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SUMMARY

To date, hundreds of millions of mini-QWERTY keyboard equipped devices (minia-

turized versions of a full desktop keyboard) have been sold. Accordingly, a large per-

centage of text messages originate from fixed-key, mini-QWERTY keyboard enabled

mobile phones. Over a series of three longitudinal studies I quantify how quickly

and accurately individuals can input text on mini-QWERTY keyboards. I evaluate

performance in ideal laboratory conditions as well as in a variety of mobile contexts.

My first study establishes baseline performance measures; my second study investi-

gates the impact of limited visibility on text input performance; and my third study

investigates the impact of mobility (sitting, standing, and walking) on text input

performance. After approximately five hours of practice, participants achieved exper-

tise typing almost 60 words-per-minute at almost 95% accuracy. Upon completion

of these studies, I examine the types of errors that people make when typing on

mini-QWERTY keyboards. Having discovered a common pattern in errors, I develop

and refine an algorithm to automatically detect and correct errors in mini-QWERTY

keyboard enabled text input. I both validate the algorithm through the analysis of

pre-recorded typing data and then empirically evaluate the impacts of automatic er-

ror correction on live mini-QWERTY keyboard text input. Validating the algorithm

over various datasets, I demonstrate the potential to correct approximately 25% of

the total errors and correct up to 3% of the total keystrokes. Evaluating automatic

error detection and correction on live typing results in successfully correcting 60.80%

of the targeted errors committed by participants while increasing typing rates by

almost two words-per-minute without introducing any distraction.

xv



CHAPTER I

INTRODUCTION

The mobile phone is rapidly becoming the most widely adopted computing device

used today. There are over 6 billion mobile phone subscribers in the world, with

some researchers predicting that that the number of mobile subscriptions will grow

to exceed the earth’s population (7 billion) by the end of 2012 and will exceed 10

billion by 2016 [8]. Text messaging is an important facet of mobile phone usage. For

example, over 2 trillion messages were sent in the United States in 2011 [47] which

corresponds to 6 billion text messages sent per day. These statistics are remarkable

considering the inefficiencies and poor design of current text entry methods for mobile

devices.

Recently, mobile phone manufacturers have exhibited awareness of the need to

build devices that enable more rapid text input. With the increasing popularity and

adoption of mini–QWERTY keyboard enabled mobile phones, it is critical that we

explore the human-computer interaction issues associated with these devices. In this

dissertation, I detail my research on the evaluation of mini–QWERTY keyboards

— miniature versions of the traditional desktop QWERTY keyboard built into many

mobile devices as a means of text entry. Portions of this research have been previously

published in venues such as ISWC [12], MobileHCI [13] and CHI[9, 10, 11].

I present my thesis statement below. After introducing the thesis, I enumerate

my contributions and discuss how each contribution is supported by a chapter of the

dissertation.

1



1.1 Thesis Statement

FatThumbs, a method for automatically detecting and correcting typographical errors

associated with pressing multiple keys at once in mini-QWERTY keyboard mobile text

input, improves the text entry experience by reducing errors without distracting the

user.

1.2 Contributions

The exploration of this thesis yields the following contributions:

1. A longitudinal laboratory study to determine baseline typing performance on

mini–QWERTY keyboards (Chapter 3).

2. A longitudinal laboratory study examining typing performance in conditions of

limited visibility (Chapter 4).

3. A longitudinal study of expert typing while mobile (sitting, standing, and walk-

ing) (Chapter 5).

4. An analysis of typographical errors made on mini–QWERTY keyboards in var-

ious mobile contexts (Chapter 6).

5. An algorithm that automatically detects and correct errors in mini–QWERTY

keyboard typing (Chapter 7 and 8).

6. A laboratory study evaluating the impacts of automatic error detection and

correction on live expert typing performance (Chapter 9).

1.3 Overview of the Dissertation

In Chapter 2 I present an overview of text entry research relevant to this dissertation.

I review research on physical keyboards, error detection methodologies and metrics,

and use-in-motion evaluations. In Chapter 3 I present my initial empirical baseline

2



evaluation of two thumb typing on mini–QWERTY keyboards. In this chapter I

outline a method and participant compensation strategy that becomes a standard for

my future studies. I present the results and discuss the implications of these results

comparing performance on mini–QWERTY keyboards to performance on other text

input technologies. In Chapter 4, I discuss a study designed to investigate the impact

of inputing text in conditions of limited visual feedback. I contextualize blind mobile

text input and further discuss my methodology, results, and the implications of the

study. In Chapter 5, I present my mobility evaluation in which I investigate the impact

of walking, sitting, and standing on individuals’ ability to input text while on–the–

go. In Chapter 6 I analyze the types of errors that individuals make when typing

on mini–QWERTY keyboards and discuss my solution for automatically detecting

and correcting those errors in Chapter 7. In Chapter 8 I describe the final version

of my error detection algorithm and discuss how I arrived at a simplified approach

for detecting and correcting errors in mini-QWERTY typing. Finally, in Chapter 9

I discuss my final study which is designed to gather human performance metrics of

individuals typing using my automatic error correction software. The dissertation

concludes with Chapters 10 and 11 in which I summarize the dissertation, discuss

future work, and conclude. Table 1 presents a summary of the research questions,

hypotheses, methodology, data collected, and publication status for each study.
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CHAPTER II

RELATED WORK

Text entry research has a long history and predates the creation of Human Computer

Interaction as an area of research and study. Historically, text input evaluation and

the investigation of typographical errors have been subjects of interest to the HCI

research community [16, 20]. With the explosion of interest in mobile computing over

the past decade, text entry evaluation has again gained traction with the CHI com-

munity. An increased focus on text entry research has emerged due to the constraints

imposed by inputting text quickly and accurately on small devices. Zhai et al. identify

traits that constitute effective text input interfaces and discuss text input methods

in depth [62]. Wobbrock details text entry measures at length [59] while MacKenzie

and Soukorff provide a detailed discussion of challenges of analyzing errors in text

input [35]. Readers are directed to these sources for more details.

This section discusses the related work in text entry for button-based mobile

keyboards. The first subsection describes various mobile input systems. The following

subsection describes the research exploring the challenges of inputting text while on-

the-go, and this chapter concludes with a summation of research analyzing errors in

mobile text input and provides a list of metrics used in this dissertation.

2.1 Mobile Keyboards

There are numerous mobile keyboard options available for entering text, and one of

the most prevalent text entry devices is the mobile phone keypad. On a mobile phone

keypad multiple letters are mapped on to a single key on the number pad (for example,

the letters “a”, “b”, and “c” are printed on the number “2” key). Two common ways

to enter text on a mobile phone are multi–tap and T9. To type a character using

7



multi–tap, the user cycles through the letters assigned to a key by pressing the button

multiple times. For example, if a user wishes to type the letter “s” using multi–tap

on a standard mobile phone keypad, she will press the “7” key three times; to input

the word “truck” she will type “8-7-7-7-8-8-2-2-2-5-5.” Novice multi–tap users begin

typing at approximately 8 words per minute (wpm) [5, 23] while experienced users

reach speeds in the 16–20 wpm range [31, 34].

T9 is another common mobile phone entry text method. Unlike multi-tap, the

user only presses each key containing the desired character once. T9 computes all of

the permutations of letters that correspond to the sequence of keypresses entered by

the user and employs a dictionary to disambiguate the results. It then presents a list

of words to the user with the most likely word appearing first in the list. For example,

to input the word “truck” using T9 a user would type “8-7-8-5-2.” T9 displays the

most commonly used word with the “8-7-8-5-2” number sequence: “usual”. In this

case, “truck” is the second most commonly used word with that number sequence.

In order to get T9 to correctly output the desired word, the user must select it from

the list presented. In cases where the user inputs a word that is not in the dictionary,

the user is asked to input the word a second time using multi–tap. She then has the

option of adding that word to the T9 dictionary for all future lookups. T9 typing

rates range from 9 wpm for novices to 20 wpm for experts [23].

Recently, several new methods have been developed for entering text on mobile

phone keypads including LetterWise [34], TiltText [57], and ChordTap [58]. These

methods offer novice performance similar to multi–tap (7.3 wpm, 7.4 wpm and 8.5

wpm, respectively). In addition, each of these methods offer rapid expert typing

rates. LetterWise users achieved a rate of 21.0 wpm after approximately 550 minutes

of practice. TiltText users reached 13.6 wpm, and ChordTap users achieved 16.1 wpm

with about 160 minutes of typing practice.

In addition to the standard mobile phone keypad, there are a host of other physical

8



keyboards designed to facilitate mobile text entry. Some examples of these are the

Half–QWERTY chording keyboard [39], the Twiddler one–handed chording keyboard

[30], and the mini–QWERTY keyboard.

The Half–QWERTY chording keyboard is one half of a desktop–QWERTY key-

board (full sized keys, traditional QWERTY key layout) requiring only one hand to

input text. The wearable version of this keyboard is designed to be worn on the wrist

of the non–typing hand. Instead of pressing keys in sequence to produce a character,

a chording keyboard enables multiple keys to be pressed simultaneously to generate

a character (or in some cases, a series of characters). For the Half–QWERTY chord-

ing keyboard, in order to generate keys on the “missing” half of the keyboard, the

user holds down the space bar and types normally using the remaining four fingers.

While the space bar is being held, the keys are mapped to the letters on the missing

half corresponding to their mirrored values (e.g. G→H, F→J, D→K, S→L, A→;,

etc.). In experimental conditions, participants were able to become familiar with the

Half–QWERTY keyboard quickly. After ten hours of practice, ten participants typed

between 23.8 to 42.8 wpm, which was 41% to 73% of their two-handed speeds [39].

The Twiddler is a mobile one–handed chording keyboard with a keypad similar

to a mobile phone. It has twelve keys arranged in a grid with three columns and four

rows on the front. Unlike a mobile phone, the Twiddler is held with the keypad facing

away from the user, and each row of keys is operated by one of the user’s four fingers.

After 25 hours of practice, Twiddler users are able to type 47.3 wpm on average [30].

2.2 Mini–QWERTY Keyboards

The mini–QWERTY keyboard is a mobile two–handed keyboard with a keypad simi-

lar in size to that of a mobile phone keypad. It contains one key for each letter and is

configured similarly to a desktop QWERTY keyboard, complete with space, delete,

enter, and other non–letter keys. It is a handheld keyboard and is typically operated

9



Figure 1: Commercial mobile phones with mini–QWERTY keyboards: Nokia 6820
(top), RIM Blackberry (bottom left) and Danger/T–Mobile Sidekick (bottom right).

using only two thumbs.

Several examples of commercial mini–QWERTY devices are shown in Figure 1.

Nokia has taken a somewhat non–traditional approach with its 6800 series of mobile

phones. Its front face can flip open to reveal a split mini–QWERTY layout, with the

screen set in the middle of the keyboard. The Research In Motion (RIM) Blackberry

mobile information device has included a mini–QWERTY keyboard since 1999. The

Danger HipTop (also known as the T–Mobile Sidekick) is a similar device which

includes a mini–QWERTY keyboard under a flip–up screen. For quite some time it

was popular with younger demographics and with the Deaf community because of its

combination of mobile phone, mobile e-mail, web browsing, and instant messaging

10



capabilities [22].

Despite the presence of mini–QWERTY keyboards in the mobile computing mar-

ketplace, there is relatively little published research on user typing rates with these de-

vices. Researchers at Canesta, Inc. produced a study that included mini–QWERTY

typing speeds [48]. In evaluating their virtual projection keyboard, they tested it

against a desktop QWERTY keyboard, Graffiti pen input, and a mini–QWERTY

keyboard. They recruited 11 subjects who used each method in random order, typ-

ing a single phrase repeatedly for 2 minutes. Subjects achieved an average of 27.6

wpm on the thumb keyboards, 64.8 wpm on the conventional keyboard, 46.6 wpm on

the Canesta keyboard, and 14.0 wpm with Graffiti. The authors state their partici-

pants included both novice and expert Canesta keyboard users but do not mention

participants’ experience with any of the other input devices.

In addition to the Canesta study, Mackenzie and Soukoreff have created a theo-

retical model of two–thumb text entry on miniature keyboards [36]. Using English

language letter frequency distributions and Fitts’ Law calculations, they predicted an

expert typing rate of 60.74 wpm on a mini–QWERTY layout. A sensitivity analysis

of the model to various parameters (e.g., Fitts’ Law coefficients) yielded no more than

a +/- 10% variation from the original figure. In Clarkson et al. we discuss this model

in the context of results presented in this dissertation [10].

2.3 Mobile Text Entry On-the-Go

This section discusses previous work focused on the evaluation of mobile interaction,

interfaces, and devices while users are in-motion with a special emphasis placed on

investigations of on-the-go text entry.

2.3.1 Controlled Use–In–Motion Studies

Recently there has been increased interest in evaluating the use of mobile devices

(such as mobile phones or on-body interfaces) while the user is in motion. Designing

11



for mobility has been highlighted as an important area in need of additional research

for years [2, 4, 14, 24, 42, 45]. Mobile devices create opportunities for users to com-

plete certain tasks (e.g., taking notes or scheduling appointments) on the move, but

they also introduce new challenges by creating competition for a user’s attentional

resources. This competition forces the user to split their attentional resources be-

tween interacting with the device and navigating the environment [44]. Interacting

with mobile devices under stationary settings is similar to the use of a desktop com-

puter in terms of attention allocation. However, when the user is mobile, attentional

demands increase.

My research is focused on understanding the impact that motion has on interac-

tions with mobile computing devices, specifically inputting text using mini–QWERTY

keyboards. Such interactions rely on two fundamental activities: retrieving the infor-

mation shown on the screen (output) and entering information (e.g., commands or

text) into the device (input). To date, researchers have studied the impact of walking

on both input– and output–oriented activities. For example, Barnard et al. [1] report

that walking affects performance for information retrieval tasks including both read-

ing comprehension tasks and word search tasks. Similarly, Price et al. [46] confirmed

that walking can significantly affect the accuracy of speech–based input. Vadas et al.

furthered Barnards’ work by decoupling input from output and comparing visual and

audio output while in motion [56].

Hall et al. compared target selection accuracy on finger–operated touch screens

under seated and standing conditions [21]. They found that in order to achieve greater

than 99% accuracy, the target area for the standing condition (30 mm2) had to be

larger than that of seated condition (26 mm2). Although standing is not a mobile

condition, it shares one key characteristic with mobile situations: the lack of a stable

surface on which to place the mobile device. Schildbach et al. further explored finger–

operated touch screen input in a study that examined target acquisition and reading
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tasks with users both standing and walking [49]. They found negative effects for both

reading and selecting targets when walking although the negative effect associated

with target selection were mitigated when they increased the size of the targets. In-

terestingly, the reading task did not see the same compensatory effect with larger text

size since increasing the size of the text increased the need for scrolling. This result

was not surprising given that MacKay et al. had earlier compared using scrollbars to

two other navigation techniques (tap-and-drag and touch-and-go) in three different

mobility conditions (sitting, standing, and walking) and found scrollbars to be the

poorest performing navigation technique for mobile users [32].

Brewster [2] explored use–in–motion in an early multimodal study. He investi-

gated the use of a stylus-based calculator application under two conditions: seated

in a lab and walking outside. The results showed that walking significantly reduced

the amount of data entered and increased the perceived workload, indicating some

difficulties associated with stylus–based tapping while walking. The walking route

used in this study was a natural setting, but as the researcher himself pointed out:

“[It] was still quite controlled: users walked along a reasonably quite

straight path [2].”

A similar, simple, and safe walking condition was also used in a follow–up study [3].

The decline in performance from seated to walking may have been underestimated

by these results due to the simplicity of the walking task. In addition, this study did

not collect any error data, which makes it difficult to interpret task completion time

and workload results.

In contrast, Chamberlain and Kalawsky [6] did not find a significant difference in

error rates between stationary and walking conditions when participants completed

stylus–based target selections. They did, however, find an increase in selection times

when participants were walking. In their study, a wearable computer was attached

to a vest which provided additional support. This support made the computer more
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stable than one could expect to occur in more common use-in-motion situations in

which an individual simply holds the device in their hand. This added stability

may help explain why their results differed from those reported elsewhere. Lin et

al. also investigated mobile pointing using a stylus while walking [28, 27]. In their

first study Lin et al. had participants complete a Fitts’ law pointing task using a

stylus while walking. They found impaired performance while walking when targeting

small targets [28]. A follow-up study by Lin et al. found that single target selection

completion time did not increase while walking, but that overall task completion

times did increase as did subjective ratings of cognitive load [27].

Kane et al. examined use–in–motion in an outdoor evaluation and coined the

term “walking user interfaces” [25]. They evaluated an adaptive interface that scaled

button sizes based on user motion. They found significant interactions between size

and movement and demonstrated that dynamic user interfaces performed as well as

the equivalent static interfaces without any additional penalty due to adaptation.

2.3.2 Typing on-the-go

Although there has been much work examining both input and output while users are

walking, text entry while in motion is an underexplored research area. Mizobuchi and

Yatani both investigated touchscreen text input using a stylus [41, 61]. Mizobuchi

et al. studied the relationship between walking speed and text entry difficulty [41].

They examined four different key sizes ranging from 2.0 X 2.5 to 5.0 X 6.3 mm.

Participants entered text using a soft keyboard while either standing or walking. The

results showed that text input speed did not differ between the standing and walking

conditions. This lack of difference between mobility conditions might be due to the

simple–and–safe walking setting used, which was comparable to those in Brewster [2]

and Brewster et al. [3]. However, error rates were significantly different between the

two conditions, but only because of the high error rate for the smallest target size in
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the walking situation.

In contrast, Yatani et al. explored the design of a two-handed virtual keyboard for

a PDA which utilized the thumb of the hand holding the device to create a chorded

input system [61]. They compared their chorded keyboard to other stylus-based text

entry methods while participants were seated and walking around a path in the lab.

Of note, Yatani et al. reported a difference in performance (WPM, accuracy, and

cognitive load) between stationary and mobile conditions when participants typed on

a virtual mini-QWERTY keyboard with a stylus. Most recently Goel et al. designed

and evaluated an adaptive system for two-thumb text entry on touch screens that

leveraged the phone’s built-in accelerometer to compensate for the vibrations that

result from walking. Their system was shown to both reduce errors and increase

typing rates on touch screen mobile phones [17].

2.4 Text Entry Evaluations

In the past decade, unconstrained text entry studies (experiments that allow partic-

ipants to commit typographical errors and have the choice to correct or not correct

them) have become the accepted method for studying text input in the HCI commu-

nity. The adoption of unconstrained text entry studies by the community is, in large

part, due to the success of research on text input error classification and analysis.

Having put considerable effort into classifying and accounting for errors, the text en-

try community has recently arrived at a consensus on how to handle errors in text

entry studies.

Typically when testing a text entry method, short phrases are displayed one at a

time to participants who transcribe each phrase into an experimental software. The

output from these studies includes the presented text string (the phrase displayed to

the participant), the transcribed text string (the final text produced by the partici-

pant), and the input stream (a record of all input events generated by the participant).
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“Constrained” text entry studies force participants to enter text in such a manner

that the transcribed text perfectly matches the presented text. This practice results

in participants typing at 100% accuracy but, since participants are forced to correct

all of their mistakes, it yields much slower, and less externally valid, typing rates.

Until the recent work on understanding typographical errors, conducting constrained

experiments was a safe way of getting results that were uncomplicated by errors.

Over the past few years, improvements in text entry error rate measurement have

afforded researchers the ability to conduct “unconstrained” text entry studies (studies

in which subjects are allowed to correct or not correct errors while typing). Until

now, efforts have focused on how to identify and classify errors input by the user

whether corrected or left uncorrected. The disambiguation and measuring of errors

in unconstrained text entry experiments has received considerable attention from the

CHI community [18, 35, 52, 53, 54, 60] and in recent years, unconstrained studies

have become the preferred study design methodology.

