
Procedural Content Generation:
Player Models

2016-07-12



OOB
• HW 6, Hero Agents

• Capstones -- Pitches

• Trajectory update
– Intro: Game AI vs Academic AI; Graphs + Search

– Taking action in a game:

• Basic Physical Acts: Paths, Movement, Steering

• Decisions: FSMs, D&B Trees, RBS, Plan, Meta {BB, Fuzzy}

– Creating & Adapting content (sans NPC decisions):

• PCG, Player Modeling

– Adapting NPC decisions (& content)  Learning
– Support Technologies; Design GAI; AI Based Games; Special topics (e.g. 

narrative); Revisits



Questions

1. How can we describe decision making?
2. What do the algorithms we’ve seen share?
3. What are the dimensions we tend to assess?
4. FSMs/Btrees: ____ :: Planning : _____
5. For the 2nd blank, we need m_____s.
6. When is reactive appropriate? Deliberative?
7. What is the ‘hot-potato’ passed around (KE)?
8. H______ have helped in most approaches.
9. Which approach should you use?



Questions

1. What are the 2 most “complex” decision making 
techniques we’ve seen?

2. What are their strengths? Weaknesses?
3. What is the key (insight) to their success?
4. What is typically necessary to support this 

insight (hint: used in Planning + RBS)?
5. What does Planning have that (forward 

chaining) RBS do not?
6. When do we need a communication 

mechanism?



PROCEDURAL CONTENT 
GENERATION: RECAP



Procedural Content Generation

• Costs exponentially increasing: levels, maps, 
tracks, missions, characters, weapons…

• CONTENT IS KING

• Use of computation to produce elements of 
gameplay (instead of manual effort)

– Design aspects of the game

• Save development cost

• Save storage or main memory (“infinite games”)

– Adapt aspects of the game (player models)



Why industry is looking at PCG

• Development cost savings

• Replayability

• Customization/adaptation

• Dynamic difficulty adjustment 

– Flow theory

• C.f. http://en.wikipedia.org/wiki/Flow_(psychology)

• http://jenovachen.com/flowingames/designfig.htm

• http://en.wikipedia.org/wiki/Flow_(video_game)

http://en.wikipedia.org/wiki/Flow_(psychology)
http://jenovachen.com/flowingames/designfig.htm
http://en.wikipedia.org/wiki/Flow_(video_game)


PCG Desiderata

• Fast, Reliable, High-quality

• Novelty, Structure, Interest

• Controllable (parameterized)

– Geometric aspects (e.g. length of track)

– Gameplay aspects (e.g. difficulty)

– Adapted to player(s) (e.g. preference, type, fun)

– Designer-centric as well

See: http://www.marioai.org/levelGenerationCompetition.pdf for excellent overview

http://www.marioai.org/levelGenerationCompetition.pdf


Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-
based procedural content generation: A taxonomy and survey. IEEE 
Transactions on Computational Intelligence and AI in Games, 3(3), 172-186.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5756645&tag=1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5756645&tag=1


PCG NoNos

• PCG can be NP-hard for anything non-trivial
– But you can’t always make players wait

• Thorough testing of run-time PCG is impossible
– Best you can do is statistical sampling

• Offensive material
• Bad content
• Algorithm crash
• Meaningless activities

– Easy to create quests, but if they don’t connect to the 
larger game, no one cares



PCG Gos

• Terrain, cities, trees, landscaping

• Levels/maps/dungeons

• Quests

• Monsters & NPCs

• Weapons

• Stories (?)

• Music (?)



Photo Credit: http://dankline.wordpress.com/2011/06/29/the-ai-director-of-darkspore/

L4Ds Legacy

http://dankline.wordpress.com/2011/06/29/the-ai-director-of-darkspore/


Design time vs. Run time PCG

• Design time: Speed up design of static content
– # of unique objects in the world

– Players expect non-repetitive

– Game dev times now 100s of man-years with huge 
design teams

– Cost savings big motivation

– RISKS: quality (designer) control, stupidity, magic 
circle

• Run-time: customization, dynamic adjustment



Design time vs. Run time PCG

• Design time: Speed up design of static content
• Run-time: customization, dynamic adjustment

– Players are different: Preferences for pace + playstyle
• Moderate challenge levels (e.g. help avoid getting stuck)
• Adjust to play style
• Detect/avoid player exploits

– When to use run-time PCG
• When decisions can only be made at run-time
• When pre-compute exceeds storage/memory limits
• Replayability; story/quest generation; pacing; 

– Optimization problem
• What is the set of content that delivers the optimal 

experience to the player given individual differences?



