Decision Making:
Rule-Based Systems

OOB

* Decision Making:
— N+1: Fuzzy
— N-0: Production/Rule-based Systems
— N-1: Planning
— N-2: Trees
— N-4: FSMs

O 0Nk WNE=

Questions

How can we describe decision making?
What do the algorithms we’ve seen share?
What are the dimensions we tend to assess?
FSMs/Btrees: :: Planning :
For the 2"d blank, we need m S.

When is reactive appropriate? Deliberative?
What is the ‘hot-potato’ passed around (KE)?
H have helped in most approaches.
Which approach should you use?

Questions

. What are the 2 most “complex” decision making
techniques we’ve seen?

. What are their strengths? Weaknesses?
. What is the key (insight) to their success?

. What is typically necessary to support this
insight (hint: used in Planning + RBS)?

. What does Planning have that (forward
chaining) RBS do not?

. When do we need a communication

mechanism?

RULE-BASED SYSTEMS

Background

Symbolic Al, “Expert Systems”
Vanguard of Al research 70s + early 80s

Used in some games, but not as common as
FSMs or decision trees

— Reputation for inefficiency + challenge to impl.
— Similar behaviors achievable using Dtree/FSMs

More robust than decision trees when worlds
are unpredictable

A form of reactive planning

Production/Rule System

* 2 part structure:
— Facts (database of knowledge)
— Rules (if/then constructs, with Boolean ops)

* Like a FSM, but triggers/effects are more general

e Basic idea:
— Match: facts to if-part of rules (“pattern matching”)
* Rules with matching if’s become activated (“triggered”)

— Arbitrate: Choose an active rule to “fire”
e Can make change to facts or to world

— Repeat

Rules (Arbiter)

Database

Millington Figure 5.46

If enemiesInSight > 0 and patrolling THEN
remove(patrolling)
add(attackNearest)

Comments

It is like writing a program and then allowing the
computer to decide which functions to call and
when

Forward vs. Backward chaining

— B: theorem proving + planning

— Authors never saw backward in games

DB rewriting rules vs Condition-Action Rules

— Rewrite Rules can change DB (+/- facts)
— Typically only for Al specific knowledge (e.g. patrol)
— Bias in GAI for condition-action rules (no rewrites)

Declarative Knowledge

e Stateable facts about the world
* (attribute value)

— (Captain-weapon rifle)
* value can be nested knowledge

— (Captain-weapon (rifle (ammo 36)))

DK: Facts

Health(captain, 51)
Health(Johnson, 38)
Health(Sale, 42)
Health(Whisker, 15)
Holding(whisker, radio)

Weapon(whisker, rifle)
Weapon(johnson, pistol)
Ammo(whisker, 36)

e Whisker

— Health: 51
— Holding: radio

e (captain

(weapon (rifle (ammo 36) (clips 2))
(health 51)
(position ...)

)

(radio (held-by whisker))

Procedural Knowledge

* Knowledge about how we do the things we do

* |F (some facts about the world) THEN do
(some action)

PK: Rules

* |F whisker’s health < 15 AND Whisker holding radio
THEN Whisker: Radio-call “help!” on radio

* |F whisker’s health = 0 AND whisker holding radio
THEN
— Remove(whisker holding radio)
— Add(radio on ground)

* |F ?anyone health < 15
THEN ...

Components

Declarative knowledge (facts/KB)
Procedural knowledge (actions)
Selection knowledge (conditions, arbiter)

Arbiter

— First applicable (FIFO on input order)

— Least recently used (LIFO on use order)
— Random

— Priority / Most specific conditions

— Dynamic Priority system

Unification

* Binding of vars in logical statements

— Same problem as in Planning

— (?persn health 0-15) AND (?radio (heldby ?persn)
* Allows rules to match in many situations

— See Russell & Norvig, Millington 5.8.7
* Nis number of items in DB, M is number of

clauses in pattern to match: O(nm), or maybe
O(m log, n), but generally O(n™)

Simple Algorithm

def ruleBasedlteration(database, rules):
for rule in rules:
bindings =[]
if rule.ifClause.matches(database, bindings):
rule.action(bindings) #fire rule
return #exit; we’re done for this iteration
#if we get here, there’s no match; can do default
#or do nothing
return

RETE

* Al industry standard for rule matching

* Rule patterns represented in DAG
— Pattern nodes, Join nodes, Rule Nodes
* Each path represents set of patterns for one
rule
— Fast matching (share evaluation)
— Graceful updates (add/remove facts)
— Determines which rules are active (all)
— Millington & Funge cover very well

