Decision Making: Fuzzy Logic

2016-06-28

Questions (N-3)

- 1. How can we describe decision making?
- 2. What do the algorithms we've seen share?
- 3. What are the dimensions we tend to assess?
- 4. FSMs/Btrees: _____ :: Planning : _____
- 5. For the 2nd blank, we need m_____s.
- 6. When is reactive appropriate? Deliberative?
- 7. What is the 'hot-potato' passed around (KE)?
- 8. H_____ have helped in most approaches.
- 9. Which approach should you use?

Questions (N-2)

- 1. What are the 2 most "complex" decision making techniques we've seen?
- 2. What are their strengths? Weaknesses?
- 3. What is the key (insight) to their success?
- 4. What is typically necessary to support this insight (hint: used in Planning + RBS)?
- 5. What does Planning have that (forward chaining) RBS do not?
- 6. When do we need a communication mechanism?

Questions (N-1)

- Cooperative problem solving / distributed expertise is using h____ to d___ problems into smaller parts.
- 2. R____experts rarely communicate/collaborate.
- 3. Three types of communication are...
- 4. The three main parts of a Blackboard are...
- 5. An Arbiter can be used to...

enables a computer to reason about linguistic terms and rules in a way similar to humans

FUZZY LOGIC

- 1. Cut two slices of bread medium thick.
- 2. Turn the heat on the griddle on **high**.
- 3. Grill the slices on one side until **golden brown**.
- 4. Turn the slices over and add a **generous helping** of cheese.
- 5. Replace and grill until the top of the cheese is **slightly brown**.
- 6. Remove, sprinkle on a **small amount** of black pepper, and eat.

Motivation

- Fuzzy logic: truth degrees, vagueness, subjectivity
- E.g.: Cautious vs Confident
 - FSM w/ 2 states switching looks unnatural
 - Cautious (range), sneak slowly (range)
 - Confident, walk normally
- Caveat emptor:
 - relatively popular in games industry
 - largely discredited in academic AI (?)

Example

- Have to make Golfing game, ask expert...
 - When putting: if ball far from hole, and green is slightly downward from left to right THEN hit ball firmly and at angle slightly to left of flag
 - When driving: if wind is strong, and blowing right to left, and hole is far away THEN hit ball hard and at angle far to right of flag
- Close: [0m,2m), Medium: [2m-5m), Far: [5m
- Ball at 4.99m? We want a gradual shift.

The Principle

- Traditional (binary set) logic: predicates (F.O.L)
 - Predicates: { hurt(t), hungry(t) }
 - Constants: { steve, sadie, brian }
 - hungry(steve), hurt(steve)
 - "Closed world assumption" (if not true, then false)
 - "classical sets" (either a member of set, or not)
- Fuzzy sets: "degree of membership" (DOM)
 - [0 to N] where N is completely in, 0 completely out
 - hungry(steve)[0.5], hurt(steve)[0.9]

Fuzzy Sets

- DOM is usually [0 − 1] but...
 - Could use 0 255 (for int arithmetic speed)
 - Numbers are **NOT** probabilities **nor** percentages
- Fuzzy logic: truth degrees to model vagueness
- Probability theory: model non-determinism
- Mutual exclusion
 - Classical: some predicates are M.E. (hurt, healthy)
 - Fuzzy: can be a member of multiple sets
 - Can require DOM to sum to 1, but rare
 - Fuzzification to approximate; slightly off usually ok

Buckland 10.1

Fuzzy Rule-based Inference

Buckland 10.1

Fuzzy Rule-based Inference

Fuzzy Inference

- For each rule,
 - For each antecedent, calculate the degree of membership of the input data.
 - Calculate the rule's inferred conclusion based upon the values in previous step
- Combine all the inferred conclusions into a single conclusion (a fuzzy set)
- For crisp values, the conclusion from 2 must be defuzzified

See Buckland CH10

Example: Target 200px, Ammo=8

Rule 1. IF Target_Far AND Ammo_Loads THEN Desirable Rule 2. IF Target_Far AND Ammo_Okay THEN Undesirable Rule 3. IF Target_Far AND Ammo_Low THEN Undesirable Rule 4. IF Target_Medium AND Ammo_Loads THEN VeryDesirable Rule 5. IF Target_Medium AND Ammo_Okay THEN VeryDesirable Rule 6. IF Target_Medium AND Ammo_Low THEN Desirable Rule 7. IF Target_Close AND Ammo_Loads THEN Undesirable Rule 8. IF Target_Close AND Ammo_Okay THEN Undesirable Rule 9. IF Target_Close AND Ammo_Okay THEN Undesirable

Consequent	Confidence	
Undesirable	0.33	
Desirable	0.2	
Very Desirable	0.67	

See Buckland CH10

See Buckland CH10

Mean of Maximum

Representative Value

Set	Representative Value	Confidence
Undesirable	12.5	0.33
Desirable	50	0.2
VeryDesirable	87.5	0.67

$$Desirability = \frac{12.5 \times 0.33 + 50 \times 0.2 + 87.5 \times 0.67}{0.33 + 0.2 + 0.67}$$
$$= \frac{72.75}{1.2}$$