Economies of scale



Hard problems in PCG
• Procedures structuring player’s experience

– Narrative: It’s easy to have infinite levels, but dungeon 
crawling gets boring without a sense of progression / 
achievement

• Avoiding (dealing with) occasional catastrophic 
failure

• Healing a broken level

• Social factors + story/language generation

• How do you know you are generating something 
interesting?
– Mental & statistical models of players

– Personalized content



PLAYER MODELING



Player Modeling

• What is optimal in PCG?

• Need a player model

– Tells you something about the player

– Makes predictions about player

• Challenges in player modeling:

– What do you model?

– Where do you get the model?

– How do you use the model?



Player Model

• What do we want to model?



What do we want to model?

• Demographics

• Game play traces

• Stats

• Features of world when actions are performed
– Eg: more likely to jump when X is true

• Sensors

• Preferences
– Ask before, during, after  ratings

• Personality



Player Model

• What do we want to model?

• Where do we get the model?



Where do we get the model?

• Observe player



Where do we get the model?

• Observe player

• Questionnaire



Where do we get the model?

• Observe player

• Questionnaire

• Social media?



Player Model

• What do we want to model?

• Where do we get the model?

• How do we use the model?



How do we use the model?

• Must be input to algorithm



How do we use the model?

• Must be input to algorithm

• Must actually make a difference



How do we use the model?

• Must be input to algorithm

• Must actually make a difference

• Machine Learning

– Learn to make decisions based on observed data

– Optimization seeks best mapping

• Genetic algorithms

• Simulated annealing



ROBIN, BARTLE, YEE



Robin’s Laws of 
Good (tabletop RPG) Gamemastering

• Five player archetypes

• Fighter – prefers combat

• Power Gamer – gaining special abilities and riches

• Method Actor – taking dramatic actions

• Tactician – prefers thinking creatively & solving 
problems

• Storyteller – prefers complex plots



Robin’s Laws of 
Good Gamemastering

• Suppose actions, decisions, and/or choice 
points are tagged with types and strengths

– e.g. Action X has method-actor = 8

• Player model is vector of accumulated 
strengths (normalized?)

<F, PG, MA, T, S>

<1, 141, 81, 1, 1>

• Incrementally build model



Robin’s Laws of 
Good Gamemastering

• How does world/actions translate to model?



Robin’s Laws of 
Good Gamemastering

• How does world/actions translate to model?

• How does model map to design?



Robin’s Laws of 
Good Gamemastering

• How does world/actions translate to model?

• How does model map to design?

ACTIONS ---> MODEL ---> ACTIONS

FEATURES ---> MODEL ---> FEATURES



Robin’s Laws of 
Good Gamemastering

• How does world/actions translate to model?

• How does model map to design?

ACTIONS ---> MODEL ---> ACTIONS

FEATURES ---> MODEL ---> FEATURES

• Player simulation

• See http://www.sjgames.com/robinslaws/

http://www.sjgames.com/robinslaws/


Bartle: MUD Player Modeling

• MUD = Multi-user Dungeon

• 4 things people typically enjoy doing in MUDs:

– Achievement (preset in-game goals eg kill, aquire)

– Exploration

– Socializing

– Imposing on other players

https://en.wikipedia.org/wiki/Bartle_taxonomy_of_player_types

https://en.wikipedia.org/wiki/Bartle_taxonomy_of_player_types


MUD Player Modeling

• Everyone has a primary type
– Bit of each, tendency towards one

• Take the Bartle Test!

• Suggests a feature vector

<killer, achiever, explorer, socializer>

< 0.0, 0.7, 0.1, 0.2 >

• See (no really, follow the 1st link)
– http://www.mud.co.uk/richard/hcds.htm

– http://en.wikipedia.org/wiki/Bartle_Test

http://www.mud.co.uk/richard/hcds.htm
http://en.wikipedia.org/wiki/Bartle_Test


Yee Player Model

• Used iterative process to validate, expand and 
refine a player motivation model empirically

• Based on open-ended questions about 
motivation

– “I feel powerful in the game.”