Rete Example

Swap Radio Rule:
IF
(?p1 (health < 15)) &&
(?p2 (health > 45)) &&
(radio (held-by ?p1))
THEN
remove(radio (held-by ?p1))
add(radio (held-by ?p2)

Change Backup Rule:

|F
(?p1 (health < 15)) &&
(?p2 (health > 45)) &&
(?p2 (is-covering ?p1))

THEN
remove(?p2 (is-covering ?p1l))
add(?p1 (is-covering ?p2))

Pattern Nodes

Join Nodes

Rule Nodes

—

Swap Radio

Change Backup

(Captain (health 57) (is-covering Johnson))
(Johnson (health 38))

(Sale (health 42))

(Whisker (health 15) (is-covering Sale))
(Radio (held-by Whisker))

?pl = Whisker ?p1 =Johnson, ?p2 = Captain
OR

?pl = Sale, ?p2 = Whisker

?pl = Whisker,

?p2 = Captain none

Swap Radio Change Backup

Pattern Nodes

e Database fed into top of network
e Pattern nodes find matches in database and
pass them down to join nodes

— When wildcards are used, variable bindings are
also passed down

Pattern Nodes

e Pattern nodes keep record of matching facts
for incremental updating

* Find all matches instead of any match
— ...and all variable-bindings

* E.g.
— ?personl could be Whisker or Captain

— Not at the same time, but we pass both since we
don’t know which is useful

Join Nodes

 Make sure that both inputs have matched and
any variables agree

* When variable-bindings are used, join nodes
identify all acceptable combinations of
bindings

* Not necessarily AND

— AND and XOR need extra support for unification

Rule Nodes

e All rules that receive input at bottom of
network are triggered

* Arbiter determines which triggered rule goes
on to fire

Updating the Network

* Could re-run each time with new database
— But usually, data changes minimally between iterations

 Nodes store data, so only need to process changes to
database.

— Only update nodes that need it! Need remove/add.

— Effects are handled by walking down the network
 Removing facts from database:

— Request sent to pattern nodes

— If node has stored match, remove it and pass request
down.

— Adding is basically the same.

Large Rule Sets

* Series of 2D turn-based war games
— Large rule set

— Each game in series required addition of many new
rules: new features, player requests, bug fixes

— Eventually, even RETE barfs
e Solution?
— Group rules, and make activation hierarchy
— Only rules in active sets are triggered
— Disabled rules have no chance to trigger

* See “agenda groups” in Drools

Justification in Expert Systems

Common extension is audit trail

Capture rule firing information
— The rule that fired

— The data that the rule matched
— Time stamp

This information can be recursive
Useful for debugging and justifying behavior

Rete Efficiency

* O(nmp) time efficiency
—n=4#rules
— m = # clauses per rule
— p = # facts in database

* Unifying wildcards can take over if wildcard
matches are large

* More memory usage —> faster performance

Resources

* Jess
— http://www.jessrules.com/

* Drools (/OptaPlanner)
— http://www.jboss.org/drools/
— http://www.optaplanner.org/

— http://www.javacodegeeks.com/2013/04/life-
beyond-rete-r-i-p-rete-2013.html

* Aima-java, under FOL (see Unifier.java)
— https://code.google.com/p/aima-java/

http://www.jessrules.com/
http://www.jboss.org/drools/
http://www.optaplanner.org/
http://www.javacodegeeks.com/2013/04/life-beyond-rete-r-i-p-rete-2013.html
https://code.google.com/p/aima-java/

Jess

(defrule change-backup
(< (health ?personl) 15)
(> (health ?person2) 45)
?cover <- (is-covering (?person2 ?personl))
==>
(//make a call to java//)
(retract ?cover)
(add (is-covering (?personl ?person2)))

Soar

e A production system based on a theory of human
cognition
* Production system with fancy arbitration

— If two rules are active, Soar breaks the tie by firing more
rules to figure out which is better

— Forward mental simulation sp {hello-world
(state <s> “type state)

—=>
(write |Hello World])
(halt) }

Interface

DLL
Socket Soar Quakebot

N\ —" 10 Rules
Socket Percention >

I/O

Soar

Newell, Laird, & Rosenbloom (CMU)

Represents Newell’s Unified Theory of
Cognition

Several decades in development

Used in academic and military applications
Previous Cognitive Psychology use

Largest system: 8,000 rules