2.5 Accuracy Measurements in Text Entry Studies

In what has become the standard procedure for a text entry experiment, participants

are presented with different methods of inputting text in either a within-subject or

between-subject design. Most studies compare performance across typing methods,

reporting speed and accuracy results from their participants. To ensure that collected

data are true baseline human performance measures, text input studies typically

involve transcription typing since having participants generate their own messages

would not yield comparable results across participants. Short phrases (usually lacking

capitalization, punctuation, numbers, or symbols) are displayed to the participant one

at a time by the software used to conduct the study. These phrases are often sampled

from the MacKenzie and Soukoreff phrase set [37] and are presented to the participant

in a random order. Participants enter each phrase using the text entry method under
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investigation, generating data in the form of a set of presented strings, input streams,

and transcribed strings.

A benefit of allowing errors to be committed and analyzing them in this manner

is that researchers can study not only errors but also corrections. Methodologically,

this approach is preferred because it mimics text entry as it occurs in typical usage.

Participants are instructed to “enter the presented text as quickly and accurately as

possible,” and they are allowed to both incur and correct mistakes. However, allowing

participants to choose whether or not to correct their errors introduces ambiguity

resulting in two classes of errors, those that the subject commits and then corrects

(corrected errors), and those that the subject commits and either does not notice or

chooses not to correct (uncorrected errors). These uncorrected errors therefore remain

in the transcribed text string. Until recently, errors were identified and calculated by

comparing the transcribed string to the presented string using the Minimum String

Distance (MSD) Error Rate [52]. However, the MSD error rate only measures the

uncorrected errors. The corrected errors are not present in the transcribed text and

as such are not reported when using MSD. Soukoreff et al. proposed using the average

keystrokes per character (KSPC) as a dependent variable to capture the overhead due

to errors committed and correct while a user is typing [53]. While useful, this metric

conflates the difficulty of error correction, user “carefulness” (number of errors the

user corrects), and other specifics of the input method.

In an effort to address this weakness, Soukoreff et al. went on to describe an

updated approach to measuring errors that was consistent with their previous work,

yet had better dependent measures for both corrected and uncorrected errors [53].

They followed that effort with yet another paper in which they presented a metric

that considered the input stream as well as the transcribed text [54]. In that analysis

Soukoreff et al. were able to delineate participants’ keystrokes into four classes:

• Correct (C) keystrokes – alphanumeric keystrokes that are not errors,
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• Incorrect and Not Fixed (INF) keystrokes – errors that go unnoticed and appear

in the transcribed text,

• Incorrect but Fixed (IF) keystrokes – erroneous keystrokes in the input stream

that are later corrected, and,

• Fixes (F) – the keystrokes that perform the corrections (i.e., delete, backspace,

and cursor movement).

Having separated keystrokes into the above four groups, Soukoreff et al. presented

the following measures [53]:

TotalErrorRate =
INF + IF

C + INF + IF
· 100% (1)

CorrectedErrorRate =
IF

C + INF + IF
· 100% (2)

NotCorrectedErrorRate =
INF

C + INF + IF
· 100% (3)

To address the circumstance where a user has to delete correct keystrokes while

attempting to address an error that occurred earlier in the input stream, Soukoreff

subdivided the “Incorrect but Fixed” category into two groups: IF keystrokes that

were correct (IFc) and IF keystrokes that were errors (IFe). Doing so created two

new error types [54]:

CorrectedButRightErrorRate =
IFc

C + INF + IF
· 100% (4)

CorrectedAndWrongErrorRate =
IFe

C + INF + IF
· 100% (5)

Wobbrock et al. expanded this work through the presentation of a taxonomy of

input stream error types [60]. They clarified the error classes introduced by Gentner
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et al. [16] and MacKenzie et al. [35] by naming them Uncorrected No–Errors, Uncor-

rected Substitutions, Uncorrected Insertions, and Uncorrected Omissions. They then

introduce the corrected character–level error types:

• Corrected No–Errors Characters that are input correctly by the user but erased

• Corrected Substitutions Erroneous characters input by the user in an attempt

to correct an existing error.

• Nonrecognition Substitutions “Nonrecognition substitutions occur when an at-

tempt to produce a character yields no result [60].” Though primarily occurring

when a user employs a stroke–based text entry method such as Graffiti, these

errors may occur when evaluating fixed–key text entry techniques if the keypad

has extraneous buttons that do not generate a valid output when pressed.

• Corrected Insertions Erroneous characters inserted into the input stream that

are then noticed and corrected by the user. Corrected insertions exist in the

input stream but not in the final transcribed text.

• Nonrecognition Insertions Unrecognized characters inserted at the end of a word

when each letter of the input stream has already been paired with a letter of

the presented text.

• Corrected Omissions Corrected omissions occur in the input stream when the

user initially skips a character but then later replaces the omitted character

correcting the omission.

2.6 Measuring Speed in Text Entry Studies

In contrast to challenges of calculating accuracy and error rates in unconstrained

studies, calculating speed in text entry evaluations is relatively simple. The common

measure for speed in text entry evaluations is words-per-minute (WPM). In this
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dissertation, words-per-minute rates are calculated using the traditional approach

outlined by Mackenzie [33] (see Equation 6) where T is the length of the transcribed

text and S is the time it takes to enter the entire phrase in seconds. The constants

60 and 1
5

are used since there are 60 seconds in a minute and the average length of a

word (including spaces) is five characters.

WPM =
T − 1

S
· 60 · 1

5
(6)

When reporting the results of the longitudinal evaluations in Chapters 3, 4, and

5, I discuss both WPM (Equation 6) and Accuracy measures. Accuracy is calculated

using Equation 7.

ACC = 1− TotalErrorRate = (1− INF + IF

C + INF + IF
) · 100% (7)

In Chapter 6, there is much discussion of the Wobbrockian character level error

types. Chapters 7, 8, and 9 refer to all of the above metrics.
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CHAPTER III

AN EMPIRICAL STUDY OF TYPING PERFORMANCE

ON MINI–QWERTY KEYBOARDS

In the Fall of 2004, we conducted our initial mini–QWERTY keyboard text input

study. This study was designed to ascertain novice mini–QWERTY keyboard typing

rates and accuracies. It also allowed us to compare desktop QWERTY performance

to typing on a mini–QWERTY keyboard and examine learning rates to determine the

length of time it takes to achieve expertise. This chapter details our study methods

(Section 3.1), presents participant demographics (Section 3.1.1) and describes our

results. In Sections 3.3 and 3.3.1 we discuss both the quantitative and qualitative

results of our evaluation and identify some of the major findings.

3.1 Method

A number of aspects of our study design are directly influenced by previous research.

In particular, the compensation arrangement and session structure follow those of

previous keyboard studies by Lyons et al. [30] and MacKenzie et al. [38, 34].

3.1.1 Participants

We recruited 21 participants who had not used a mini–QWERTY keyboard more

than once. All were experienced full–QWERTY keyboard users. Each participant was

randomly assigned one of two different mini–QWERTY keyboards to use throughout

This chapter is an excerpt from Edward Clarkson, James Clawson, Kent Lyons, and Thad
Starner, “An Empirical Study of Typing Rates on mini–QWERTY Keyboards,” in the extended
abstracts of CHI, 2005 [9]
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the study (Dell and Targus branded, discussed further below). Participants were

compensated proportional to their typing rate and accuracy over the entire session:

$0.125 × wpm × accuracy, with a $4 minimum for each twenty minute session.

Participants were asked to complete 20 twenty-minute sessions over the course of

11 days. Four participants did not complete all 20 sessions, leaving 10 participants

in the Targus group and 7 in the Dell. To ensure a balanced study design for our

analysis, we excluded the data from the last three participants in the Targus group

to have signed up for the study in order to have the same number of participants (7)

in both groups. These 14 participants ranged in age from 18 to 34. Six participants

were female, eight male, and only one was left–handed.

3.1.2 Equipment and Software

Figure 2 shows the two mini-QWERTY keyboards used in the experiment, one by

Dell (for the Dell Axim) and one by Targus (for the Palm m505). We modified each

keyboard to connect to a standard desktop computer serial port. The Dell and Targus

keyboards transmit at 4800 and 9600 baud, respectively.

The letter keys on both keyboards are oval–shaped as shown in Figure 2. The

Targus keys measure 6.73 mm along their major axes and 4.83 mm along their minor

axes. The Dell keys are 5.99 mm along the major axes x 4.06 mm along the minor

axes. Furthermore, the Dell keyboard has a single space key in the middle of the

bottom key row, while the Targus has two triangular space keys set below the rest of

the keys.

The study occurred in our usability lab with each of the two keyboards connected

to a separate Pentium III workstation. We employed the Twidor typing software

package (used in our previous series of studies on the Twiddler chording keyboard

[30]) and adapted it to accept data from our modified keyboards. The Twidor software

was configured to use the MacKenzie and Soukoreff phrase set [37], a set of 500 phrases
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Figure 2: The mini–QWERTY keyboards used in both studies: Targus (top) and
Dell (bottom) keyboards. Keyboards shown in the figure are actual size.
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Figure 3: The Twidor experimental software used in both the original and the blind
studies.

representative of the English language. The phrases range from 16 to 43 characters

with an average length of 28 characters. The canonical set was altered from British

English spellings to use American English spellings as this study took place in the

United States. Additionally, we altered the set so that there was no punctuation

or capitalization in any of the phrases in the set. Twidor displays a phrase to the

user. The user is asked to input the phrase as quickly and accurately as possible

and Twidor displays the text produced by the participant. Twidor records the user’s

words per minute (WPM), and accuracy (ACC) and displays both the WPM and the

ACC of the input phrase to the user as shown in Figure 3. Twidor also displays a

user’s average WPM and ACC calculated over the course of the session as well.
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3.2 Design and Procedure

We structured the study as a 2 x 20 mixed design, with the keyboard as the between–

subjects factor and the 20 sessions as the within–subjects factor. Sessions were com-

pleted in pairs with a 5–minute break after the first 20–minute session. Each session

pair was separated by at least two hours and by no more than two days. Each par-

ticipant was randomly assigned a keyboard in the beginning of the study that they

used throughout their participation in the evaluation.

Each session was preceded by a warm–up phase, which consisted of the phrases

“abcd efgh ijkl mnop” and “qrst uvwx yz” repeated twice. The warm–up phrase

was not counted in the session statistics. The remainder of the session consisted

of a number of trial blocks each containing ten randomly selected phrases. The

participants completed as many blocks as he or she could in a twenty–minute session.

The participants were instructed to type using only their two thumbs and to type as

quickly and accurately as possible. The test software provided statistical feedback in

the form of typing rate and accuracy data for the most recent sentence typed and the

current session average.

In addition to the mini–QWERTY rates, we also collected desktop QWERTY

typing speeds averaged over 20 phrases at each participant’s first and twentieth ses-

sions. Participants also completed a demographics survey before the first session and

a debriefing survey after the end of the last session.

3.3 Results

The 14 participants typed 33,945 phrases across all sessions, encompassing over

950,000 individual characters1.

1Due to an error in the Targus mini–QWERTY keyboard firmware, we excluded the first five
characters of each phrase for both devices. The Targus keyboard sent a wake–up call on the first key–
down event after a period of inactivity. While waiting for the wake–up call to generate a response,
the keyboard buffers approximately two keypresses. As our participants started reaching expert
rates, they began to exceed the two character buffer. For that reason, results presented in this paper
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Table 2 shows the typing rates for the two keyboard groups during the first and

last session. Averaged over both keyboards, participants had a mean first session

typing rate of 31.80 wpm (SD = 5.59) and a session twenty mean of 59.03 wpm (SD

= 8.55). The average accuracy for session one was 95.12% (SD = 2.30%), declining

gradually to 92.99% (SD = 3.71%) by session twenty. Table 3 shows the accuracies

for the two keyboard groups during the first and last session.

Keyboard Group Session 1 Session 20
Targus 34.27 wpm (SD = 6.32) 58.74 wpm (SD = 7.46)
Dell 29.33 wpm (SD = 4.86) 59.32 wpm (SD = 9.65)
Mean 31.80 wpm (SD = 5.59) 59.03 wpm (SD = 8.55)

Table 2: Mean mini–QWERTY typing rates and standard deviations for Session 1
and Session 20.

Figure 4 shows the typing rates per session. Overall, the Targus group typed

faster than the Dell group. A two–way ANOVA (with session and keyboard type as

factors) shows no interaction (p > 0.9999) and significant effects for both the session

and keyboard (p < 0.01). These results indicate that the Targus group was faster

than the Dell and, not surprisingly, typing speeds improved with practice.

The mean desktop QWERTY typing speed for the Targus group and the Dell

group were measured before the first session and after the final session and can be

found in Table 4. We measured the correlation between mini–QWERTY and desktop

typing rates for both novices (Session 1) and experts (Session 20). We found corre-

lations of r2 = 0.31 for Session 1 and 0.57 for Session 20. We hypothesize that the

differ from previously reported results as the issue was discovered after publication of the original
study [9]

Keyboard Group Session 1 Session 20
Targus 4.97% (SD = 2.07%) 5.32% (SD = 2.09%)
Dell 4.78% (SD = 2.53%) 8.71% (SD = 5.32%)
Mean 4.78% (SD = 1.47%) 6.17% (SD = 3.39%)

Table 3: Mean mini–QWERTY error rates and standard deviations for Session 1 and
Session 20.
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Figure 4: Per–group session average wpm with standard deviations. Dell curves are
on the bottom (blue); Targus curves on top (red).

Keyboard Group Session 1 Session 20
Dell 77.38 wpm (SD = 15.03) 86.99 wpm (SD = 14.20)
Targus 84.99 wpm (SD = 19.84) 98.31 wpm (SD = 19.25)
Mean 81.19 wpm (SD = 5.59) 92.65 wpm (SD = 8.55)

Table 4: Mean desktop typing rates and standard deviations for before session 1 and
after session 20.

increase in full–QWERTY speeds is likely due to an increased familiarity with the

test environment.

3.3.1 Survey Results

At the end of the final session, each participant completed a debriefing survey, an-

swering a number of free–form and 7–point Likert scale questions regarding how they

used the keyboards and their comfort level. In response to the question: “Overall,

how comfortable did you think the device was to type on?” the 14 participants found

the mini–QWERTY keyboards to be marginally comfortable (M = 4.00, SD = 1.41;

1 represented extremely uncomfortable, 7 extremely comfortable). When asked “How
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comfortable did you find it compared to a normal, full–sized keyboard?” users re-

sponded that it was less comfortable than a full–size keyboard (M = 2.29, SD = 0.99).

A Student’s t-test indicates no statistical difference in comfort ratings between the

two mini–QWERTY keyboard groups (p = 0.36). Participants also reported they

were less likely to look at the screen after the last session than at the start; how-

ever, this findingwas a marginally significant result (p = 0.056). This data conforms

to some anecdotal responses (e.g., “Not looking at the screen vastly improved my

speeds!”).

3.4 Discussion

Overall, our results indicate that experienced desktop QWERTY keyboard users are

able to quickly familiarize themselves with mini–QWERTY keyboards. The rates

attained by our participates after only twenty minutes are faster than expert typing

rates recorded on most other mobile keyboards (Section 2.1).

The mini–QWERTY keyboard affords rapid mobile text entry with expert users

sustaining a typing rate of almost 60 wpm over the course of a twenty minute typ-

ing session. The mini–QWERTY keyboard is not just an effective tool for experts,

novices also find it easy to use. Assuming the user already knows how to type on

a desktop QWERTY keyboard, novice users average more than 30 wpm after only

twenty minutes of practice. No other mobile text entry device affords comparable

rates as quickly as the mini–QWERTY keyboard.

Though our participants demonstrated that they could type and learn quickly,

mini–QWERTY keyboards may not be suitable for all mobile text entry situations.

In particular, the use of a mini-QWERTY keyboard in contexts where the user is not

able to focus her attention entirely on entering text, is unexplored. Understanding

the effects of typing in conditions with limited visual feedback is particularly impor-

tant as mobile devices are increasingly being used while individuals are on-the-go or
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multitasking.
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CHAPTER IV

THE IMPACTS OF LIMITED VISUAL FEEDBACK ON

MOBILE TEXT ENTRY FOR THE TWIDDLER AND

MINI-QWERTY KEYBOARDS

Overall, our first experiment showed that our participants quickly learned how

to enter text on mini–QWERTY keyboards. The typing rates compare favorably

with other mobile devices for both novices and experts. However, in addition to

typing rapidly and accurately, reliably entering text in a mobile environment poses

several additional challenges. For example, a user cannot always look at her device

in a mobile setting and may be forced into situations where she needs to enter text

without being able to see either her display or the keyboard she is using. The user

may be concerned with monitoring a piece of industrial equipment, looking at the

ground while walking, or engaging in a face–to–face conversation and cannot focus

on the computer. As such, it is important to be able to enter text with limited visual

feedback.

In the following sections we examine blind typing on mini–QWERTY keyboards

and introduce a taxonomy for blind mobile text input. In the Spring of 2005 we

conducted a study in which eight expert mini–QWERTY typists participated in five

typing sessions. Each session consisted of three twenty–minute typing conditions. In

the first condition, the control or “normal” condition, the participant has full visual

access to both the keyboard and the display. In the second condition, “hands blind,”

This chapter is an excerpt from James Clawson, Kent Lyons, Thad Starner, and Edward Clark-
son “The Impacts of Limited Visual Feedback on Mobile Text Entry for the Twiddler and MiniQW-
ERTY Keyboards,” in the proceedings of ISWC, 2005[12]
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we obstruct the view of the keyboard. The final “fully blind” condition also reduces

visual feedback from the display.

4.1 Blind Typing in Real Environments

Typing with limited visual feedback of the keyboard or display can happen in many

different mobile situations. One study by Silfverberg evaluated the abilities of his

participants to quickly and accurately enter text without looking at the keyboard

or display [51]. One motivation for this study was observations of Finnish students

secretly sending text messages to each other in the classroom. The students would

place their mobile phones under the desk and input text without the device being

visible. However, sending text messages discretely is not the only condition in which

a user experiences conditions of limited visual feedback. Wearable computer users

attempting to enter text while in face–to–face conversation also experience a similar

phenomenon [29]. Blind text entry also frequently occurs in environments in which

the user’s attention is fragmented and the user can not attend fully to the task of

inputting text. For example, inputting text while walking forces the user split her

attention between her mobile device and navigating the environment.

4.2 A Taxonomy for Blind Mobile Text Input

To varying degrees, previous typing studies have explored different aspects of blind

typing. Here, we present a taxonomy of blind typing conditions and describe how

our studies fit within this taxonomy. We denote the output of the computer display

showing the text being entered as on–screen feedback which is subdivided into three

categories: present, limited, and absent. We have named the feedback obtained by

looking at the input device keyboard visibility, and it shares the same three categories.

Table 5 shows our taxonomy populated with previous work as well as the conditions

for our blind typing mini–QWERTY study presented in the following sections.
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Silfverberg examined the effect of visual and tactile feedback on a user’s abil-

ity to successfully navigate a mobile phone keypad [51]. The 2 x 3 study explored

the physical affordances of two different phone keypad layouts in three conditions of

varying visibility (direct visual feedback, indirect visual feedback and no visual feed-

back). In the direct visual feedback condition, the participant could see the phone

and receive feedback from the display (on–screen feedback and keyboard visibility is

present). In Silfverberg’s indirect visual feedback condition, the subject placed her

hand holding the phone under the desk occluding visibility of the phone keypad. She

received feedback from the display after pressing a key to indicate which key had

been pressed (on–screen feedback present, keyboard visibility absent). The no visual

feedback condition mirrored the indirect visual feedback condition except that the

feedback from the display was removed (on–screen feedback and keyboard visibility

absent). Silfverberg’s study found that limited visual feedback combined with low

tactile feedback increases a user’s average error rate. On the other hand, good tactile

feedback results in a smaller decrease in accuracy.

In previous work with the Twiddler, Lyons et al. examined blind typing [29].

As the natural hand position for the Twiddler is with the keys facing away from

the user, they only evaluated the effect of changing the on–screen feedback across

conditions. Their blind study had 3 conditions (normal feedback, dots feedback, and

blind). The normal feedback condition displayed the text as it was typed (on–screen

feedback present, keyboard visibility limited). For the dots condition, we displayed

periods for each character typed instead of the transcribed text. Thus, participants

see their position in the supplied phrase but not specifically what they type (on–

screen feedback limited, keyboard visibility limited). This condition was designed

to simulate monitoring text typed without being able to actually read the letters.