– “I like to be immersed in a fantasy world.”

• See
– http://www.nickyee.com/daedalus/archives/001298.php

http://www.nickyee.com/daedalus/archives/001298.php


Yee Player Model: Factors

• Relationship

• Manipulation

• Immersion

• Escapism

• Achievement

“Performed factor analysis 
on data to separate the 
statements into clusters 
where items within each 
cluster were as highly 
correlated as possible 
while clusters themselves 
were as uncorrelated as 
possible” – Yee 



Yee Player Model

• Relationship

• Manipulation

• Immersion

• Escapism

• Achievement

• Leader

• Solo/Group

• Learn



http://www.nickyee.com/daedalus/archives/001298.php?page=4



Where do you fit?

• Proficient, Relaxed, 
Competitive, Grounded, 
and Inquisitive

After filling out a brief 
survey (5-7 minutes), this 
profile tool will generate a 
customized report and a list 
of recommended games for 
you. The report will describe 
the traits that were 
measured, and how you 
compare with other gamers.

https://apps.quanticfoundry
.com/lab/gamerprofile/

https://apps.quanticfoundry.com/lab/gamerprofile/


PCG: STEPPING BACK



Player Model Process

Player 
Preferences

Monitor 
Player 

Performance

Adapt the 
Game

Measure 
effectiveness 
of adaptation

Re-model 
player types

Models of 
player types



Concerns



Concerns

• Player desires



Concerns

• Player desires

• Privacy



Concerns

• Player desires

• Privacy

• Testing



Concerns

• Player desires

• Privacy

• Testing

• Player experience



THOUGHT EXPERIMENT: SMB LEVEL 
GENERATION



Mario Level Generation

• Predict users’ emotional response to level:

– Fun

– Challenging

– Boring

– Frustrating



Mario Level Generation

• Controllable features



Mario Level Generation

• Controllable features

• {#gaps, gap_width, spatial_diversity}



Mario Level Generation

• Controllable features

• {#gaps, gap_width, spatial_diversity}

• Fixed: #coins, #enemies, # ?-boxes, 
#powerups, etc.



Building the Model

• Option #1: Pairwise Ordering

• For each pair of levels, ask:

Level A is more <adj> than Level B

Levels A and B are equally <adj>

Neither Level A nor Level B are <adj>

Where <adj> = {fun, challenging, boring, frustrating}



Building the Model

• Option #2: Use ANN to learn to predict 
question-answering



Building the Model

• Option #2: Use ANN to learn to predict 
question-answering

• Need a function that maps features to a 
measure of quality:

f (gaps, width, spatial_diversity)  R



Building the Model

• Other option: Learn decision tree with 
continuous variables

• Benefit of trained neural network: The 
network IS your fitness function.



Using the Model

• Search for optimal feature set for a player



Using the Model

• Search for optimal feature set for a player

• State is 3-tuple {G, W, SD} – Could brute-force



Using the Model

• Search for optimal feature set for a player

• State is 3-tuple {G, W, SD} – Could brute-force

• Optimization search – Genetic algorithms, hill-
climbing, simulated annealing



RHYTHM-BASED PLATFORMER
LEVEL GENERATION

Smith, Treanor, Whitehead, Mateas {FDG, 2009}



Rhythm based level-generation

• Patterned set of moves





Geometry grammar

• Rhythm determines what roots

• Terminals determine specific content element selections



Grammar generation problems

• Over-generation

• Global constraints



Problems with Grammars

• Problem with grammars: global context
• Can you fix grammars?
• Generate-and-test with some evaluation function
• Backtrack?
• Planning: Search for a sequence of actions that 

meet a goal
– Heuristics meant to speed up search
– Heuristics can also be used to guide algorithm toward 

more preferable solutions

• HTN planning: Tasks decompose to sub-tasks



Critics

• Generate-and-test: generate a bunch of levels 
and pick the one that scores best

• Critics are pieces of code that evaluate and select
• Line distance critic

– Given a path the level should follow

• Component style critic
– Consistency of components
– Jumping caused by gaps vs. monsters

Control lines 
for line critic


