly to other airport
• Go from airport to destination

• Describe recipes as tasks that can be decomposed
to sub-tasks (tasks == goals)

Hierarchical Task Networks

• Hierarchical decomposition of plans

• Initial plan describes high-level actions [e.g.
BuildHouse]

• Refine plans using action decompositions

• Process continues until you reach primitive
actions

2 < Distance(x,y) < 10 Distance(x,y) > 100

IAD

Credit: Dana Nau & Hector Munoz-Avila

Pay Builder
Get Permit

Hire builder

House

Build

House
Buy Land

Get

Permit

Hire

Builder

Construction
Pay

Builder

Buy

House

Hire

Realtor

Make

Offer
Find

House

(Conditions) (Conditions)

(Conditions) (Conditions)(Conditions)

(Conditions)(Conditions)

Find
land

Make
offer

HTN Planner

• Given a task…
• Pick method with conditions that match the current world

state (or pick randomly)
• Planning process

– When you get to primitive, update state, repeat
– Execute full plan (monitor world state)

• Can also create a partial plan
– But early decisions can affect later conditions

• Replanning
– If plan breaks, just pop up a level and re-decompose
– Keep popping up decomposition fails

• SHOP2

SHOP2

(:method
; head
(transport-person ?p ?c2)

; precondition
(and

(at ?p ?c1)
(aircraft ?a)
(at ?a ?c3)
(different ?c1 ?c3))

; subtasks
(:ordered

(move-aircraft ?a ?c1)
(board ?p ?a ?c1)
(move-aircraft ?a ?c2)
(debark ?p ?a ?c2)))

*primitive actions have
preconditions and effects

Given state s, Tasks T, Domain D
Let P = empty plan
Let T0 = {t∈T | no task comes before t}
Loop

If T0 is empty, return P
Pick any t ∈ T0

If t is primitive
Modify s according to effects
Add t to P
Update T by removing t
T0 = {t∈T | no task comes before t}

Else
Let M = a method for t with true preconditions in state s
If M is empty return FAIL
Modify T: remove t, add subtasks of M (note order constraints)
If M has subtasks

T0 = {t∈subtasks | no task comes before t}
Else

T0 = {t∈T | no task comes before t}
Repeat

HTN vs. A* Planning

• What are the advantages or disadvantages of
HTN planning? A* planning? Partial-order
planning?

Planning Under Uncertainty

• What if actions can fail?

Planning Under Uncertainty

• What do you do if you end up in a state you
do not desire?

Planning Under Uncertainty

• What do you do if you end up in a state you
do not desire?

– Replan

– Create a policy

Benefits of Planning

• Decouple goals and actions

– Can create new character types (mimes vs.

mutants)

– State machines become unmanageable by

design team

• Dynamic problem solving

– Ability to re-plan when failure occurs

Planning and Games – Future

• Plan recognition

• Story generation

• Where else?

Reactive Planning

• Real-time decision making by performing one
action every instant

• Instead of focusing on state, focus on action

• Examples

– State-action table

– Universal plan

– Behavior trees

– Rule systems

Resources

• Planning in modern games:
– http://aigamedev.com/open/review/planning-in-games/
– Nau HTN planning in Killzone: http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
– G.O.A.P: http://web.media.mit.edu/~jorkin/goap.html
– Workshop at ICAPS 2013: http://icaps13.icaps-conference.org/technical-program/workshop-

program/planning-in-games/
– The AI of F.E.A.R.: http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

• SHOP, JSHOP, SHOP2, JSHOP2, Pyhop (HTN planners)
– http://www.cs.umd.edu/projects/shop/

• Scala impl. of partial-order planning
– https://github.com/boyangli/Scalpo

• Other planners:
– http://www.cs.cmu.edu/~jcl/compileplan/compiling_planner.html

• Facing your F.E.A.R. lecture: https://www.youtube.com/watch?v=rf2T_j-FlDE

http://aigamedev.com/open/review/planning-in-games/
http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
http://web.media.mit.edu/~jorkin/goap.html
http://icaps13.icaps-conference.org/technical-program/workshop-program/planning-in-games/
http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
http://www.cs.umd.edu/projects/shop/
https://github.com/boyangli/Scalpo
http://www.cs.cmu.edu/~jcl/compileplan/compiling_planner.html
https://www.youtube.com/watch?v=rf2T_j-FlDE