This condition was inspired by the wearable computing situation where a head–up

display is being monitored in the user’s peripheral vision while typing notes with a
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mobile keyboard and maintaining eye contact with a conversation partner. Finally,

the blind condition did not show any on–screen indication of what was typed (on–

screen feedback absent, keyboard visibility limited). For both the dots and blind

conditions, participants were shown their transcribed text and error statistics when

they pressed enter at the end of a phrase. The results from the Twiddler study

indicated that participants performed just as well or slightly better in the reduced

visual feedback conditions [30].

In our second mini–QWERTY study we investigate this type of blind typing. Our

participants type in conditions of limited visibility both of the keyboard and the dis-

play. In the first condition, the normal condition, the subject has full visual access

to both the keyboard and the display (keyboard visibility present, on-screen feedback

present) as shown in Figures 5 and 7. The second condition, hands blind, obstructs the

view of the keyboard but presents the visual feedback normally (keyboard visibility

absent, on-screen feedback present) as shown in Figures 6 and 7. The final condi-

tion, fully blind, not only obstructs the view of the keyboard but also reduces visual

feedback from the display (keyboard visibility absent, on-screen feedback limited) as

shown in Figures 6 and 8.

34



Figure 5: Experimental configuration

for normal condition where the user can

see the keyboard while typing (keyboard

visibility present).

Figure 6: Experimental configuration

for hands blind and fully blind condition

where the user’s hands are held under the

desk while typing (keyboard visibility ab-

sent).

Figure 7: The experimental software

showing visual feedback in the normal

and hands blind conditions (on–screen

feedback present).

Figure 8: The experimental software

showing visual feedback in the fully blind

condition (on–screen feedback limited).

4.3 Method

The method for the study of blind typing closely resembles the method for the baseline

study of novice mini–QWERTY text entry described above (Section 3.1).
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4.3.1 Design and Procedure

The blind study is structured as a 3 x 5 within–subjects factorial design. We present

the participants three conditions (normal (n), hands blind (hb) and fully blind (fb))

during five sessions which lasted approximately 75 minutes each. The sessions were

separated by at least two hours and by no more than two days and scheduled over

the course of 9 days. Each session was split into three 20 minute parts delineated

by typing condition and separated by five minute breaks. The order of conditions

was randomized across participants and sessions. Similar to our previous work, par-

ticipants were compensated $0.125 × wpm × Accuracy, with a $4 minimum per

condition.

We recruited participants who had completed the first mini–QWERTY keyboard

study. Eight of the seventeen original participants self–selected to participate in the

blind study. All participants were considered expert mini–QWERTY typists having

completed 600 minutes of training prior to beginning the blind study. Four hundred

minutes of training came from participating in our previous study. Since there was

a delay of about three months between studies, we also had the participants practice

for an additional 200 minutes just prior to the commencement of this study. Our

participants ranged in ages 18-24. Four participants were female and all were right–

handed.

Before the first session, the researcher gave each participant verbal instructions

explaining the task and goals of the experiment. The researcher also described the

three different typing conditions. The participants were instructed to type as quickly

and accurately as possible and to use only their two thumbs to enter text.

As before, each condition began with a warm–up round which consisted of the

phrases “abcd efgh ijkl mnop” and “qrst uvwx yz” repeated twice. The warm-up

phase was not counted in the statistics. The remainder of the condition consisted of

a number of trial blocks containing ten randomly selected phrases. Each participant
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completed as many blocks as he or she could in the twenty minute period.

4.3.2 Equipment and Software

We continued to use the two mini–QWERTY keyboards (shown in Figure 2) from the

baseline evaluation (see Chapter 3 and again employed the Twidor software package.

The software was self–administered under researcher supervision. Depending on the

condition under test, the software has two different visualization modes. For the

normal and hands blind conditions, the program displays the transcribed text as it

is entered (Figure 7). For the fully blind condition, the software does not show this

feedback. Instead, only a cursor moves across the screen with no characters displayed

as the user types (Figure 8). The test software also provides statistical feedback to

the participant. We show the typing rate, measured in words per minute (WPM)

and the accuracy (ACC) for the most recent sentence typed and the current session

average.

4.4 Results

In total, the 8 participants typed 13,920 phrases across all sessions. Typing rate

suffered considerably in both visually impaired conditions (Figure 9). In the first

session, an ANOVA shows that there is a statistical difference between conditions

(p < 0.05). A post–hoc analysis shows there is not a statistical difference between

the hands blind and the fully blind conditions (p = 0.820) while there is a difference

between the normal condition and the two blind conditions (phb < 0.05 and pfb <

0.05). The normal typing rate (Mn = 53.99 wpm, SDn = 10.34) is similar to our

previous experiment. In contrast, the typing rates dropped for both blind conditions.

The hands blind typing rate started at Mhb = 40.61 wpm (SDhb = 11.46) for the first

session and the fully blind typing rate was Mfb = 41.76 wpm (SDfb = 8.07).
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Figure 9: Mean typing rates with ± one standard deviation for the three conditions

averaged across keyboards. The Normal condition is red, Hands Blind is green, and

Fully Blind is blue.

At the end of the our fifth session, the hands blind typing rate increased to Mhb =

46.90 wpm (SDhb = 5.33) and the fully blind rate to Mfb = 47.88 wpm (SDfb = 3.35).

As expected for expert usage, the normal condition did not show a corresponding

increase (Mn = 57.89 wpm, SDn = 4.80). While the blind rates increased, they are

still statistically different from the normal condition (phb < 0.001, pfb < 0.001). This

performance drop represents a decrease of 11 wpm which is approximately 20% of

normal typing speed.

The trends seen in the typing rates also continue in the accuracy data (Figure 10).

Typing accuracy was drastically reduced with the introduction of the blind conditions

and gradually improved with time. An ANOVA shows statistical difference between

conditions (p < 0.05). A post–hoc analysis still reveals no statistical difference be-

tween the accuracy rates for the hands blind and fully blind conditions (p = 0.357)

though there remains a difference between the normal condition and the two blind
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conditions (phb < 0.05 and pfb < 0.05). After the initial session, the accuracy rate

for the normal condition was Mn = 92.4% (SDn = 5.36%) while hands blind was

Mhb = 81.9% (SDhb = 8.57%) and the fully blind was Mfb = 77.8% (SDfb = 8.44%).
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Figure 10: Mean accuracies with ± one standard deviation for the three conditions

averaged across keyboards. The Normal condition is red, Hands Blind is green, and

Fully Blind is blue.

Examining the accuracy rates at the end of the final session shows that the hands

blind typing condition accuracy increased to Mhb = 85.2% (SDhb = 7.43%) and fully

blind to Mfb = 84.8% (SDfb = 5.64%). Again, the normal condition did not show

a corresponding increase (Mn = 94.6%, SDn = 2.91%). While the blind accuracy

rates increased, similar to the typing rates, they are still statistically different from

the normal condition (phb < 0.01, pfb < 0.01).

4.5 Blind Discussion

On the whole, the mini–QWERTY keyboard data show that the participants in the

blind conditions initially decrease in performance and slowly start to recover. This
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Condition Session 1 Session 5
Normal 53.99 wpm (SD = 10.34) 57.89 wpm (SD = 4.80)
Hands Blind 40.61 wpm (SD = 11.46) 46.90 wpm (SD = 5.33)
Fully Blind 41.76 wpm (SD = 8.07) 47.88 wpm (SD = 3.35)

Table 6: Mean mini–QWERTY typing rates and standard deviations captured in
the normal, hands blind and fully blind conditions for sessions 1 and 5.

drop mirrors Silfverberg’s results but contrasts with our past work on the Twiddler

wherein there was no performance drop when transitioning to limited visual feedback

conditions.

Our mini–QWERTY participants learned to type while looking at the keyboard.

Anecdotally, we observed that while typing in the normal condition, participants

would read a phrase displayed on the monitor, look down at the keyboard, type the

phrase, press enter to submit the phrase, and look back at the monitor to read the

next phrase. This pattern of behavior was no longer valid upon introduction of the

blind typing conditions to our expert mini–QWERTY users. The blind conditions

are sufficiently different that the participants were forced to partially relearn how to

type without looking at the keyboard which explains the initial decrease in typing

rate and accuracy observed as the participants were, in effect, blind typing novices.

As they proceeded through the sessions, they gradually relearned how to type and

their performance increased. While their performance did rebound, it is important

to reiterate that none of our participants were able to meet or exceed their normal

typing rate or accuracy while typing in a blind condition during the experiment.

It is also worth noting that the total time the participants spent typing blind

was not equal to the time spent in the normal condition. In effect, the two blind

conditions combine to give participants 40 minutes of practice in a state of limited

keyboard visibility for every 20 minutes of regular typing (there was no statistically

significant difference between the two blind conditions). Therefore, the data for the

fifth session do not strictly represent five typing sessions of 20 minutes, but instead a
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total of 200 minutes of practice in a keyboard visibility absent condition.

Another important issue with our study on blind mini–QWERTY typing relates to

our experimental setup. With our study, the participants typed in sustained sessions

gaining practice with blind typing. This situation may not be representative of real

world conditions where it is unlikely that users would have multiple sustained sessions

of practice with limited visual feedback. Instead, most of the user’s experience in

blind situations would likely be short and intermittent while trying to accomplish

some other primary task like taking notes while sitting in a meeting.
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CHAPTER V

TEXTING WHILE WALKING: AN EVALUATION OF

MINI-QWERTY TEXT INPUT WHILE ON-THE-GO

In this chapter we discuss our study designed to investigate the impact of mobility

on individuals’ ability to input text on mini-QWERTY keyboards.

The goals of the study outlined in this chapter are

1. To determine the average typing rates and accuracies for expert mini–QWERTY

keyboard typists inputing text on mini–QWERTY keyboards while mobile (ei-

ther walking, sitting, or standing).

2. To make methodological contributions to the emerging field of controlled use–

in–motion studies

Interacting with mobile technology while in-motion has become a daily activity

for many of us. It is not unusual to observe individuals inputing text on a mobile

phone while walking to a destination. Common sense leads one to believe that texting

while mobile can be dangerous since users are distracted and not paying attention

to the environment. In fact, previous studies have investigated this area and found

that mobility does negatively impact text entry performance. However, this research

has only focused on novice participants typing on virtual keyboards on touch screen

mobile phones. As such, it is unclear if this intuition holds for expert typists or if

using keyboards that provide tactile feedback can mitigate the issues that arise when

texting and walking.

In this chapter, I investigate the impact of mobility on users’ ability to quickly and

42



accurately input text on mobile phones equipped with fixed-key mini-QWERTY key-

boards. In total, 36 participants completed 600 minutes of typing on mini-QWERTY

keyboards (300 minutes training up to expertise) in three mobility conditions (walk-

ing, seated, and standing for an additional 100 minutes each) generating almost

4,000,000 characters across all conditions. In our evaluation of expert texters we

found that walking has a significant impact on expert word-per-minute rates but not

on their accuracy rates, illuminating that even under ideal conditions (expert typists

receiving tactile feedback from their interactions), mobility impairs mobile interac-

tion.

5.1 Introduction

Many individuals carry mobile devices all the time and use these devices in a wide

variety of contexts including at work, at home, in the car, while riding public trans-

portation, et cetera [32]. Often, mobile device usage occurs while the user is on-the-go.

The most common mobile device in use today is the mobile phone, and interacting

with a mobile phone while walking has become common practice. It is not unusual

to observe individuals walking while using their mobile phones to make phone calls,

browse the web, or read and write emails or text messages. Using a mobile device in

this manner can result in distraction since the user is forced to split their attentional

resources between their mobile device and the environment [44]. As mobile devices

become ever more powerful and portable, they will be used in an increasing variety

of situations. Already it is not uncommon for mobile phones to be the first object

that people interact with in the morning and the last one with which they interact

before going to bed [7].

Kane et al. observed that most mobile interfaces are designed to be used by a

person who is standing still and attending solely to the task of interacting with the

mobile device [25]. However, the portable nature of these devices results in usage that
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occurs while the user is often on-the-go. When mobile, users must constantly adapt

their usage of a device to the demands of their environment [26]. When walking, a

user’s head and hands both move making it difficult for the user to read the screen

or interact with the mobile phone. For example, when attempting to input text on

a mobile phone while walking, a user must maintain awareness of her surroundings

while at the same time navigating her environment and interacting with a device that

is itself in motion. In these situations, the user’s ability to accurately interact with

the device is often impaired. Sears et al. used the term situational impairments to

describe the situation that occurs when contextual factors reduce a user’s ability to

successfully interact with a mobile device in a way that is similar to how user’s with

physical or sensory impairments interact with technology [50].

Despite the increasing importance of mobile devices in everyday life, little research

has been published that quantifies the impact of mobility on the use of mobile devices.

The degree to which that distraction impacts performance is unknown. In this chap-

ter, we describe an investigation that explores the impacts of mobility on interaction

with a mobile device. Specifically, we examine the effects of sitting, standing, and

walking on users’ ability to quickly and accurately input text into a mobile phone

equipped with a physical mini-QWERTY keyboard (see Figure 11). We compare

words-per-minute and accuracy rates in each condition. We conducted this study us-

ing a walking track constructed in our laboratory in order to fully observe the effects

of typing on a mini-QWERTY keyboard while walking.

We present a study designed to investigate the impact of mobility on individuals’

ability to input text on mini-QWERTY keyboards. Our work makes the following

contribution to HCI and text entry research communities: We conduct a large con-

trolled text entry evaluation, we determine the average typing rates and accuracies for

expert mini–QWERTY keyboard typists inputing text on mini–QWERTY keyboards

while mobile (either walking, sitting, or standing).
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Figure 11: The mini–QWERTY keyboard enabled mobile phone used in the mobile
study: the RIM Blackberry Curve 8320.

5.2 Evaluation

Though much research has explored the use of mobile devices while in-motion, current

studies have not investigated such topics as typing on physical keyboards, mobile

errors, or the impact of user expertise on on-the-go mobile input. The goal of our

evaluation is to investigate the impact of mobility on expert fixed-key mini-QWERTY

keyboard text entry performance.
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5.2.1 Participants

We recruited 36 participants (15 female, 21 male) ranging in age from 18 to 25

(M=19.75, SD=1.63) who had not used a mini–QWERTY keyboard more than once.

Each participant had at least six years of full–QWERTY keyboard experience (M=11.36,

SD=2.86) and at least one year of mobile phone experience (M=5.11, SD=2.19). All

participants were native American English speakers who were taught to read and write

in an American English education system (it is important from a spelling/errors per-

spective that participants were American English natives). On average, participants

sent 27 text messages a day (SD=43). Twenty-nine of the thirty six participants

reported that they have sent a text message while walking, sending on average 13

text messages a week while walking (SD=16).

5.2.2 Equipment and Software

Figure 11 shows the mini–QWERTY keyboard enabled mobile phone used in the

experiment, a RIM Blackberry Curve 8320. For this study, we ported the Twidor

testing software to the Blackberry platform resulting in the new application Black-

Twidor (though BlackTwidor was run on a RIM Blackberry Curve 8320, it can run

on any current Blackberry model mobile phone).

As with our previous studies, the software was configured to use the MacKenzie

and Soukoreff phrase set [37], a set of 500 phrases representative of the English lan-

guage. The test software presented a phrase to the participants at the top of the

screen. Underneath the presented phrase, participants transcribed the phrase and

pressed the return key upon completing the task. The test software provided statisti-

cal feedback in the form of typing rate and accuracy data for the most recent sentence

typed and the current session average (see Figure 12).

Each session was preceded by a warm–up phase, in which the participants were

asked to type the phrase “abcd efgh ijkl mnop qrst uvwx yz” twice. Participants were
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Figure 12: The interface in the study displayed both the presented string and the
transcribed string (in progress directly below the presented). It also showed the
words-per-minute (WPM) and accuracy rates (ACC) for the session so far (avg) and
the phrase just completed by the participant (last).

required to type this phrase without mistakes. The warm–up phrase was not counted

in the session statistics. Upon completion of the warmup, the twenty-minute session

was started. A session was comprised of a number of trial blocks each containing ten

randomly selected phrases from the MacKenzie and Soukoreff phrase set [37]. The

participants completed as many blocks as possible in a twenty–minute session. At

the end of a twenty-minute session the mobile phone displayed a message instructing

the participant to find the researcher so that the researcher could collect the data,

record the participants’ performance, and compensate the participant appropriately.

5.2.3 Procedure

Prior to beginning the first session of the study, the participants filled in a question-

naire detailing their demographic information and their mobile phone usage history.

Upon completion of the questionnaire, participants were given an introduction to the
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task and were provided a mobile phone to familiarize themselves with the applica-

tion. Participants were instructed to type using only their two thumbs and to type

as quickly and accurately as possible. Participants were allowed to interact with the

mobile device and were prompted to ask any clarifying questions prior to beginning

the task. When the researchers were confident that the participant was comfortable

performing the task, they were ushered into the lab wherein they proceeded to input

text for the entirety of a twenty-minute session. Sessions were completed in pairs

with a 5–minute break after the first 20–minute session. Each session pair was sepa-

rated by at least two hours and by no more than two days. To complete the study,

participants scheduled fifteen session pairs over the course of two to three weeks.

5.2.3.1 The Walking Track

Recently, some use-in-motion studies have started having a researcher walk in front

of the participant to set a constant walking pace for the duration of the task [25,

17]. While using a human pacer does help ensure consistency across participants, it

has the potential to force participants to commit unnatural errors since perhaps a

participant needs to slow down to perform particularly difficult tasks. Though not to

the same degree, using a human pacer introduces some of the same external validity

challenges as using a treadmill to evaluate use-in-motion. The participants’ pace is

forced and their ability to make navigational decisions is reduced. Without allowing

participants the flexibility to set their own pace and walk their own path we are

unable to accurately measure the true impact of mobility on individuals abilities to

interact with mobile technology while on-the-go.

We take a different approach and choose to simply quantify natural human per-

formance. When in the walking condition, participants were instructed to walk at

a normal pace around a track constructed in our laboratory (see Figure 13). The

48



track was approximately 25.2 meters long and was denoted with pairs of flags hang-

ing from the ceiling with their tips 0.75 meters apart. Each flag was hung so the tip

was approximately 1.6 meters above the floor. We chose to use flags hanging from

the ceiling to ensure that participants were engaged in a head-up task. Had the par-

ticipants been following a path laid out on the ground, a head-down condition would

have ensued which we considered to be inappropriate given the nature of the study

(as walking around, head down, is not typical behavior). As the study is conducted

with participants walking continuously around the track, they were told they could

slow down or stop as needed to complete a trial, but were asked to keep walking at a

comfortable pace if possible.

Figure 13: The path participants walked, starting at flag 1 and proceeding either
clockwise or counterclockwise.

In an effort to accurately calculate the speed and distance traveled by the par-

ticipants, we built a set of motion sensors that we mounted in the ceiling of our lab

between each pair of flags (see Figure 14). The sensors were connected to a computer

in the laboratory via Bluetooth. Every time a participant walked between a pair of
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flags, the sensor would record the time and send that information to the computer.

In this way, we could calculate the instantaneous and average speed of the participant

as they walked from flag to flag along the track as well as the total distance traveled

(see Figure 15). Upon completion of the twenty-minute session, the mobile phone

displayed the following message in a large font on the screen “Session over. Please

hand the Blackberry to the researcher.” Participants were requested to stop where

they stood in order to allow the researcher to measure how far they had walked past

the last pair of flags. In this way we were able to accurately record the total distance

traveled to the nearest half-meter.

Figure 14: The flag and sensor configuration that comprised the walking track.

5.2.4 Study Design

To begin, participants were trained up to expertise before being introduced to the

mobile conditions. Previous studies have shown that participants’ learning curves

flatten after 300 minutes of typing on a mini-QWERTY keyboard indicating that

participants have become expert typist [9]. In this study, participants were asked
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Figure 15: A screenshot of the software we used to capture participant movement
data. The y-axis is speed in m

s
and the x-axis shows time in seconds. Each blue dot on

the chart represents an instance where the participant walked through a pair of flags
(under a sensor). The blue dots show instantaneous pace while the red dots show
the participant’s average speed. Average speed, distance traveled and total number
of laps around the track can be seen in the upper right corner.

to complete 15 twenty-minute sessions seated in our laboratory prior to entering the

experimental phase of the evaluation. Having completed 300 minutes inputting text

on a mini–QWERTY keyboard enabled mobile phone, our now–expert participants

transition into the mobility portion of the study.