Desirability = 60.625

"Fuzzification"

Character B Fuzzification: • Game state \rightarrow DOM Character A "Membership Function" Hurt Healthy – Triangular 1 - Trapezoidal S-Curve Left/Right Shoulder - Singleton - **Note**: Vert. lines should sum to 1 De-fuzz: • DOM \rightarrow Game state 0 100% 0% Numeric Fuzzification: Health value $f(numeric) \rightarrow DOM$ Millington 5.38

> F(health val) \rightarrow DOM(healthy) F(health val) \rightarrow DOM(hurt)

Fuzzification of Small Sets

- Store pre-determined membership values
 - Boolean var
 - hasPwrflArtifact
 - Enum var
 - fearsmFighter from one of set of sashes

Millington 5.39

Set Operations (And, Or, Not)

- Boolean logic: True, False
- Fuzzy: DOM of a fuzzy set
 Little rain (0.3) AND very cold (0.8)

Α	В	A & & B	A OR B	Fuzzy Logic
F	F	F	F	m _(A && B) = min(m _A , m _B)
F	Т	F	Т	$m_{(A \text{ OR B})} = max(m_A, m_B)$
Т	F	F	Т	$m_{(NOTA)} = 1 - m_A$ Hedge: VERY = $(m_A)^2$
Т	Т	Т	Т	Hedge: FAIRLY = $(m_A)^{0.5}$

Fuzzy Rules

- Relate the known membership of certain fuzzy sets to generate new DOM values for other fuzzy sets
 - Vital: must create rule for each possible combination of antecedent sets
- e.g. "If I am close to the corner AND I am traveling fast, then I should brake"
- m_(should brake) = min(m_(close to corner), m_(traveling quickly))
- Membership of should break with "close to corner" 0.6 and "traveling fast" 0.9?

Defuzzification

- Need to translate data back after applying whatever logic was needed
- Multiple approaches
 - Mean of maximum
 - Centroid
 - Average of Maxima

Problem: Turn a set of membership values into a (typically) single number

Defuzzification

Highest Membership

Millington 5.41

Blending Based on Membership

- Use DOM as weights
 - 0.33 creep, 0.33 walk, 0.34 run
 - 0.33 * characteristic creep speed + 0.33 * characteristic walk speed + 0.34 * characteristic run speed
 - Normalize values
- Can use minimum values (Smallest of Maximum method or Left of Maximum, LM)

Center of Gravity

- Crop membership function at DOM value
- Integrate each in turn to find center of gravity
- Method often used, but is expensive
- Blending works about as well and is cheap

Fuzzy in Decision Making

- Can use in any system we'd use boolean logic
- Determine FSM transitions
- Define rules for RBS

Fuzzy state machines

- Multiple interpretations
 - Any state machine with some element of fuzzy
- Example: crisp triggers, fuzzy states
 - Can be in any or all states with DOM
 - At each iteration, transitions belonging to all active states are given chance to trigger; fire transitions belonging to each state in decreasing DOM order
 - DOM of target is given by DOM of current state
 ANDed with degree of transition

Scalability

- Weakness of this approach: combinatorial explosion
 - rule for each possible combination of antecedent sets
 - 10 input variables and 5 states ---> approx. 10 million rules
- (William) Combs Method; Boeing 1997
 - IF target_far AND ammo_loads THEN Desirable
 - IF target_far THEN Desirable OR

IF ammo_loads THEN Desirable

• See Buckland CH 10

Pros and Cons

• Pro

- Easy to understand; supports explanation
- Efficient way to represent linguistic and subjective attributes of the real world in computing.
- Supports smooth transitions between behaviors
- Generally easier to create versus a neural network

• Cons

- Defining set membership functions can be difficult
- Debugging knowledge can be difficult
- De-fuzzify step can have surprising subtleties

Current Real-world Applications

- Industrial
 - Anti-sway control of cranes, climate control, positioning systems, coal power plant automated adaptations to coal quality, supervisory systems, humidity control, quality assurance, water purification, cement kiln controls
- Military Systems
 - Classification of DEMON spectra, automatic target tracking, airborne defense
- Appliances
 - Rice cooker, washing machine, climate control, vacuum, canon auto focus
- Automotive
 - Anti-lock braking system, traffic control, truck engine, transmissions (improving efficiency), governors, shift scheduling
- Aerospace
 - Altitude control of spacecraft & satellites, flow and mixture regulation deicing vehicles
- Trains
 - Monorail, high speed train Sendai
- Image Processing
 - Monitoring glaucoma, edge detection, image stabilization
- Video Games & FX

See Also

- <u>http://videolectures.net/acai05_berthold_fl/</u>
- Buckland 10, Millington 5.5
- Tools
 - Matlab
 - R (CRAN) packages (e.g. frbs)
 - jFuzzy logic
 - Fuzzy Control Language (FCL)
 - Octave & Fuzzy Logic Toolkit