The study is designed to investigate expert text entry performance in three differ-

ent mobility conditions: sitting (the control condition), standing (participants stand

in an empty room for the duration of the twenty-minute session) and walking (par-

ticipants continuously walk the track in our laboratory for the duration of a twenty-

minute session). Each participant was assigned an initial mobility condition and

rotated through all three conditions over the course of the study. Participants input

text for five 20-minute sessions (100 minutes) each mobility condition. The order of
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mobility conditions was counterbalanced and participants were randomly assigned to

orders. All 36 expert participants successfully input text for 100 minutes in all three

mobility conditions. By the completion of this study, participants had typed for a

total of 600 minutes – 300 minutes seated and 300 minutes in the mobile conditions

(100 minutes sitting, 100 minutes standing, and 100 minutes walking).

We structured the study as a 3 x 5 within-subjects design. The factors and levels

were:

• Mobility Sitting, Standing, Walking

• Sessions One, Two, Three, Four, Five

Because our participants were expert typists by the time they began this phase

of the evaluation, there was no need to counterbalance conditions at the session level

to avoid learning affects. Participants input text for five sessions in each mobility

condition before switching to a different condition. To ensure that even if learning

effects did present themselves, we would have at least 100 minutes of typing data in

all three mobility conditions that were uncompromised. These data from the first 100

minutes of the experimental phase of the evaluation could be then used to compare

performance between the three different mobility conditions and we would still have

usable data. Analyzing the subset of participants who went directly from the final

training session into the Sitting mobility condition (thus typing for 400 minutes while

seated) confirmed that our participants’ learning curves had flattened. Additionally,

running an ANOVA over sessions 16-20 showed no significant effect on either WPM

or ACC.

5.3 Results

Thirty-six participants input 131,884 phrases, and 3,872,505 characters across all

sessions. 60,818 phrases and 1,793,564 characters were typed in the first three hundred
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minutes of typing as participants were trained to expertise. In the experimental

portion of the study, a total of 24,116 phrases and 705,156 characters were typed while

seated, 24,078 phrases and 705,014 characters were typed while standing, and 22,872

phrases and 668,771 characters were typed while walking (see Table 7). Averaged

over the five 20-minute walking sessions, participants traveled 912m (SD=300m) or

approximately 2.75km/hour.

Study Phase Phrases Characters
Training to Expertise (300 minutes) 60,818 1,793,564
Seated (100 minutes) 24,116 705,156
Standing (100 minutes) 24,078 705,014
Walking (100 minutes) 22,872 668,771
Total (600 minutes) 131,884 3,872,505

Table 7: Dataset collected from 36 participants typing for 600 minutes: 300 minutes
seated training from novice to expert, 100 minutes seated, 100 minutes standing, and
100 minutes walking.

The main measures collected were

• speed, calculated as words per minute (see Equation 6)

• accuracy (see Equation 7), and, when participants were mobile,

• distance traveled and

• average speed.

In the mobility conditions, the mean entry rate for Seated was 56.79 WPM

(SD=11.51), while Standing was 56.61 WPM (SD=10.97), and Walking was 52.51

WPM (SD=11.56). The mean accuracy for Seated was 95.36% (SD=6.15%), Stand-

ing was 95.25% (SD=6.54%), and Walking was 94.91% (SD=6.59%) (see Table 8 for

complete results). On average, participants traveled 911 meters (SD=300m) per 20-

minute session. The minimum total distance traveled over the course of 100 minutes

was 1,298 meters, while the maximum total distance traveled over the course of 100

minutes was 7,247 meters.
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Study Phase Mean WPM (SD) Mean ACC (SD)
Training to Expertise (300 mintues) 48.21 (13.11) 96.05% (6.87%)
Seated (100 minutes) 56.79 (11.51) 95.36% (6.15%)
Standing (100 minutes) 56.61 (10.97) 95.25% (6.54%)
Walking (100 minutes) 52.51 (11.56) 94.91% (6.59%)
Total (600 minutes) 52.06 (12.78) 95.58% (6.65%)

Table 8: The average words per minute and accuracies for 36 participants in the
training phase of the study and the three mobility conditions (seated, standing, and
walking).

5.3.1 Training to expertise

An analysis of variance (ANOVA) of text entry speed shows a main effect for ses-

sion (F14,490 = 75.158, p < 0.0001). The main effect of session was expected as it is

assumed that the participants would learn to type faster over the course of the 15

twenty-minute sessions. We performed the same test for accuracy which also shows

a main effect for session (F14,490 = 3.205, p < 0.0001). Again this effect was ex-

pected since accuracy rates typically decrease when typing rates increase due to the

speed/accuracy tradeoff.

5.3.2 Mobility Conditions

We tested for effects of condition order on the main measure of typing speed using

a 3-way ANOVA with mobility condition order as a between-subjects factor and

Session and Mobility as within-subjects factors. No main effect of mobility condition

order was found, indicating that overall counterbalancing on the condition level was

effective.

The 36 participants typed a total of 71,066 phrases and 2,078,941 characters across

all sessions and all mobility conditions. We analyzed the data using a mixed model

analysis of variance with fixed effects for Mobility and Session. We found a main effect

of Mobility on speed (F2,56 = 13.0076, p<.0001) as well as a main effect of Session

on speed (F4,112=15.905, p<.0001). To analyze these effects further, we conducted
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post-hoc pairwise comparisons using Bonferroni correction. The post-hoc test for

Mobility shows a significant effect on speed between Sitting and Walking (t35 =

5.244, p<.0001) and a significant effect on speed between Standing and Walking (t35

= 4.762, p<.001) but no significant effect on Speed between Sitting and Standing.

The post-hoc test for Session shows a significant effect on speed between Sessions 1

and 3 (t35 = -5.251, p<.0001), Sessions 1 and 4 (t35 = -4.557, p<.0001), Sessions 1

and 5 (t35 = -8.585, p<.0001), Sessions 2 and 3 (t35 = -5.201, p<.0001), Sessions 2

and 4 (t35 = -3.264, p<.002), and Sessions 2 and 5 (t35 = -5.518, p<.0001). No other

statistically significant effects on speed were found for Session. We found no main

effect of either Mobility on accuracy (F2,56=1.316, p=.276) or Session on accuracy

(F4,112=1.469, p=.216).

5.4 Discussion

The goal of this study was to quantify the impact of mobility on text entry perfor-

mance. To demonstrate the impact of mobility on text entry performance, we de-

signed a “best case scenario” study utilizing expert participants typing in a controlled

environment on devices that afforded tactile feedback (fixed-key mini-QWERTY key-

boards). Even in these idealized conditions we still saw a significant impact of mobility

on participants’ text entry rates with mobility inducing a significant negative impact

on typing performance. Most surprisingly we did not see a corresponding impact of

mobility on participant accuracy rates.

Though interacting with mobile technology while in-motion has become a daily

activity, typing on a phone while on-the-go leads to situational impairments that

negatively impact typing rates. We evaluated expert two-thumb typing on a fixed-

key mini-QWERTY keyboard enabled mobile phone. In our longitudinal evaluation,

36 participants who had minimal mini-QWERTY experience trained for 300 minutes

to become expert mini-QWERTY typists and then moved into the mobility phase
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of the study to type for 100 minutes in each of three conditions: sitting, standing,

and walking. Surprisingly, walking has a significant impact on expert word-per-

minute rates but not on accuracy rates. These results illuminate that even under

ideal conditions (expert typists receiving tactile feedback from their interactions),

mobility impairs users’ ability to interact with a mobile phone while on-the-go.
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CHAPTER VI

AN ANALYSIS OF MINI–QWERTY KEYBOARD

TYPING ERRORS IN VARIOUS CONTEXTS OF USE.

In this chapter I discuss my analysis of typographical errors made when inputing text

on fixed–key mini–QWERTY keyboards in various visibility and mobility contexts.

The goals outlined in this chapter are:

1. To determine the types of errors made when typing on fixed–key mini–QWERTY

keyboards.

2. To determine the types of errors made when typing on mini–QWERTY key-

boards in various mobility conditions.

I conduct an in-depth analysis of typing errors committed on mini-QWERTY

keyboards, introduce off-by-one errors and explore how the off-by-one error type has

changed as keyboards have improved, and finally discuss semantic errors and present a

new method for identifying semantic errors in text entry experiments. For an in-depth

discussion of text entry metrics, please see Section 2.5.

6.1 Errors in mini-QWERTY keyboard typing

Mini–QWERTY keyboard typists typically employ two–thumbs when operating a

mobile device. Mini–QWERTY keyboards have the same one–to–one key–to–letter

ratio as seen on a full desktop QWERTY keyboard. In order to fit such a large

number of keys into the space normally occupied by the twelve keys of a mobile

phone keypad, the letter keys need to be very small and densely packed together on

the mobile device. It is not uncommon for this design to result in keyboards that
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contain keys with a surface area of less than 25 mm2 and inter–key spacings of less

than two millimeters. The keys are significantly smaller than a user’s thumbs which

results in difficulty of use. The user’s thumbs occlude visibility of the keys, introducing

ambiguity as to which key was actually pressed. Further, Fitts’ Law implies that

typing accuracy decreases as typing speed increases due to the relationship between

target size, movement speed, and accuracy [55]. Taken together, these effects combine

to lead to errors in mini–QWERTY keyboard text input where a user’s thumb presses

multiple keys at the same time (usually pressing the key either to the left or the right

of the intended key) or presses the intended key twice.

6.1.1 Analysis of errors from the Baseline study

Errors have long been considered an important source of insight into understanding a

user’s performance of a task. Grudin performed an analysis of error patterns for full–

QWERTY desktop typing in an attempt to understand how complex motor task skills

are organized and developed [20]. Like Grudin, I perform a similar analysis of the data

from the Baseline study (Chapter 3), segmenting errors into groups: substitutions,

insertions, deletions and transpositions.

Substitution errors occur when a character is replaced by a different character

within a text string. Insertion errors occur when a character is added, and deletion

errors occur when a character is omitted. Transposition errors occur when a partici-

pant attempts to type a letter combination or word and exchanges two of the letters

(for example, typing teh but intending the). With full–QWERTY keyboard typing

Grudin found substitution errors account for the majority of the errors (62.92%).

Errors on mini–QWERTY keyboards are more evenly distributed with substitutions

still occurring most frequently (40.2%) followed by insertions (33.2%) and deletions

(21.4%). In comparison, there are relatively few transpositions (5.2%).
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6.1.1.1 Substitution Errors

Grudin identifies several different types of substitution errors that occur in full–

QWERTY keyboard typing including row errors, column errors, and homologous

errors [20]. Row errors occur when the intended character is replaced by a character

immediately to the left or the right of the intended character. For example, the user

intends to press e on a QWERTY keyboard but instead types w or r. Column errors

occur when the correct character is replaced by a character immediately above or

below of the intended character (the user intends to press d but instead types e or x ).

Homologous errors occur when the correct character is replaced by the mirror–image

character typed by the same finger in the same position on the other hand (the user

intends to press d but instead types k). Similar to Grudin’s work, the majority of

mini–QWERTY keyboard substitution errors are row errors accounting for 55.3% of

the substitution errors and 22.2% of the total errors.

6.1.1.2 Insertion Errors

The prevalence of insertion errors merits an in–depth analysis. Inspired by the number

of row errors discovered in the substitution case, I analyzed insertions in a similar

manner. I examined insertions that are off by one key to the left or right of the

intended key and include in this measure insertions that occur when a user presses

the same key twice. The combination of the row and key repeat insertions account

for 68.7% of the insertions and 22.8% of the total errors.

6.1.1.3 Off–By–One Errors

I group row substitutions, row insertions (“roll–on” and “roll–off”) and key–repeat

insertion errors to form the new error category I call “off–by–one”. This error type

accounts for 45.0% of all of the errors and occurs more often than any other error

type (see Table 9). Off–by–one errors consist of insertions and substitutions of letters

on the keyboard directly adjacent to the key the user intended to press. Accidental
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key repeats are insertions where the user unintentionally presses the same key twice

(e.g. the user types“catt” when she intended to type “cat”). Many of the remaining

insertions result when the user presses an additional key either immediately to the

left or to the right of the intended key, and 92% of these off–by–one insertions can

be classified as either Roll–On and Roll-Off insertion errors. Roll–On insertions are

where the inserted character comes before the intended character (e.g. the user types

“cart” when she intended to type “cat”). Roll–Off insertions which occur when the

inserted character comes after the intended character (e.g. the user types “catr”

when she intended to type “cat”). Finally off-by-one substitution errors occur when

the intended character is replaced by the character immediately to the right or left of

the intended character (e.g. the user types “cay” or “car” when she intended to type

“cat”). Off–by–one errors possibly occur because the thumb spans multiple keys. My

data imply that when a user is typing, she may accidentally press multiple keys at

the same time with a single thumb. This finding has implications on the ergonomic

and physical layout design of mini–QWERTY keyboards. It also could be leveraged

to produce better automatic error correction algorithms for mobile text entry.

Error Type Percentage
Off–by–one 45.0%
Deletion 21.4%
Substitution 18.0%
Insertion 10.4%
Transposition 5.2%

Table 9: Updated error rates accounting for off–by–one errors.

6.1.2 Analysis of errors from the mobile evaluation

The first 300 minutes of typing in the mobile study (see Chapter 5 for details) mimics

the study design of the baseline evaluation (Chapter 3). The data collected in the

baseline evaluation was produced from participants typing on mini-QWERTY key-

boards designed as attachments for personal digital assistants. A lot of research and
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design has gone into the development of robust mobile keyboards since that time.

As such, conducting a similar analysis of errors on data collected from the mobile

evaluation (Chapter 5) provides an interesting basis for comparison. It is interesting

to conduct the same analysis as above to not only replicate the earlier findings but

also to see if changes in the keyboard hardware have impacted the types of errors

committed by participants.

I opted to use the error classifications described by Wobbrock et al. [60] (see

Section 2.5) to conduct the analysis of the mobile data. Investigating the training

phase of the evaluation in which 36 participants sat and input text in our laboratory

for fifteen 20-minute sessions, I found that of the 1,793,564 characters input, 90,710

were errors. Of note, there were far more uncorrected errors than corrected errors in

the set (69,721 vs. 20,989 respectively). This finding is unsurprising as participants

will often optimize for speed over accuracy in an effort to maximize their earnings

from the study. The most common type of error in the dataset was Uncorrected

Substitutions which accounted for 34% of the total errors. The second most prevalent

error type was Uncorrected Omissions which accounted for almost 26% of the errors.

This finding is particularly interesting given that when participants took the time to

correct their mistakes, there were significantly fewer Corrected Omissions than either

Corrected Substitutions or Corrected Insertions (see Table 10 for a full breakdown of

errors that were collected from the first 300 minutes of typing).

6.1.2.1 Substitution Errors

In my analysis of the errors from the baseline study I found that the majority of

mini-QWERTY keyboard substitution errors were row errors accounting for 55.3% of

the substitution errors and 22.2% of the total errors. When analyzing data from the

mobile study I found that row substitution errors again account for the majority of

the errors. Surprisingly, the prevalence of these errors has not decreased dramatically
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Error Type Error Count % of Total Errors % of Total Chars
Cor No Errors 17,584 n/a 0.98%
Cor Omissions 4,728 5.21% 0.26%
Cor Insertions 5,774 6.37% 0.32%
Cor Substitutions 10,487 11.56% 0.58%
Uncor Omissions 23,339 25.73% 1.30%
Uncor Insertions 15,532 17.12% 0.87%
Uncor Substitutions 30,850 34.01% 1.72%
Uncor No Errors 1,685,270 n/a 93.96%
Total 1,793,564 100.00% 100.00%

Table 10: A breakdown of the errors committed by 36 participants in the training
phase of the mobile evaluation. Participants typed for 300 minutes generating a total
of 1,793,564 characters and 90,710 errors.

as keyboard hardware has improved over time. From my data, there were 20,460 row

substitution errors. These errors account for 49.50% of the substitution errors and

22.56% of the total errors in my dataset.

6.1.2.2 Insertion Errors

In my earlier analysis of errors from the baseline study I found that a combination

of row and key repeat insertions accounted for 68.7% of the insertions and 22.8% of

the total errors. Adding key repeats to my analysis of the mobile data does not have

a large impact as key repeat errors occurred extremely rarely (only 431 key repeats)

in the mobile dataset. Including key repeats in my analysis of insertions shows only

a marginal increase in the percentages of row insertions to 32.71% of the insertions

and 7.68% of the total errors. I believe that mobile phone manufacturers efforts to

fix the key repeat issue accounts for the single greatest differences in mobile phone

keyboards today compared to keyboards from the early 2000’s.

6.1.2.3 Off–By–One Errors

Of note, recent investigations of errors in two handed touch screen typing [17, 43] have

confirmed our earlier published findings that off-by-one errors are the most common

errors that occur when typing with two thumbs on a mobile phone [11]. I found
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similar results when analyzing the mobile dataset, classifying 30.24% of the errors as

off-by-one errors.

Comparing off-by-one errors between the baseline (Chapter 3) and mobile (Chap-

ter 5) evaluations differences in keyboard ergonomics can be observed. Table 11

illustrates how the reduction of key repeat insertions impacts the overall off-by-one

error rate.

Error Type % of Error Class % of Total Errors
Baseline row substitutions 55.3% 22.2%
Mobile row substitutions 49.50% 22.56%
Baseline row insertions 68.7% 22.8%
Mobile row insertions 32.71% 7.68%
Baseline off-by-one errors N/A 45.0%
Mobile off-by-one errors N/A 30.24%

Table 11: A comparison of the off-by-one errors committed in the baseline evaluation
and the off-by-one errors committed in the training phase of the mobile evaluation.
The second column shows the number of row errors divided by the total number of
errors for each error class per dataset. The third column shows the number of row
errors divided by the total number of errors per dataset.

6.1.3 Mobile Errors: Sitting vs. Standing vs. Walking

To investigate mobile errors I decided to perform an analysis similar to the one I

performed when analyzing the data from the first 300 minutes of the evaluation.

This analysis resulted in the following breakdown of errors across mobility conditions

(see Table 12). To investigate the impact of mobility on error type I performed an

ANOVA with fixed effects for Mobility and Error Type. As participants typed more

slowly when walking they generated less text in a twenty minute period than they

did when sitting or standing. As such, I normalized the error data (errors/character)

to account for this discrepancy. I did not include either Corrected NoError or Uncor-

rected NoError classes in my analysis. As I was uninterested in correction behavior at

this point, I combined corrected and uncorrected error classes. As such, my ANOVA

utilized Mobility with three levels (Sitting, Standing, and Walking) and Error Type
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with three levels (Omissions, Insertions, and Substitutions) I found no main effect

of Mobility on the number of errors committed (F2,70=.390, p=.679). I also did not

find an interaction effect of Mobility ∗ Error Type on the number of errors commit-

ted (F4,140=.123, p=.974). However, I did find a main effect of Error Type on the

numbers of errors committed (F2,70=30.825, p<.0001). To analyze these effects fur-

ther, I conducted post-hoc pairwise comparisons and employed Bonferroni correction.

Unsurprisingly, the post-hoc test for Error Type showed a significant effect on num-

ber of errors committed between Omissions and Substitutions (t35 =-7.289, p<.0001)

and between Insertions and Substitutions (t35 = -6.348, p<.0001) but no significant

effect on number of errors committed when comparing Omissions and Insertions (t35

=1.711, p=.096).
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Next I investigated correction behavior in an effort to understand if correction be-

havior changed in the different mobility conditions. To investigate correction behavior

in the mobility conditions, I again conducted a repeated measures ANOVA with fixed

effects for Mobility (Sitting, Standing, Walking), Error Type (Omissions, Insertions,

Substitutions), and Correction (Uncorrected, Corrected). Again, I saw no main effect

for Mobility or interaction effects for Mobility and Error Type, Mobility and Cor-

rection (F2,70=.604, p=.549), or Mobility, Error Type, and Correction (F4,140=.221,

p=.926). I did however see main effects for Error Type and Correction (F1,35=44.440,

p<.0001) as well as an interaction effect of Error Type and Correction (F2,70=18.508,

p<.0001). To investigate these effects further, I again conducted a series of post-hoc

pairwise comparisons employing Bonferroni correction. Comparing all corrected to all

uncorrected errors yielded a statistically significant result (t35 =-6.666, p<.001). Ex-

ploring the interaction effect between Error Type and Correction yielded a significant

effect for number of errors for almost every combination of Error Type and Correc-

tion. Of note, no significant effect was found when comparing Corrected Omissions to

Corrected Insertions (t35 =-.166, p=.869) or Uncorrected Omissions to Uncorrected

Insertions (t35 =1.813, p=.078) implying that participants’ took the same approach to

correcting (or not correcting as was more typically the case) Insertion and Omission

errors. All other comparisons were statistically significant.

6.1.4 Semantic Errors

In this section I describe my analysis of a type of error that I term “Semantic Er-

rors.” A semantic error occurs when a user inserts an entire word or multiple words

into the input stream when transcribing text into a mobile device. These errors are

likely a result of memory slips that occur when participants are attempting to input

text rapidly. I believe that these errors occur most often as participants progress
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through extended longitudinal text entry evaluations. As the process of rapidly read-

ing a presented string and then inputting that string as quickly and accurately as

possible into a mobile device becomes routinized by the participant, I posit that

participants “chunk” at the phrase level instead of at the word level. Chunking is

a phenomenon wherein an individual breaks a sequence of numbers or letters into

memorable “chunks” in an effort to scaffold their ability to remember the entirety of

a long sequence of letters or numbers [40]. The process of rapidly reading a presented

string and then inputting that string as quickly and accurately as possible into a

mobile device affords a surprising number of these types of errors.

Word level insertions can dramatically impact a participants error rate as they

end up committing a series of character level errors in the process of inserting a new

word. However, I would argue that there is only one error being committed and it is

an error at the word level, not at the character level. To clarify this position, consider

the following example:

Presented text: every apple from every tree

Input stream: every apple falls from every tree

Transcribed text: every apple falls from every tree

In this example, the participant was asked to type “every apple from every tree”

but the ended up typing “every apple falls from every tree”. Analyzing this example

applying traditional (Wobbrockian) error metrics would lead the text entry researcher

to conclude that the participant committed the errors seen in Table 13.

Using the Wobbrockian error metrics to calculate the accuracy of the phrase results

in an accuracy of 81.82% (see Equation 8). This number is calculated as 1-TER using

the equation for Total Error Rate (TER) from [53] (see Equation ??) where C is the

number of correct characters in the transcribed string, INF is the number of incorrect

and not fixed errors (uncorrected) in the transcribed string, and IF is the number of
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Error type Error count
Cor No Errors 0
Cor Omissions 0
Cor Insertions 0
Cor Substitutions 0
Uncor Omissions 0
Uncor Insertions 6
Uncor Substitutions 0
Uncor No Errors 27

Table 13: Analyzing the example above, a text entry researcher applying a Wob-
brockian analysis of character-level errors would uncover this error behavior. Applying
a semantic analysis to the same example however reveals that in fact, the participant
committed a single semantic error, not six individual character level errors.

characters that are incorrect but fixed (i.e. characters in the input stream that do

not exist in the transcribed text).

TER =
INF + IF

C + INF + IF
=

6 + 0

27 + 6 + 0
=

6

33
= .1818... (8)

However, I argue that instead of creating 6 Uncorrected Insertions (counted as

INFs), the participant simply committed a single Semantic Error and as such could

be counted as a single Incorrect and Not Fixed (INF) error resulting in the following

accuracy (see Equation 9):

1− TER =
INF + IF

C + INF + IF
= 1− 1

28
= 96.43% (9)

In order to quantify the number of semantic errors in my data I used the following

algorithm. Given all presented strings and all transcribed strings from all users, the

algorithm will output the minimum number of semantic errors in the dataset. For each

phrase, I compute the Wobbrockian error metrics from the transcribed and presented

strings. Based on these metrics I searched for sequences of incorrect insertions bound

by spaces. Each of these sequences is considered a potential word and therefore a

potential semantic error. To confirm that a sequence of incorrect insertions is in

fact a semantic error, I check each potential word using a dictionary built from all
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the words in the MacKenzie and Soukoreff phrase set. The number of potential

words found in the dictionary that are spelled correctly is the minimum number of

semantic errors in the data. Applying this algorithm to the data from the mobile

evaluation I uncovered 470 semantic errors. Upon further analysis I realized that I

had one participant who, perhaps out of boredom, typed several phrases similar to

the following:

Presented text: yes you are very smart

Input stream: yes you are very smart a a a a a a a a a a a a a a

Transcribed text: yes you are very smart a a a a a a a a a a a a a a

As each instance of “a” counted as a Semantic Error (i.e. 14 in the above example),

I removed her phrases from the analysis resulting in a total of 343 Semantic Errors

committed in 332 phrases. From the 343 Semantic Errors, the average length of a

Semantic Error is 2.5 characters. The most common Semantic Error was “the” which

was inserted 91 times followed by “a” which was inserted 63 times. The longest

Semantic Error logged was “deserves” (eight characters), followed by “getting” and

“tonight” both of which are seven characters long.

It was not uncommon for a particular phrase to have the same Semantic Error

inserted in the exact same location by multiple participants. For example,

Presented text: house with new electrical panel

Transcribed text: house with a new electrical panel

occurs 16 times in the data and was committed by 10 different participants at least

once (two participants committed this exact error three times, and two committed

it twice). There are 38 instances of a phrase having the exact same semantic error

committed in the same location multiple times. There are some interesting examples
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wherein participants inserted different Semantic Errors into the same location within

a phrase. For example:

Presented text: this library has many books

Transcribed text 1: this library has too many books

Transcribed text 2: this library has so many books

Transcribed text 3: this library is filled ith many books

The third transcribed text highlights one of the limitations of my method. It is

obvious through inspection that the participant intended to insert the words “is filled

with” into the phrase. However, they omitted the “w” from “with” and as such I only

calculated two Semantic Errors instead of the three. As mentioned above, my current

analysis of Semantic Errors returns only the minimal number of Semantic Errors.

6.2 Discussion

Though the mobile study showed a significant impact of walking on text entry rates,

most surprisingly I did not see a corresponding impact of mobility on participant

accuracy rates. Intrigued by this result, I conducted an in-depth analysis of errors

that mirrored my earlier analysis of errors from the baseline study. In comparing

errors from the training phase of the mobile evaluation to the errors in the baseline

study, I uncovered that changes made to keyboard technology have dramatically

reduced the number accidental key repeats made by participants. In the experimental

phase of the mobile evaluation I investigated the impacts of sitting, standing and

walking on the types of errors committed by participants. I uncovered a statistically

significant difference between the number of Substitution errors and the number of

Insertion and Omissions errors committed. Comparing corrections in the training

phase of the mobile study to corrections in the experimental phase of the mobile

study indicates that as participants increase in experience, they correct far fewer
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mistakes than they do as novices. Though I did not incorporate Semantic Errors into

my accuracy calculations, I demonstrated not only the existence of Semantic Errors,

but also that they artificially negatively impact accuracy rates. As such, I believe

Semantic Errors should be considered to be a single error when calculating accuracy

or error rates instead of a series of errors.
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CHAPTER VII

AUTOMATIC WHITEOUT: LEVERAGING FEATURES

OF THE USER’S INPUT TO CORRECT ERRORS IN

MINI–QWERTY TYPING

By analyzing features of users’ typing, Automatic Whiteout detects and corrects

up to 32.37% of the errors made by typists while using a mini–QWERTY (RIM

Blackberry style) keyboard. The system targets “off–by–one” errors where the user

accidentally presses a key adjacent to the one intended. Using a database of typing

from longitudinal tests on two different keyboards in a variety of contexts, we show

that the system generalizes well across users, model of keyboard, user expertise, and

keyboard visibility conditions. Since a goal of Automatic Whiteout is to embed

it in the firmware of mini–QWERTY keyboards, it does not rely on a word level

dictionary. This feature enables the system to correct errors mid–word instead of

applying a correction after the word has been typed. By correcting errors mid-word,

Automatic Whiteout has the potential to correct errors before the user notices that

they have committed a mistake thus minimizing user distraction. Though we do not

use a dictionary, we do examine the effect of varying levels of language context in the

system’s ability to detect and correct erroneous keypresses.

In this chapter I introduce and validate the potential of Automatic Whiteout: a

This chapter is an excerpt from James Clawson, Alex Rudnick, Kent Lyons, and Thad Starner,
“Automatic Whiteout: Discovery and Correction of Typographical Errors in Mobile Text Input,”
in the proceedings of MobileHCI, 2007, [13] and from James Clawson, Kent Lyons, Alex Rudnick,
Robert A. Iannucci Jr., and Thad Starner, “Automatic Whiteout++: Correcting mini–QWERTY
Typing Errors Using Keypress Timing,”in the proceedings of CHI, 2008[11]
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machine learning approach to automatically detecting and correcting off-by-one er-

rors. In Chapter 8, informed by the success of Automatic Whiteout, I refine and revise

my technique for automatic error detection and correction and introduce FatThumbs.

FatThumbs is a simple set of rules that target fundamental aspect of two thumb typing

behavior to automatically detect and correct off-by-one errors. Finally, in Chapter 9,

I test FatThumbs on live data and evaluate the impact of automatic error correction

on mini-QWERTY keyboard text entry performance.

7.1 Introduction

As described in Chapter 6 we previously performed an analysis of errors that occur

when people type on mini–QWERTY keyboards and found that off–by–one errors

account for approximately 45% of the total errors committed.

Noticing that these types of errors occur frequently inspired us to attempt to

employ machine learning techniques to automatically detect and correct off–by–one

errors based on features of the users’ typing.

7.2 Automatic Whiteout

Automatic Whiteout [13, 11], is able to detect and correct insertion (Roll–on, Roll–

off, and key repeats) and substitution errors that occur in mini–QWERTY keyboard

typing data. It employs decision trees, a machine learning technique, to detect errors

by recognizing patterns in certain features of the user’s typing. Having identified an

error, the algorithm corrects the error by deleting the errorful character in the case

of insertion errors or by replacing the errorful character with the potentially correct

character based on letter, bi–letter or tri–letter frequencies in the case of substitution

errors.

In this chapter we demonstrate how Automatic Whiteout could be incorporated

into a mobile device by showing that it is generalizable. Specifically, we demonstrate

that the algorithm can generalize to different levels of user expertise, to different
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models of keyboards, and to typists inputting text in conditions of limited feedback.

Finally, we evaluate the effect of the correction on overall keystroke accuracy and

discuss how our algorithm can be employed to improve mobile text input on mini–

QWERTY keyboards with the goal of correcting errors before they are noticed by the

user.

The current version of Automatic Whiteout incorporates 82 features. Many of

these features take advantage of simple language features, specifically bi–letter and

tri–letter frequencies. While Automatic Whiteout does not include a dictionary, we

do include letter probability tables based on a large plain–text corpus. We have

also allowed the algorithm to look at subsequent keypresses (in addition to prior

keypresses) when evaluating a potential error. We call the number of additional keys

that the algorithm evaluates first- and second-order contexts. In all our tests, we

only use symmetrical contexts (e.g. the first order context is one keystroke in the

future as well as one keystroke in the past). In the section Generalization Across

Corpora, we explore how context improves system performance. In addition to these

features, we also use features such as the keys pressed, the timing information between

past and subsequent keystrokes around the letter in question, a letter’s frequency in

English, and the physical relationship between keystrokes (whether the keys involved

are located physically adjacent to each other horizontally).

While the decision trees can become quite complex, a simplified example of how

Automatic Whiteout classifies Roll–off insertion errors is illustrative (see Figure 16).

The Roll–off classifier first determines if the key of the letter it is inspecting (in this

case the letter “Y”) is located on the keyboard either one key to the left or to the

right of the key of the previous letter (in this case, the letter “T”). Next it examines

if the time between the previous keystroke and the current keystroke is less than

or equal to a threshold (in this case 47 milliseconds). In our testing below, this

74



Figure 16: Example Roll–Off Decision Tree.

timing information is the key to correcting errors without mistakes. Finally, Auto-

matic Whiteout compares the probability of the current key to the probability of

the previous key given each key combination’s specific tri–letter frequencies and then

classifies the current key as a Roll–off insertion error according to these probabilities.

In this case, the three letter combination “CAT” occurs much more frequently in

English that the three letter combination “CAY”. Similar trees are learned for de-

tecting the other types of errors as well. The final Automatic Whiteout system tests

each keystroke as a key repeat, Roll–on, Roll–off, and substitution error sequentially,

stopping the process and correcting the keystroke if any test returns a positive result.

The correction of Roll–on, Roll–off, and key repeat insertion errors is relatively

simple. The system deletes the offending key stroke thus removing the insertion.

Substitution errors, however, require more information to correct. Letter frequency,

bi–letter frequency, and tri–letter frequency are used to help correct off–by–one sub-

stitution errors. When Automatic Whiteout determines that a substitution error has

happened, it compares the letters to the right and left of the key typed and selects
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Baseline Study Blind Study
Date Fall 2004 Spring 2005
Participants 14 8
Expertise Novice Expert
Sessions 20 5
Conditions 2 6
Phrases Typed 33,947 8393
Keystrokes Typed 1,012,236 249,555
Total Phrases Typed 42,340
Total Keystrokes Typed 1,261,791

Table 14: The complete mini-QWERTY datasets for the Baseline and Limited Vis-
ibility evaluations.

the most probable one. For example, if the user types “t h r” and the system deter-

mines that a substitution error has occurred, the possible alternatives are “t h t” or

“t h e”. Since “the” is more likely than “tht” based on the tri–letter frequencies,

Automatic Whiteout replaces the “r” with an “e”. A similar technique for letter

disambiguation was used by Goodman et al. [19] previously.

7.3 Experimental Data

Our dataset is the output of the two longitudinal studies that investigate mini–

QWERTY keyboard use detailed in Chapters 3 and 4, (see Table 14). Fourteen

participants who had no prior experience with mini-QWERTY keyboard typing par-

ticipated in the original study [9]. All fourteen participants completed twenty 20–

minute typing sessions for a total of 400 minutes of typing. Eight subjects continued

to the “blind” study.

In the Baseline Study, the participants typed 33,945 phrases across all sessions,

encompassing over 950,000 individual characters. Averaged over both keyboards,

participants had a mean first session typing rate of 31.72 wpm. At the end of session

twenty (400 minutes of typing) the participants had a mean typing rate of 60.03 wpm.

The average accuracy rate (as measured using MacKenzie and Soukoreff’s Total Error

Metric [53]) for session one was 93.88% and gradually decreased to 91.68% by session
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Dataset Phrases Keypresses Errors OBOs OBO %
Expert Dell 4,480 64,482 2,988 1,825 61.08%
All Targus 16,407 246,966 8,656 4,983 57.56%
All Dell 15,657 272,230 9,748 6,045 62.01%
Blind Targus 3,266 30,187 2,795 2,072 74.13%
Blind Dell 3,516 29,873 3,287 2,527 76.88%

Table 15: The sampled datasets used for all training and testing of Automatic
Whiteout.

twenty.

In the Blind Study, the eight participants typed 8,393 phrases across all sessions

for a total of 249,555 individual keypresses. Averaged over both keyboards in the

blind mini–QWERTY conditions, our participants had a mean first session typing

rate of 38.45 wpm. At the end of session five (200 minutes of typing) the participants

had a mean typing rate of 45.85 wpm. The average accuracy rate for session one was

79.95% and gradually increased to 85.60% by session five.

Combining both studies we collected 42,340 phrases and 1,261,791 keypresses.

The dataset discussed here is available for public use and can be found at

http://www.cc.gatech.edu/~jamer/mq/data.

7.3.1 Sampling the Experimental Data

We analyzed the data from all sessions of both datasets and identified each character

typed as either correct or as an error. If a phrase contained an error, the characters up

to and including the error were kept but the characters that occurred after the initial

error were discarded. Truncating the phrase in this manner avoids errors that may

have cascaded as an artifact of the data collection. Specifically, Twidor highlights

errors as the user enters them. Providing users with visual feedback that indicates

when they make mistakes potentially distracts the user, increasing her cognitive load

and forcing her to make a decision about whether or not to correct the error. This

disruption in the participant’s natural behavior potentially effects performance, hence

the truncation after the initial error. If the initial error is one of the first two characters
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in the phrase, the entire phrase is discarded. Additionally, all of the sessions in which

participants entered text in the “normal condition” were removed from the blind

study and are not used in our analysis. Sampling our dataset reduces the number of

phrases and key strokes typed to 30,896 and 449,032 respectively. The sampled set

contains 20,879 total errors and 13,401 off–by–one errors.
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7.3.2 Datasets: Dell complete, Dell expert, Targus complete, and blind

The experimental dataset was further segmented into four sets for training and testing

purposes: Dell complete, Dell expert, Targus complete, and blind (see Table 15 for

the distribution of data across the various sets). We analyzed the data for all twenty

typing sessions for the Dell keyboard (Figure 2 bottom). The complete set of Dell

data contain 15,657 phrases, 272,230 keypresses, 9,748 errors, and 6,045 off–by–one

errors.

By the time participants began the 16th typing session in the original study they

were considered to be expert typists (their learning curves had flattened). We ana-

lyzed the data for the last five typing sessions. This subset of the Dell data contain

4,480 phrases, 64,482 keypresses, 2,988 errors, and 1825 off–by–one errors and repre-

sents expert usage of a mini–QWERTY keyboard. Of the two keyboards used in the

studies, the keys on the Dell keyboard are smaller and are more tightly clustered.

Next we analyzed the data for all twenty typing sessions in the original study for

the Targus keyboard (Figure 2 top). The complete set of the Targus data contain

16,407 phrases, 246,966 keypresses, 8,656 errors, and 4,983 off–by–one errors. The

Targus keyboard is the larger of the two keyboards. The keys are large, spaced further

apart, and are more ovoid than the keys on the Dell keyboard.

The blind dataset consists of data from both the Dell and the Targus keyboards.

Four participants per keyboard typed in two different blind conditions for five ses-

sions. The blind conditions have been combined to form one set of data (as there

was no statistically significant difference in wpm and accuracy rates in the different

conditions). This dataset comprises 200 minutes of typing from eight different partic-

ipants, four of whom used Dell keyboards, and four of whom used Targus. The blind

set of data contains 6360 phrases, 55,642 keypresses, 5874 errors, and 4326 off–by–one

errors.
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7.3.3 Training

To detect off–by–one errors, we use the Weka [15] J48 algorithm to learn decision

trees with metacost to weight strongly against false positives (10X). Weighting so

heavily against false positives helps to ensure that Automatic Whiteout minimizes

the number of errors that it introduces to the user’s typing output. This attribute is

important as degrading the user experience is the certainly not a goal of the algorithm.

From the expert Dell data in the original study we randomly assigned 10% of

the phrases to be an independent test set and declared the remaining 90% to be the

training set. We did not examine the independent test set until all features were

selected and the tuning of the algorithm was complete.

From the training set we iteratively built a series of four training subsets, one

for each error classifier (Roll–on, Roll–off, repeats, and substitutions). The training

subsets were built by sampling from the larger training set; each subset was designed

to include positive examples of each error class, a random sampling of negative ex-

amples, and a large number of negative examples that previously generated false

positives (i.e., likely boundary cases). Due to our desire to avoid incorrectly classify-

ing a correct keystroke as an error, we iteratively constructed these training sets and

searched for proper weighting parameters for penalizing false positives until we were

satisfied with the classification performance across the training set. For a list of the

most discriminative features for each error classifier, see Table 16.

7.4 The Evaluation of Automatic Whiteout

In the following sections, we demonstrate that Automatic Whiteout can successfully

generalize across users as well as across different levels of user expertise, different

visibility conditions (such as typing while not looking at the keyboard), and different

models of keyboards (see Table 17).
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Error Type Average Average Average Average
Corrections Detected Wrong OBO error
(possible) Corrections Reduction

Roll–On 37(57.4) 64.43% 2.9 13.36%
Roll–Off 53(63.9) 83.00% 2.3 19.71%
Repeats 14.7(25.9) 56.91% 0.6 5.30%
Subs 25.4(103.1) 24.24% 3.1 8.50%
AW 120.9(250.3) 48.29% 8.9 46.89%

Table 18: Automatic Whiteout across expert users by training and testing on the
expert Dell dataset. Automatic Whiteout performance averaged across seven user–
independent tests. On average, users made 260.71 off–by–one errors.

7.4.1 Generalization Across User Expertise

In our preliminary work, we felt that Automatic Whiteout would only be suitable for

expert mini-QWERTY typists. Using the new features of Automatic Whiteout allows

us to further discriminate between correct and incorrect keystrokes and extend the

algorithm to correct errors from less experienced typists.

Using the entire Dell dataset from the original study we tested the ability of

Automatic Whiteout to generalize across various levels of user expertise. Again we

performed leave–one–out testing. This test yields the rate that Automatic White-

out will detect and correct off–by–one errors at any level of expertise from complete

novices (someone who had never used a mini–QWERTY keyboard before) to expert

mini–QWERTY keyboard typists. Table 19 shows the results from these tests which

are quite encouraging. Given our subject set (expert desktop keyboard users but

novice mini–QWERTY users), Automatic Whiteout could have improved their typ-

ing accuracies significantly at all stages of their training. This result suggests that

Automatic Whiteout can assist both novice and expert users of such keyboards. It

is interesting to note that the percentage of average off–by–one error reduction de-

creased slightly for Roll–on and Roll–off errors. This result is because the proportion

of these errors as compared to total off–by–one errors increases as the user gains

experience.
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Error Type Total Average Total Average
Corrections Detected Wrong OBO Error
(possible) Corrections Reduction

Roll–On 762(1034) 73.69% 44 12.16%
Roll–Off 1092(1234) 88.49% 38 17.46%
Repeats 485(649) 74.73% 9 7.97%
Subs 1120(2888) 37.02% 181 14.69%
AW 3136(5805) 54.02% 272 52.20%

Table 19: Automatic Whiteout across expertise by employing leave–one–out user
testing. Trained and tested across all sessions of the Dell dataset, Automatic White-
out performance is averaged across seven user–independent tests.

7.4.2 Generalization Across Keyboards

Using both the entire Dell and Targus datasets from the original study we demonstrate

that Automatic Whiteout can successfully generalize across different models of mini–

QWERTY keyboards. Though all mini–QWERTY keyboards by definition have the

same alphabetic keyboard layout, not all keyboards have the same sized keys or the

same inner–key spacings. As such, not all mini–QWERTY keyboards are used in

the same manner. Generalizing across different keyboard models demonstrates the

applicability of using the Automatic Whiteout solution successfully in mobile devices

using different models of mini–QWERTY keyboards.

Perhaps the strongest result in this study (Table 20) is that Automatic Whiteout

generalized across keyboards. The system had not been trained on either the Targus

keyboard or its users’ typing in this dataset. Yet the system still corrected almost

half of the off–by–one errors, corresponding to over a quarter of the total errors made.

Comparing Table 20 to Table 19 which were both trained on all the Dell data (both

novice and expert) shows that the types of errors detected were similarly successful

across both keyboards. However, despite being trained on Dell data, the Targus

keyboard had a lower error rate in general and proportionally fewer Roll–on and

Roll–off errors than the Dell keyboard (probably due to the larger keys of the Targus).

Key repeat errors were more common on the Targus, resulting in key repeats having
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Error Type Total Average Total Average
Corrections Detected Wrong OBO Error
(possible) Corrections Reduction

Roll–On 441(666) 66.22% 29 8.55%
Roll–Off 635(765) 83.01% 25 12.26%
Repeats 717(909) 78.88% 9 14.33%
Subs 796(2383) 32.52% 127 13.00%
AW 2378(4723) 50.35% 190 48.05%

Table 20: Automatic Whiteout across different keyboard models. Automatic White-
out was trained on the entire Dell set and was tested on the entire Targus dataset
from the original experiment.

a larger effect on the total off–by–one error reduction, while Roll–ons and Roll–offs

had a lesser effect.

7.4.3 Generalization Across Different Visibility Conditions

To generalize across typing in different visibility conditions, we again used the en-

tire Dell dataset from the original study to train the system. As in the previous

section, we test on data from both the Dell and the Targus keyboards. However,

for this analysis, we use the data for both keyboards from the blind study to eval-

uate the effectiveness of Automatic Whiteout on errors from typing in conditions of

limited feedback. In addition to performing a user–independent test on the blind

Targus data, we also tested on the blind Dell data. In the original experiment there

were seven Dell keyboard users. Four of those seven users participated in the blind

study. Due to anonymity procedures for human subjects testing, we did not retain

the identities of the subjects who continued to the blind study. Thus, we cannot

perform a user–independent test as with our other analyses. Instead, training on the

entire Dell dataset and testing on the blind Dell dataset can be considered neither a

user–dependent test nor a user–independent test.

Table 21 shows the results from these tests. As expected, testing on the blind Dell

data performed better than testing on the blind Targus data. In the Targus condition,

the system was not trained on the users, the keyboard, or the visibility condition.
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Error Type Total Average Total Average
Corrections Detected Wrong OBO Error

(possible) Corrections Reduction
Dell

Roll–On 166(252) 65.87% 18 5.90%
Roll–Off 188(213) 88.26% 13 6.99%
Repeats 43(70) 61.43% 6 1.49%
Subs 581(1941) 28.75% 37 20.63%
AW 881(2476) 35.58% 74 34.95%

Targus (User Independent)
Roll–On 68(114) 59.65% 8 2.95%
Roll–Off 138(169) 81.66% 1 6.69%
Repeats 71(92) 77.17% 1 3.38%
Subs 415(1650) 24.06% 37 17.37%
AW 627(2025) 30.96% 47 30.32%

Table 21: Automatic Whiteout across different visibility conditions. Automatic
Whiteout was trained on the entire Dell set and was tested on the blind Dell as well
as the blind Targus datasets.

Yet it still corrected 30.3% of the off–by–one errors. Arguably, in practice these rates

would be higher because one could train Automatic Whiteout on a representative

sample of keyboards and operating conditions. Thus, the 22.5% total error corrected

in this condition might be considered a low value.

7.4.4 Generalization Across Corpora

Up until this point, the results have been calculated using the letter frequency tables

derived from the MacKenzie and Soukoreff phrase set [37]. The phrase set correlates

with written English at the single letter frequency level at 95%. However, Automatic

Whiteout uses bi–gram and tri–gram letter frequencies to assist in error detection

and correction.

Table 22 shows the impact that various amounts of context have on the ability

of Automatic Whiteout to successfully identify and correct errors in mini–QWERTY

keyboard text input. With no context Automatic Whiteout is able to identify and
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correct 25.85% of all off–by–one errors. Being able to examine character pairs, Auto-

matic Whiteout is able to identify and correct 35.97% of all off–by–one errors. Three

letter context improves the efficacy of Automatic Whiteout to over 50% (50.32%).

Using a dictionary does not improve the solution as recognition rates drop slightly

from 50.32% to 50.18%. This lack of improved performance when using a dictionary

is worth noting — Automatic Whiteout is equally successful using a dictionary as it is

without a dictionary. The ability to implement Automatic Whiteout without having

to rely on a dictionary enables the solution to be built directly into the firmware of

the keyboard rather than being built into the software of the mobile device. As such,

the speed performance gained means that the solution has the potential to detect the

error and display the correction without interrupting the user. We hypothesize that

the ability to detect and correct errors without visually distracting the user (making

a correction within milliseconds before the character is displayed on the screen), will

enable faster rates of input and generally a better user experience. Additionally, the

ability to implement Automatic Whiteout in the firmware of a mobile device enables

it to work in concert with error correction software native to a particular mobile de-

vice. Automatic Whiteout simply would pass already corrected input to the software

correction system which could then proceed as it would normally on unaltered text.

In general, using a dictionary does not improve the results above the use of tri–

letter frequencies. However, there is a distinct improvement in results between the

use of single letter frequencies and bi–letter frequencies, and the use of bi–letter

frequencies and tri–letter frequencies. The only exceptions are the Roll–off errors,

which have a consistently high detection rate across language contexts. Given our

features, this result suggests that detection of Roll–off errors are most dependent on

keypress timings.

Next we perform a sensitivity analysis using different letter frequency data. We

generated up to tri–letter frequencies from the Wikipedia database downloaded on
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No Context 1st Order 1st + 2nd 1st + 2nd + Dict
Roll–On 25.12% 43.03% 64.43% 65.42%
Roll–Off 73.38% 79.42% 83.00% 81.43%
Repeats 6.70% 24.31% 56.91% 59.89%
Subs 3.46% 10.66% 24.24% 23.55%
AW 25.85% 35.97% 50.32% 50.18%

Table 22: The averaged results (% of off–by–one errors corrected) of leave–one–out
user training and testing on the expert Dell dataset from the original study using
different levels of context.

Error Type Average Average Average Average
Corrections Detected Wrong OBO error
(possible) Corrections Reduction

Roll–On 34.0(57.4) 59.20% 3.1 12.71%
Roll–Off 54.6(64,7) 84.33% 2.7 21.35%
Repeats 11.6(23.3) 49.69% 0.7 4.49%
Subs 14.1(97.7) 14.47% 2.3 4.85%
AW 114.3(243.1) 47.01% 8.9 43.36%

Table 23: Automatic Whiteout across expert users by training and testing on the
expert Dell dataset with Wikipedia letter frequencies. Comparing with Table 18,
there was a 3.5% absolute reduction in OBO errors corrected.

August 5th, 2007. We processed the data keeping only plain text and removing all

punctuation, tags, markups, tables, etc. Table 23 shows the results of using the

Wikipedia letter frequencies on the expert Dell dataset. Comparing these results

to those of Table 18 shows average off–by–one error reduction decreases by approxi-

mately 3% (46.89% vs. 43.36%). This finding gives a more realistic estimate of how

the algorithm would perform on more generalized text.

7.4.5 Sensitivity to Timing

Realizing the important role of timing to the success of our solution, we embarked

upon an analysis to determine the impact of imprecise clocks on the performance

of Automatic Whiteout. This analysis was done in an effort to understand how

robust the algorithm is to permutations in the timing information it receives from

the keyboard. We artificially reduced the resolution of the timing by rounding to the

nearest 5, 10, 50, 100, 500, and 1000 milliseconds. The impact on the number of
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Timing Total False Positives Total True Positives Total False Negatives
Pure 15 2,763 2,078
5 19 2,739 2,102
10 23 2,726 2,111
50 45 2,637 2,174
100 43 2,535 2,151
500 3,790 2,596 2,290
1,000 5,924 2,587 2,352

Table 24: A timing sensitivity analysis for Automatic Whiteout across expert users
by training and testing on the expert Dell dataset with Wikipedia letter frequencies
(timing data reported in milliseconds).

false positives detected by the system can be seen in Table 24. If values are reported

to the system with a resolution of at least 100 milliseconds, relatively successful

performance of the algorithm can be maintained. If the granularity of the timing

information becomes any larger however, the accuracy of the algorithm suffers and

would negatively affect the user. Small permutations in the precision of the timing

information, however, do not appear to have a large negative impact on performance.

7.5 Conclusion

In general, Automatic Whiteout can correct approximately 25% of the total errors

in the dataset (1-3% of the keystrokes typed across users, keyboards, and keyboard

and screen visibility conditions). The system introduces less than one tenth as many

new errors as it corrects. These false positives could be further reduced with tuning,

satisfying our initial concern of the system becoming too intrusive to use. These

results are surprisingly good, especially given Automatic Whiteout uses only tri–

letter frequencies instead of dictionaries for error detection and correction.

Table 25 provides a summary of the results from this study. While all condi-

tions yielded approximately a 25% total error reduction, the percentage of keystrokes

corrected ranged between 1% (in the Targus condition) and 3% (in the Dell blind

condition). This result is explained by the distribution of errors made in the different
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Test Across %Off–by–one Total Errors Keystrokes
Errors Corrected Corrected Corrected

Expert Users 46.89% 28.64% 1.31%
Expertise 52.20% 32.37% 1.15%
Keyboards 48.05% 27.66% 0.96%
Dell Blind 34.95% 26.87% 2.95%
Targus Blind 30.32% 22.48% 2.08%

Table 25: The results of generalizing Automatic Whiteout to different expert users, to
users of differing levels of expertise, to different keyboards, across visibility conditions
and across visibility conditions and keyboards.

conditions. As Targus users gained experience, they made approximately 25% fewer

errors than Dell typists. Meanwhile, in the blind conditions, users doubled their error

rates on both keyboards. Using these observations and Table 25 as a guide, Auto-

matic Whiteout would seem to be most effective on smaller keyboards where device

visibility is limited. With consumers buying smaller devices and users’ desire to “mul-

titask” sending mobile e-mail in a variety of social situations, Automatic Whiteout

seems well suited to assist mini–QWERTY typists. If, as we suspect, error correc-

tion is time consuming and errors cascade after the first error is made, Automatic

Whiteout may not only improve accuracies but also improve text entry rates.

While we are encouraged by our results, many questions remain. Leveraging fea-

tures of the user’s typing and using Automatic Whiteout enables us to detect and

correct errors as the user types, often mid–word. As a result, the correction can

happen almost transparently to the user, and errors can be fixed before the incorrect

character distracts the user. We believe that such automatic keystroke level correction

might allow the user to sustain rapid typing speeds since the user will be able to in-

put text without being distracted by errors. In Chapter 8 we discuss further revisions

and simplifications made to the automatic error detection and correction algorithm

and in Chapter 9 we describe a user evaluation that assesses individuals’ reaction

to our system and collects mini–QWERTY typing speeds and accuracies both with

and without the use of the automatic error correction system. A longitudinal study
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that gathers live data will allow us to determine the effects, and noticeability, of the

system on users. Do users notice the automatic corrections or the false positives? In

an informal pilot test conducted in preparation for the longitudinal study, users did

not perceive the presence of the correction system when it was active. However, they

did commit fewer errors. Unfortunately, the study was not long enough to determine

any effect on typing speeds, nor did it reveal whether users might become depen-

dent upon Automatic Whiteout with long–term use. Expert typists often intuitively

“feel” when they make an error in typing and anticipate it, pressing delete before

visually confirming the error on the screen. How will automatic error correction ef-

fect this behavior? Will expert users pause and verify the impact of their preemptive

corrections? Such questions certainly merit further investigation.
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CHAPTER VIII

FATTHUMBS: A SET OF SIMPLE RULES USED TO

DETECT AND CORRECT OFF-BY-ONE ERRORS

In preparation for the user evaluation of Automatic Whiteout we undertook an effort

to optimize the algorithm for Blackberry devices. This process led to an extensive

redesign and rethinking of our entire automatic error detection and correction ap-

proach. Though heavily influenced by the work in the previous chapter (see Chapter

7), the final version of our error detection and correction solution, the version we used

in the user evaluation (see Chapter 9), differs dramatically from Automatic Whiteout

to the point that we renamed our approach FatThumbs in an effort to differentiate

this work from our previous efforts. The same basic principles used to design Auto-

matic Whiteout guide the design of FatThumbs. Like Automatic Whiteout we still

leverage features of the users typing to automatically detect and correct errors. Un-

like Automatic Whiteout however, we propose a dramatically simpler solution that

not only detects and corrects off-by-one errors but also addresses a new type of error

that was discovered from a shift in our data collection method.

The evolution of the algorithm from Automatic Whiteout to FatThumbs began by

training the Automatic Whiteout algorithm over an updated set of data collected from

the mobile study (see Chapter 5). The mobile data had a higher level of timing fidelity

than any of our previous data and was data collected from the phones we intended to

use in our evaluation (the Blackberry Curve). We followed this training process with a

detailed investigation of the decision trees which resulted in a set of pruned trees that

were dramatically smaller than those we had previously considered. Curious to see if

the error patterns we had discovered earlier were present in the data collected from the
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mobile study, we used these decision trees as a visualization tool to inspect our newest

data. The trees showed that our error patterns had not greatly changed, though the

actual error count differed. We confirmed our earlier insights that off-by-one errors can

be primarily detected when individuals’ press two keys more quickly than intentionally

possible or press two keys that are contextually improbable. The decision trees also

revealed a new error type which was not present in the Automatic Whiteout algorithm:

two keys pressed at exactly the same time according to the timestamps assigned by the

Blackberry. The final step in the evolution from Automatic Whiteout to FatThumbs

was replacing our previous solution, an algorithm that stitched together a set of

complex decision trees, with a set of simple rules. In effort to create the simplest

automatic error detection and correction solution possible, we created FatThumbs,

a set of basic rules for detecting off-by-one errors that were crafted with the goal of

distilling each error class to its basic components.

8.1 Training on improved data

The mobile evaluation (see Chapter 5) was the first user study that we conducted

using Blackberry mobile phones. We leveraged the fact that we were developing new

data collection software for the Blackberries, to revise our method of logging keypress

data. In our previous studies, we recorded keypress events and timestamps to our log

files. With the mobile study we shifted from simply recording keypresses (key-down

events) to recording both key-down and key-up events. See Figure 17 for a sample

log file.

In Chapter 7.4 we demonstrated that our approach works the best when training

our algorithm on one set of data and testing it on the same data, as is expected with

machine learning problems. Out of curiousity, we decided to test our existing trees

over the data from the mobile study to see how they performed. While this produced

decent results, we realized that we had the potential to produce even better results
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Figure 17: A portion of a log file from the mobile study. The log file shows block
and phrase labels, the presented string (PS), input stream (IS), transcribed string
(TS), a milisecond timestamp, the key pressed, the corresponding ascii keycode, and
the key-up/key-down event respectively.

if we designed new features that could take advantage of our new timing data.

8.2 New features that utilize key-up and key-down infor-
mation

Given that we now had key-up and key-down events in our logs, we chose to design a

whole new set of features that we termed our “automatic timing” feature set. These

features were designed to examine changes in the timing between keypresses as well

as to examine changes in keypress duration. See Table 26 for a generalized set of our
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automatic timing features.

Feature Name Feature Description
dt dd the time between two keydowns
dt du the time between a keydown and a keyup
dt uu the time between two keyups
dt ud the time between a keyup and a keydown
dur the duration of a keypress

Table 26: Keystroke timing feature set that takes advantage of our key-up and
key-down logging strategy.

Given that we were always considering a four character set of keystrokes (exam-

ining the current keydown and keyup, the future keydown and keyup, as well as the

keydowns and keyups of the previous and double previous keystrokes), our automatic

timing features examined every combination of these eight events. Each feature is

named to describe its function. For example, dt dd 1,0 is a feature that examines the

time between the keydown of the future keystroke and the keydown of the current

keystroke (dt = delta in time, dd = down of number before the comma and down

for the number after the comma, 1 is the future keypress, 0 is the current keypress)

whereas dt dd 0,-2 is a feature that calculates the difference in downtimes between

the current keystroke and the keydown of the keystroke two in the past.

Once we had established these simple building blocks to handle our keypress tim-

ings, we could create more interesting and creative features from these basic features.

For example, we created two interesting sets of features: one we termed “averages”

and the other we named “subtractions.” For the “averages” and “subtractions” fea-

tures, please see Table 27. The “averages” features essentially average two or three

of our keystroke timing features and subtract a final feature. The “subtractions” are

features where we simply subtract one feature from another. Both of these feature

sets give us insight into participants’ momentum and pace as they progress through

typing a phrase. The motivation behind creating these sets of features was to assess if

changes in typing velocity (characters typed per second) could indicate the presence
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of off-by-one errors.

To demonstrate how these features are calculated, we will walk through an example

using Equation 10 to compute the feature “average du 1” for the “k” entered in Figure

17.

average du 1 = (
dt du(−2,−3), dt du(−1,−2), dt du(1, 0)

3
)− dt du(0,−1) (10)

As seen in Table 26, “dt du” is “the time between a keydown and a keyup.”

Therefore “dt du(-2,-3)” would be the time between the down of the “a” minus the

uptime of the “p” or 1317407590432 - 1317407590092 = 340ms. We calculate the

other “dt du” values similarly as follows:

average du 1 = (dt du(−2,−3),dt du(−1,−2),dt du(1,0)
3

)− dt du(0,−1)

= (340+(1317407590716−1317407590504)+(1317407591160−1317407591020)
3

)−(1317407590944−1317407590800)

= (340+212+140
3

)− 144 = (692
3

)− 144 = 230.66− 144 = 86.66

In this example, average du 1 = 86.66 ms. This example is just one of the many

automatic timing features that we calculate for each valid 4-keypress context. In total,

we trained new decision trees using a 104 features, many of which were designed to

take advantage of our timing information. For a list of all features, see Appendix A.
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8.3 Training new decision trees

Using the above features and data from the mobile study, we employed a machine

learning software package (Rapidminer) to create new decision trees. Rapidminer

wraps the popular machine learning software Weka [15] but adds support for managing

very large datasets. To detect off–by–one errors, we used Weka’s j48 algorithm (Java

implementations of the classic C4.5 decision tree) to create decision trees employing

metacost to weight strongly against false positives. We experimented with a variety

of weighting schemes and eventually found that weighting 4X against false positives

was optimal. This weighting against false positives helps to ensure that FatThumbs

minimizes the errors it introduces into the user’s typing output.

Using data from the mobile study we randomly assigned 10% of the phrases to

be an independent test set and declared the remaining 90% to be the training set.

We did not examine the independent test set until all features were selected and the

tuning of the algorithm was complete.

From the training set we iteratively built a set of trees by sampling from the larger

training set; each training set was designed to include every positive example of each

error class, a random sampling of negative examples, and a large number of negative

examples that previously generated false positives (i.e., likely boundary cases). We

used all errors in the set to train with but only half of the error-free keypresses were

ever used as our vast quantity of data overwhelmed the machine we used to build our

trees.

To prune the decision trees, we again experimented with many options before

arriving at our final implementation. We set our confidence threshold for pruning

at 0.5 (0.25 is the default value) and perhaps most importantly chose our minimum

instances per leaf to be 100. This means that 100 examples need to be present for a

decision to be made and therefore a leaf added to the tree. In practice, varying the

minimum number of instances per leaf is a way to dramatically impact the size of a
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decision tree. For example, when the minimum number of instances per leaf was set

to ten, it was common to have trees generated by Rapidminer with more than 200

leaves. Predictably, setting the minimum number of instances to 100 produces trees

with approximately 20 leaves. The performance of these trees varies dramatically as

trees with a much larger minimum number of instances per leaf will not have the

same power as trees that have the flexibility to make more liberal decisions. For an

example of a large decision tree (30 instances per leaf) see Appendix B.

Decision Tree Parameters Non-errors Substitutes Roll–on Roll–off Non-OBOs Repeats Multiple OBOs # of Leaves Tree size
8x metacost m10, c.5, 20 % nonerrors 99.89% 47.15% 74.06% 85.84% 34.41% 75.03% 53.24% 277 452
8x metacost m20, c.5, 20 % nonerrors 99.91% 40.37% 63.96% 78.39% 29.23% 66.10% 31.12% 140 229
8x metacost m20, c.5, 50 % nonerrors 99.99% 39.42% 39.54% 83.14% 31.18% 70.33% 27.88% 117 208
4x metacost m25, c.5, 50 % nonerrors 99.92% 44.28% 71.72% 86.41% 32.17% 69.12% 13.85% 111 196
4x metacost m30, c.5, 40 % nonerrors 99.91% 45.16% 72.99% 87.20% 32.65% 64.78% 6.83% 91 156
8x metacost m100, c.5, 20% nonerrors 99.95% 38.43% 46.38% 77.63% 26.47% 33.05% 0% 23 45
8x metacost m100, c.5, 50% nonerrors 99.97% 38.44% 39.69% 78.23% 26.95% 38.12% 0% 22 43
4x metacost m100, c.5, 50% nonerrors 99.96% 40.65% 46.75% 82.09% 27.59% 38.12% 0% 22 43
4x metacost m100, c.5, 50 %nonerrors, no future keyup, 10 features 99.96% 31.53% 43.34% 73.56% 27.41% 0% 0% 21 41

Table 28: Results from several iterations of training and testing decision trees on
the data from the mobile evaluation.

Our process of varying the minimum number of instances per leaf revealed the

classic machine learning tension between overfitting the data and overgeneralization.

We ran tens of iterations, varying decision tree parameters, to train and test decision

trees on our data. Each iteration generated ten trees and set of results for how the

trees would perform detecting and correcting each error type. As such, we inspected

hundreds of trees in an effort to uncover fundamental patterns of user behavior. Table

28 shows the results of several of these iterations. One of the challenges of determining

a final set of parameters for our decision trees was balancing between the size of the

tree and the performance on each error type. After several iterations, we identified a

set of the most common features. To decrease the time it takes to make a decision on

each set of four keystrokes we chose to not wait to receive a keyup event on the future

keypress. The final set of results in Table 28 shows the performance of decision trees

built using just these key features without waiting for a keyup event on the future

keystroke. Since these results did not show a significant decrease in performance, we

felt confident proceeding with the approach of reducing decision trees to a simple set
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of rules.

8.3.1 Sample decision tree

Below is a sample J48 decision tree weighted using metacost for 4X against false

positives, trained with all errors in the set and half of the non-errors. The confidence

threshold for pruning is set at 0.5, and we specified the minimum number of instances

per leaf at 100.

W-J48

J48 pruned tree

------------------

prob ≤ 0

| prevcuradjacent nom = False

| | curfutadjacent nom = False

| | | dropprobdiff1abs ≤ 0.000934: repeat (104.0/45.0)

| | | dropprobdiff1abs > 0.000934

| | | | futneighborprob ≤ 0: nonobo (552.0/11.0)

| | | | futneighborprob > 0

| | | | | neighborprob ≤ 0.011765: nonobo (143.0/21.0)

| | | | | neighborprob > 0.011765

| | | | | | ud sub1 ≤ -140: nonobo (172.0/80.0)

| | | | | | ud sub1 > -140: obosubstitute (527.0/109.0)

| | curfutadjacent nom = True: rollon (323.0/73.0)

| prevcuradjacent nom = True: rolloff (555.0/46.0)

prob > 0

| dt ud 0 p1 ≤ 124

| | dropprobdiffsign ≤ -1: rolloff (155.0/36.0)

| | dropprobdiffsign > -1: nonerror (111.0/49.0)
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| dt ud 0 p1 > 124

| | dt ud 1 0 ≤ 144

| | | dropprobgain ≤ 0.006861: nonerror (522.0/62.0)

| | | dropprobgain > 0.006861

| | | | neighborprob1diff ≤ -0.016393: nonerror (185.0/92.0)

| | | | neighborprob1diff > -0.016393: rollon (381.0/126.0)

| | dt ud 1 0 > 144

| | | futprob ≤ 0

| | | | curfutadjacent nom = False

| | | | | futneighborprob ≤ 0

| | | | | | futnowdiff ≤ -176: nonobo (141.0/54.0)

| | | | | | futnowdiff > -176: nonerror (894.0/201.0)

| | | | | futneighborprob > 0

| | | | | | neighborprob ≤ 0.003185: nonerror (142.0/35.0)

| | | | | | neighborprob > 0.003185

| | | | | | | average dd 2 ≤ -88

| | | | | | | | letterfreq ≤ 0.04853: obosubstitute (106.0/35.0)

| | | | | | | | letterfreq > 0.04853: nonobo (142.0/69.0)

| | | | | | | average dd 2 > -88

| | | | | | | | neighborprobdiff ≤ 0.009091: nonerror (181.0/65.0)

| | | | | | | | neighborprobdiff > 0.009091: obosubstitute (229.0/82.0)

| | | | curfutadjacent nom = True: nonerror (129.0/62.0)

| | | futprob > 0: nonerror (94376.0/1715.0)

Number of Leaves : 21

Size of the tree : 41

This example is one of the smaller trees created in our training process. Since we
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were using these trees as a way to visualize our data, I will now demonstrate how

to read the trees, by walking through this example tree to show how we find repeat

off-by-one errors. Starting at the top of the tree we have a feature named “Prob.”

“Prob,” is a value that looks up the probability that the current character exists in

our dictionary1 given that the double previous character and the previous character

have already been pressed.

If that value is less than or equal 0 then we progress down the tree to check if the

previous character and the current character are adjacent. If they are not, we continue

down the tree and check to see if the current and the future characters are adjacent. If

that value returns false as well, we progress further down the tree. “dropprobdiff1abs”

is the absolute value of the result of the p(previous|double previous) - p(current|double

previous). If this value is less than a particular threshold value (in this case 0.000934)

then the tree returns an off-by-one repeat. One can progress through the tree in a

similar manner to understand how Roll-on, Roll-off, and off-by-one substitution errors

are determined as well.

We used this tree and many others like this tree to inspect the data from the mobile

study. The trees confirmed our understanding that off-by-one errors are still primarily

a result of an individual either pressing two keys more quickly than intentionally

possible or pressing two keys that are contextually improbable. These trees helped

us develop a much deeper understanding of how and why users commit off-by-one

errors, and it was through this understanding that we developed our simplified set of

rules that became FatThumbs.

8.4 A set of simple rules

FatThumbs is comprised of a set of very simple rules for each error class. These rules

typically consist of a timing threshold (determined empirically from our data), the

1We built a dictionary of uni-gram, bi-gram, and tri-gram letter probabilities from a set of one
million sentences sampled at random from the English version of Wikipedia on February 2, 2012.
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location of the keypresses, and a language context rule. Two of the original off-by-one

error classes are not included in FatThumbs, and we have added a new error class

that was exposed by our decision trees. We are no longer detecting and correcting

off-by-one substitution errors. Though these errors are prevalent in the data (they are

the largest class of errors in the mobile dataset), correcting off-by-one substitutions

simply introduced too many false positives into the input stream. Unlike our other

error types whereby if we have a false positive we are deleting a correct character,

a false positive substitution actually inserts an incorrect character into the input

stream. As having an unexpected character appear on screen is potentially more

distracting than missing a character the user thought she had entered, we feel that

substitution false positives are more distracting to the user than incorrect deletions.

As we were not able to reduce the amount of false positives to the point where we were

comfortable including off-by-one substitutions in FatThumbs, we reserve this task as

future work. We also chose not to include key repeats as part of the FatThumbs

solution. Unlike our earlier datasets which contained a large number of key repeats,

the mobile dataset has relatively few key repeats (less than 500 in approximately 1.8

million keypresses). I suspect that the lack of key repeats is due in large part to

improvements in the industrial design of mobile keyboards. Essentially, Blackberry

has successfully addressed the issue of multiple key de-bouncing. As such, we chose

not to focus our efforts on detecting errors that occurred so infrequently.

However, we did uncover a new type of off-by-one error of which we were previously

unfamiliar. Equal downtime errors occur when two keys are pressed at exactly the

same time, that is both keys have exactly the same (to the millisecond) key-down

time. These errors are neither Roll-on errors (which occur when the user rolls onto

the correct character from the errorful character) nor Roll-off errors (which occur when

the users’ thumb rolls off of the intended key striking an adjacent key accidentally)

since the keys are pressed at exactly the same time. As such, these errors merited
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special consideration and their own rules since correction is non-obvious given that

the two keys are literally pressed at the same time. Of note, we were unable to detect

these errors previously as the hardware used in earlier studies did not sample the

keyboard accurately 2.

8.4.1 Detecting Roll-off Errors

A Roll-off error is detected and corrected using the following logic: given the cur-

rent keystroke and the previous keystroke, if the time between key-up of the current

keystroke and key-down of the previous keystroke is less than 170 milliseconds and

the two keys are adjacent then an off-by-one Roll-off error has occurred. To correct

an off-by-one Roll-off error we delete the current character.

Below is an example of the detection and correction of a Roll-off error taken from

the log files collected in Chapter 9. As you can see in Figure 18, the user enters

an off-by-one Roll-off error when she accidentally rolls off of the correct character

“u” onto the incorrect character “i”. As FatThumbs is constantly running over a

set of four keystrokes, as soon as the user presses “r” FatThumbs checks to see if

this set of four characters contains an error. In this case, we have an off-by-one

Roll-off error on the current keypress (FatThumbs always checks the four character

set of “double previous,” previous, current, and future keystrokes) where “i” is the

current character. The time between the key-up time of the “i” (524095343ms) and

the key-down time of the “u” (524095242ms) is 101ms, which is less than the 170

ms threshold. Since the two characters are adjacent on the keyboard, FatThumbs

returns a Roll-off error and proceeds to delete the current character (in this case the

“i”).

2In fact, the phones used in the mobile study (Blackberry Curves) only sampled the keyboard for
keypresses every four milliseconds and the timing method we were using artificially added noise to
the timestamps, ensuring each key had a unique timestamp. It was only when piloting FatThumbs
on the phones we used for the FatThumbs evaluations (see Chapter 9) that we realized the true
limitations of our older hardware.
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8.4.2 Detecting Roll-on Errors

FatThumbs detects and corrects a Roll-off error using the following logic: given that

the future and current keypresses are adjacent, if the time between the key-down of

the future and the key-down time of the current is less than 80 millisecond and if the

probability of the current given the previous two characters minus the probability of

the future given the previous two characters is less than -0.66666666 then an off-by-

one Roll-on error has occurred. To correct an off-by-one Roll-on error we delete the

current character.

8.4.3 Detecting Equal Downtime Errors

If two characters are adjacent and have the exact same key-down time, then an equal

downtime error has occurred. Correcting an equal downtime error, however, is more

difficult than simply deleting the current character as there is no way of determining

the order of keypresses. To account for this challenge, we check to see if the language

context can help determine which character to delete. We employ the same language

context rule to the four character set of keypresses as used when detecting Roll-on

errors. If the probability of the current character given the previous two characters

minus the probability of the future character given the previous two characters is less

than -0.66666666 then we delete the current character. If not, then we delete the

previous character.
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Figure 18: The user commits an off-by-one Roll-off error on the “i” of “ouir”.
FatThumbs succeffully detects the error and deletes the “i”. The “!” in the input
stream indicates an instance of FatThumbs triggering.
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CHAPTER IX

FATTHUMBS EVALUATION

In this chapter we discuss our evaluation designed to investigate the impact of auto-

matic error detection and correction on typing performance.

9.1 Evaluation

9.1.1 Equipment and Software

The equipment and software employed in the FatThumbs evaluation was a clear ad-

vancement over what used in the Mobility study (see Section 5.2.2). We updated the

hardware, moving from the Blackberry Curve 8320 (see Figure 11) to the Blackberry

Bold 9900 (see Figure 19). We also augmented BlackTwidor to run FatThumbs.

Due to technical constraints of the Blackberry platform, we were forced to im-

plement FatThumbs in a relatively naive fashion. As we did not have access to the

firmware, we implemented FatThumbs in Java. This decision introduced several chal-

lenges. Most notably FatThumbs was unable to make a decision on a set of keypresses

before the errorful characters were displayed on the screen. Running FatThumbs in

the firmware of a phone would eliminate this confound as we would be able to quickly

intercept characters after they were pressed ensuring that we display only the correct

character (not the error as well) every time a user committed an off-by-one error (and

we corrected it correctly). Unfortunately, we were forced print every keypress to the

screen. If an off-by-one error was detected, then the errorful character was deleted

from the screen. We deleted the errorful character as quickly as possible, but the

fact remains that our implementation of FatThumbs had an distinct possibility of

distracting the user since we were actively deleting characters from the screen instead

of intercepting errors before they were displayed.
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Figure 19: RIM Blackberry Bold 9900: The mini–QWERTY keyboard enabled mo-
bile phone used in the FatThumbs evaluation.

9.1.2 Participants

We recruited 9 participants (2 female) ranging in age from 19 to 23 (M=21, SD=1.36)

who had not used a mini–QWERTY keyboard more than once. Seven of the nine par-

ticipants were right handed. Each participant had at least a decade of full–QWERTY

keyboard experience (M=11.33, SD=2.35) and at least five years of mobile phone ex-

perience (M=6.00, SD=1.58). All participants were native American English speakers

who were taught to read and write in an American English education system. On

average, participants stated that they send 21 text messages a day (SD=35). None of

the participants had used a device with a mini-QWERTY keyboard more than once.
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9.2 Study Design

This study is designed to investigate the performance of our error correction algo-

rithm FatThumbs. As with the mobile study, we trained participants from novice to

expertise over the course of fifteen 20-minutes sessions. At the end of 300 minutes

of typing, participants entered the experimental phase of the study. In the exper-

imental phase of the study participants completed two 10-block sessions. In each

session, FatThumbs was randomly activated at the block level five times. As such,

upon completion of the two 10-block sessions, participants had entered 100 phrases

with FatThumbs turned on and 100 phrases without FatThumbs 1.

The evaluation took place in our laboratory and participants were seated for the

duration of the study. As before, sessions were completed in pairs with a 5–minute

break after the first session. Session pairs were separated by at least two hours and by

no more than two days. Prior to beginning each session, participants input the warm–

up phrase (“abcd efgh ijkl mnop qrst uvwx yz”) twice. Participants had to complete

the warmup without making any mistakes (or if they did make mistakes, they had

to correct the mistakes before the software would allow them to begin a session).

The warm–up phrase was not counted in the session statistics. The participants were

instructed to type using only their two thumbs and to type as quickly and accurately

1In the experimental phase of the study, though participants completed two 10-block sessions,
results are only computed over one 8-block session and one 10-block session. The first experimental
session had technical challenges that resulted in an unequal balance between the number of blocks
participants typed with the algorithm turned on and the number blocks they typed with the algo-
rithm off. Four of the nine participants experienced the technical error which resulted in them typing
6 blocks with the algorithm on only 4 blocks with the algorithm off. The rest of the participants
typed 5 blocks on and 5 blocks off. As such, to ensure a balanced dataset, I removed blocks from
the first experimental session for each participant to balance the data at 4 blocks on and 4 blocks
off for all participants. At the completion of the two sessions, participants had typed 90 phrases
with FatThumbs turned on and 90 phrases without FatThumbs (forty in each condition from the
first experimental session and fifty in each condition from the second experimental session). The
exception is participant 1002 who completed the second experimental session with no mini-SD card
inserted into the phone. I was able to record his WPM and ACC measures for the session but his
data was lost. As such, only the 8 blocks of typing from the first experimental session are included
in the statistical analysis.
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as possible. The test software (BlackTwidor with FatThumbs) provided statistical

feedback in the form of typing rate and accuracy data for the most recent sentence

typed and the current session average.

In addition to the mini–QWERTY data, we also collected demographic data and

conducted a brief semistructured interview upon completion of the study.

This study was conducted using deception. Participants were never told that we

were evaluating automatic error correction software. From the time they enrolled

in the study until the end of the interview, they were only ever told that we were

investigating their typing performance over time. It is only at the end of the interview

that we revealed to the participants that we were in fact investigating FatThumbs

(Appendix C presents the text shown to the participants informing them of the real

reason for the evaluation) . We did this in order to be able to assess both how

noticeable FatThumbs is as well as how distracting it is to have errors automatically

detected and corrected.

9.3 Results

Our nine participants input a total of 16,838 phrases and 517,433 characters over the

course of the fifteen 20-minute sessions. In the two experimental sessions participants

entered a total of 1,520 phrases and 46,411 characters. In the first 300 minutes of

the study, participants committed 14,829 errors of which 3,399 can be classified as

off-by-one errors. In the experimental phase of the study, participants committed

261 OBO errors with FatThumbs turned off and 301 OBO errors with the algorithm

turned on (see Table 29 for a full description of the dataset).

The main measures collected in this evaluation were words-per-minute (WPM)

and accuracy (ACC) (see Section 3.1.2 for details on how both measures are calcu-

lated). Over the first 300 minutes of the evaluation when participants were training

from novice to expert, the mean entry rate was 46.78 WPM (SD=7.24). The mean
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Study Phase Phrases Characters Errors OBO Errors
Training to Expertise (300 mintues) 16,838 517,433 14,829 3,399
Experimental without FatThumbs 760 23,234 1, 044 261
Experimental with FatThumbs 760 23,177 1,177 301
Total 18,358 563,844 17,050 3,961

Table 29: Dataset collected from nine participants typing for 300 minutes seated
while training from novice to expert as well as the data from the experimental phase
of the evaluation.

accuracy was 97.43% (SD=2.58%). Over the 760 phrases typed with FatThumbs

off the mean entry rate was 56.51 WPM (SD=11.00) while the mean accuracy was

96.82% (SD=2.54%). Over the 760 phrases typed with FatThumbs on the mean entry

rate was 58.16 WPM (SD=12.50) while the mean accuracy was 96.21% (SD=2.92%)

including correction. See Table 30 for complete results.

Study Phase WPM (SD) ACC (SD)
Training to Expertise (300 mintues) 46.78 WPM (SD=7.24) 97.43% (SD=2.58%)
Experimental without FatThumbs 56.51 WPM (SD=11.00) 96.82% (SD=2.54%)
Experimental with FatThumbs 58.16 WPM (SD=12.50) 96.21% (SD=2.92%)

Table 30: Word-per-minute (WPM) and accuracy (ACC) rates for 9 participants typ-
ing for 300 minutes as they trained to become expert mini-QWERTY typists. Addi-
tionally, we include WPM and ACC rates for the 760 phrases typed with FatThumbs
off and for the 760 phrases typed with FatThumbs on.

We ran a two-tailed paired samples t-tests to compare WPM and ACC rates

between the two experimental conditions. We did not achieve statistically significant

results on accuracy (t8 = 1.093, p=.306). The test comparing WPM with FatThumbs

on to WPM with FatThumbs off we did achieve a statistically significant result (t8 =

-2.452, p<.040). These results suggest that when FatThumbs is active, participants

type faster than when FatThumbs is off. We were hoping that participants would have

typed more accurately as well, however, with faster typing rates came an increase in

errors. Fortunately, FatThumbs was able to successfully detect and correct a large

portion of those errors which is perhaps one reason why accuracy rates are so similar.

The next section presents an in-depth analysis of the errors committed in these two

111



conditions in hopes of illuminating the impact that automatic error detection and

correction has on participant performance.

9.3.1 FatThumbs performance

In order to assess the performance of the FatThumbs algorithm I first investigate par-

ticipant typing behavior and establish a ground truth label for each input character.

After determining participant ground truth, I determine the total possible impact of

FatThumbs through the identification of all off-by-one errors in the dataset. Having

classified all off-by-one errors, I then investigate FatThumbs performance measuring

the number of times the algorithm is triggered, the number of times it correctly cor-

rects an off-by-one error, the number of times it misses an off-by-one error and the

number of times it incorrectly identifies a character as an off-by-one error resulting

in a false positive.

9.3.1.1 Participant ground truth

Though we determined participant ground truth for each character pressed in the

study, this section and the following sections will focus only on describing how well

FatThumbs performed in the experimental phase of the study when the algorithm was

turned on. To assess FatThumbs performance, we first had to establish ground truth

regarding participant typing behavior. To do so, we followed the string alignment

error detection and classification procedure outlined by Wobbrock et al. in [60]. This

procedure yielded labels for each keystroke in the dataset. Wobbrock et al. describe

ten error types that are classifiable using their algorithm. As we did not need to

account for non-recognition errors, we were able to use their algorithm to label each

keystroke as one of the following error types:

• Corrected No Errors occur when a character is correctly entered in the input

stream but subsequently deleted.
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• Corrected Omissions occur when a character in the presented string is skipped

in the input steam but later replaced.

• Corrected Insertions occur when a study participant deletes an extraneous

character in the input stream that does not have a corresponding character in

the presented string.

• Corrected Substitutions occur when a character in the input stream is

substituted for its corresponding character in the presented string and then

backspaced and corrected by the study participant.

• Uncorrected Omissions occur when a character in the presented string is

skipped by the study participant.

• Uncorrected Insertions occur when a character is added to the input stream

or transcribed string that does not exist in the presented string.

• Uncorrected Substitutions occur when a character is substituted for a cor-

responding character in the presented string.

• Uncorrected No Errors occur when a character in the presented string aligns

with a corresponding character in the input stream or transcribed string with

no issues.

Table 31 shows a breakdown of every character typed by the nine participants in

the experimental stage of the evaluation in which the algorithm was turned on. These

results are labeled as the ground truth against which we will measure the performance

of FatThumbs.

9.3.1.2 Establishing FatThumbs ground truth

Next we proceeded to identify all off-by-one error types. These error types include

off-by-one Roll-on errors, off-by-one Roll-off errors, off-by-one no errors, and instances
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Error Type Quantity of Errors
Corrected No Errors 107
Corrected Omissions 63
Corrected Insertions 34
Corrected Substitutions 77
Uncorrected Omissions 214
Uncorrected Insertions 245
Uncorrected Substitutions 451
Uncorrected No Errors 21,272

Table 31: The ground truth data labeled using Wobbrock et al’s definition of the
eight error types that were found in the experimental portion of the evaluation.

in which a tri-graph contains multiple off-by-one errors2. Given that the Wobbrockian

ground truth data is determined solely from aligning characters between the presented

string, input stream, and transcribed strings, at this point a limitation of our approach

was uncovered. To determine our off-by-one ground truth data, we had to utilize not

only character alignments but also keystroke timing. Doing so uncovered an new class

of off-by-one error heretofore unclassified: the equal down-time error. An equal down-

time error occurs when two keys are pressed at exactly the same time as measured

by the Blackberry OS. In this case, it is impossible to properly align characters as

neither of the two characters actually occurs prior the other. As such, an arbitrary

decision has to be made about the order in which to write the keypresses out to the

log file. Regardless of the order in which the characters appear, we logged and labeled

each occurrence of an off-by-one equal downtime error along with every instance of

the other off-by-one errors.

9.3.2 FatThumbs performance

Having labeled ground truth for each character with respect to off-by-one errors, I

can now assess the performance of the FatThumbs algorithm. To do so, I track the

2As a reminder, we are not identifying off-by-one substitutions as our false positive correction
rate is too high to be useful. We are also not including key repeats in the FatThumbs evaluation
since key repeats occur so infequently when typing on modern Blackberry keyboards.

114



number of the times that FatThumbs performs an action. Each action we label a

“trigger.” The algorithm is triggered when it detects the presence of an off-by-one

error. When triggered, FatThumbs ideally deletes the off-by-one error. We label this

action a “correct detection.” Unfortunately, the algorithm is not perfect and occa-

sionally deletes a character that was correctly entered by the participant. Each time

FatThumbs deletes a correct character, an “incorrect detection” occurs3. Occasion-

ally an off-by-one error occurs and FatThumbs does nothing. Whenever this occurs

we count a “missed detection.” Table 32 presents FatThumbs performance for each

error type.

In general, we are quite pleased with the performance of FatThumbs. FatThumbs

successfully corrected 60.80% of the off-by-one errors committed by participants. It

missed 37.54% of the errors and it false triggered 11.96% of the time. FatThumbs

corrected 15.55% of the total errors committed by participants deleting 0.79% of the

total keypresses entered during the experimental phase of the evaluation.

3Technically, in the case of an Equal Downtime error, “incorrect detections” should be termed
“incorrect corrections” since Equal Downtime errors are not detected incorrectly. For simplicity,
we report wrongly corrected Equal Downtime errors as “incorrect detections” to make comparing
performance across error types easier.
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9.3.3 Participant reaction

In addition to quantifying the impact of FatThumbs on users’ typing performance, we

were also interested in determining how participants felt about having their mistakes

automatically corrected. The interview protocol was semistructured. I asked a con-

sistent set of openended questions to each participant, prompting them to recall their

experiences and to reflect on the challenges they encountered when typing with two

thumbs on a mini-QWERTY keyboard. I also asked follow-up questions to pursue

specific themes that arose in the context of the interview.

Towards the end of each interview, participants were told that I was actually

evaluating an automatic error correction solution. Until that point in the evaluation,

participants had not been informed about the true purpose for the evaluation. Their

reaction to reading the debriefing information is captured as part of the interview.

In the interviews, I asked participants the following questions:

1. Can you discuss some of the challenges you encountered entering text into your

mobile device?

2. At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?

3. How do you feel about how you did in the study? Were you pleased with your

performance?

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this

software, others did not. Which group were you in? How could you tell?

5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?
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6. Do you have any comments, observations, or feedback for me or any other

member of the research team?

One interesting finding from the interviews is how frequently participants de-

scribed off-by-one errors on their own terms without previously being introduced to

the idea. Six of the nine participants discussed off-by-one errors in one way or an-

other. For example, when asked to discuss some of the challenges of entering text on

a mini-QWERTY keyboard participant 1006 stated:

Well, I guess the first thing that comes to mind, is just that I feel like I

may have really big fingers, so I would occasionally try to press a button

and I would accidentally press another button as well with that. So if I

press C I would actually end up pressing C,V, or something like that.

The interviews also provided insight into participant error correction strategies.

For example, when asked if the types of mistakes made by the participant changed

over the course of the study, Participant 1007 responded:

...Most of my problems were pushing more than one key at once. So Id

enter a couple of keys and then Id have to backspace if I wanted to do

it correctly or if I wanted to just leave it. That was a decision I had to

make.

When asked explicitly if they made a lot of corrections over the course of the study,

Participant 1008 stated:

The first half I did. The first four or five sessions. With that percentage

going down as the sessions went on. Because I was like “I have to be

perfect” and then I was like “No, thats ok” because my accuracy was still

really good. I got above 94%, 93% and I was just focused on going faster.
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Our goal with the interview was to determine if participants could notice and were

bothered by the presence of our automatic error detection and correction solution.

To that end, the most illuminating finding from the interviews is that, when informed

that we were evaluating an automatic error correction system and asked whether or

not they had been exposed to the system, all of the participants explicitly stated

that they had not. Not one participant thought that they had been exposed to

FatThumbs though each participant spend half of their final two sessions typing

with FatThumbs enabled. This finding is all the more exciting as we were literally

deleting characters that had been printed to the screen. Participants certainly had

the opportunity to notice and be distracted by FatThumbs, but none of them reported

noticing FatThumbs in action.

Full transcripts of the interviews can be found in Appendix D.
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CHAPTER X

DISCUSSION AND FUTURE WORK

In this chapter, I summarize my findings, discuss the implications of my work and

outline future directions.

10.1 Summary

In this dissertation I begin by describing three longitudinal studies designed to in-

vestigate typing on mini-QWERTY keyboards in various contexts of use. Next, I

analyze the errors made in these evaluations and discover a common pattern in the

types of mistakes that people make when typing on mini-QWERTY keyboards. The

most common errors are off by one key to either the left or right of the intended key; I

call these off-by-one errors. To improve typing on mini-QWERTY keyboards, I take a

machine learning approach to create an algorithm to automatically detect and correct

these errors. I refine the algorithm and reduce it to a set of simple rules that target

feature of users’ typing to automatically detect and correct off-by-one errors. Finally,

I evaluate this set of rules on live typing by conducting a final longitudinal evaluation

to assess the impact of automatic error correction on users’ typing performance.

The first longitudinal evaluation (the Baseline evaluation, see Chapter 3 for de-

tails) collected baseline performance measures in an ideal environment. The Baseline

evaluation was a between-subjects study that collected words-per-minute (WPM)

and accuracy measures for fourteen participants (two groups of seven) typing for 20

twenty-minute sessions on two different keyboards. At the end of 400 minutes of

typing, participants averaged approximately 60 WPM at approximately 95% accu-

racy. This study established that mini-QWERTY keyboards are the mobile text entry

method that enables the fastest entry speeds with the least amount of training of any
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method on the market or in the literature.

Baseline Study Blind Study Mobile Study

Date Fall 2004 Spring 2005 Fall 2011
Participants 14 8 36
Expertise Novice Expert Novice trained to expertise
Sessions 20 5 15 training, 15 in mobility conditions
Conditions 2 6 3
Phrases Typed 33,947 8,393 131,884
Keystrokes Typed 1,012,236 249,555 3,872,505

Table 33: The mini-QWERTY datasets for the Baseline, Blind, and Mobile Evalu-
ations. In total, participants typed 174,224 phrases and 5,134,296 keypresses across
all three evaluations.

In the second evaluation, I investigated the impact of limited visibility on expert

mini-QWERTY keyboard text entry. Eight participants who had been trained to

expertise input text for five 20-minute sessions in three different visibility conditions

(the control condition termed the “normal” condition, the “hands blind” condition

in which participants typed with their hands under a desk, and the “double blind”

condition in which participants typed with both their hands under the desk and with

obscured visual output). This evaluation established that when typing without being

able to visually attend to the task of inputting text, participant performance decreases

dramatically and does not recover to within a standard deviation of performance levels

attained when participants input text with full visual attention.

My third longitudinal evaluation explores the impact of mobility on text entry

performance. In this evaluation, 36 participants were trained to expertise and then

transitioned to one of three different mobility conditions: walking, sitting, or stand-

ing. The order of conditions was balanced and participants proceeded to type for 100

minutes per condition. The mobility evaluation quantifies the WPM and accuracy

rate decrease that occurs when participants enter text on mini-QWERTY keyboards

while walking. Surprisingly, accuracy rates for expert typists decrease less than one

percent (from approximately 95.3% to approximately 94.1%) while WPM rates only
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decreased four words-per-minute on average (from approximately 57 WPM to ap-

proximately 53 WPM). This evaluation establishes that there is, in fact, a significant

decrease in WPM rates when users are mobile but shows that this decrease is much

less than expected (< 10% impact on performance). Table 33 details the datasets

for each of the three evaluations while Table 34 depicts the final WPM and accuracy

rates for every condition in each evaluation.

Evaluation Condition WPM (SD) ACC (SD)

Baseline Study
Dell 59.32 (SD=9.65) 91.29% (SD=5.32%)
Targus 58.74 (SD=7.46) 94.68% (SD=2.09%)

Blind Study
Normal 57.89 (SD=4.80) 94.6% (SD=2.91%)
Hands Blind 46.90 (SD=5.33) 85.2% (SD=7.43%)
Double Blind 47.88 (SD=3.35) 84.8% (SD=5.64%)

Mobile Study

Training 48.21 (SD=13.11) 96.05% (SD=6.87%)
Sitting 56.79 (SD=11.51) 95.36% (SD=6.15%)
Standing 56.61 (SD=10.97) 95.25% (SD=6.54%)
Walking 52.51 (SD=11.56) 94.91% (SD=6.59%)

Table 34: The average WPM and accuracy results for the final sessions of every
condition in the Baseline, Blind Evaluations as well as the WPM and accuracy results
averaged over the first 300 minutes of typing (the Training condition), and averaged
over 100 minutes of typing in each experimental condition (Sitting, Standing, and
Walking) in the Mobile Evaluation.

Upon completing the longitudinal evaluations, I investigated the types of errors

committed by participants in various contexts. The evaluation uncovered that the

most common error committed when typing on mini-QWERTY keyboards is what

I term “off-by-one” errors. Off-by-one errors occur when an individual accidentally

presses a character one key either to the left or the right of the intended character;

in essence the error is off by one keystroke from the intended character. I compare

errors made in the Baseline evaluation with those committed in the training phase

of the Mobile evaluation and uncover how improvements in keyboard ergonomics

essentially eliminate key repeat errors (though substitution errors occur at almost

the exact same rate regardless of hardware). Finally, I investigate the impact of

mobility on the types and frequencies of errors committed by participants in the
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Mobile study. My analysis of mobile errors shows no difference in either the types

or quantities of errors committed while mobile compared to those committed while

seated or standing. In all cases there were statistically significantly more Substitution

errors than the corresponding number of Insertion or Omissions errors committed. I

show that as participants increase in experience, they correct far fewer mistakes than

they do as novices. Finally, I demonstrate the existence of Semantic Errors (word

level insertions) and show how they artificially negatively impact accuracy rates in

text entry evaluations.

Having identified patterns in errors committed when typing on mini-QWERTY

keyboards, I introduce Automatic Whiteout. Automatic Whiteout is a machine learn-

ing algorithm that leverages features of the users’ typing to automatically detect and

correct errors in mini-QWERTY typing. I trained and tested Automatic Whiteout

over a variety of datasets from the Baseline and Blind evaluations in order to assess

the performance of the algorithm across various levels of participant expertise, across

different keyboards, and across different levels of visual attention to the keyboard.

I demonstrate that Automatic Whiteout corrects approximately 25% of the off-by-

one errors regardless of dataset. This result was surprisingly good given Automatic

Whiteout does not use dictionaries for error detection and correction but instead

relies only on tri-grams and bi-grams when making decisions.

Inspired by the success of Automatic Whiteout on previously collected data, I

investigate the impact that automatic error detection and correction could have on

live typing performance. To this end, I created a complete revision of my previous

solution and introduced FatThumbs: a simple set of minimal rules designed to target

off-by-one errors. Like Automatic Whiteout, FatThumbs leverages features of the

users’ typing to detect and correct off-by-one errors. Unlike Automatic Whiteout

though, FatThumbs is built to run over live data, make decisions in less than 150 ms,

and is able to make corrections after the first error is committed.
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To evaluate FatThumbs, I conducted a fourth and final longitudinal evaluation of

mini-QWERTY keyboard typing. I trained nine participants from novice to expertise

over the course of 15 twenty-minute sessions. Participants then typed 90 phrases with

FatThumbs enabled and 90 phrases with FatThumbs turned off. With FatThumbs

enabled, participants typed significantly faster than when FatThumbs was inactive.

Though participants created more errors when FatThumbs was on (perhaps due to

their increased speed), FatThumbs was able to successfully correct enough errors (over

60% of the off-by-one errors) that the increase in errors did not impact accuracies.

I was interested not only in determining how FatThumbs impacted words-per-

minute and accuracy rates but also in understanding if automatically correcting errors

distracted or otherwise disturbed participants when inputting text on mini-QWERTY

keyboards. To this end, I conducted the FatThumbs evaluation without alerting

participants to the fact that I was correcting their errors. In interviews after the

evaluation, all of the participants stated that they were unaware that errors were

being corrected. When asked explicitly if they were in an experimental group that

was exposed to my error correction solution, all of the participants declared that they

were in a control group that was not exposed to automatic error correction. These

results were particularly surprising given that FatThumbs was deleting characters

printed to the screen. Ideally, FatThumbs will be implemented into the firmware

of a mini-QWERTY keyboard. This approach would enable FatThumbs to simply

intercept errorful characters after the keys are pressed but before they appear on the

screen.

Over the course of this dissertation, I have conducted four longitudinal evaluations.

Three of these evaluations explored text entry performance in a variety of contexts.

I analyzed errors committed in these three evaluations and uncovered that off-by-

one errors are the most common errors committed when typing on mini-QWERTY

keyboards. I created and revised a solution for automatically detecting and correcting

124



off-by-one errors in mini-QWERTY typing. When evaluating my solution in a final

longitudinal study, I showed I could correct over 60% of the off-by-one errors and over

15% of the total errors in live typing on mini-QWERTY keyboards.

10.2 Discussion

In this section, I discuss my decision to conduct four longitudinal evaluations in

which I recruit novices and train them to expertise. I investigate the merits of offline

error correction and compare those results to the results from the FatThumbs live

evaluation.

10.2.1 Training participants to expertise

The continued use of longitudinal evaluations in this dissertation sets it apart from

other text entry work. Table 35 details of my training of novices participants to

expertise.

Baseline Study Blind Study Mobile Study FatThumbs

Participants 17 8 36 9
Sessions 20 8 15 15
Minutes 400 200 300 300

Total Minutes of Training 21,900

Table 35: Time spent training participants from novice to expertise. Three partic-
ipants from the baseline study are excluded from analysis performed in Chapter 3.
All training time in the Blind evaluation is excluded from analysis in Chapter 4. The
“Total Minutes of Training” row displays the sum of Participants X Minutes for each
evaluation.

Training participants for hundreds of minutes each is a time consuming, labor in-

tensive activity which I ultimately believe is worth the effort. The contribution of the

Baseline evaluation is the establishment of novice and expert WPM and ACC rates as

well as participant learning curves. The value of this evaluation, fundamentally, is the

training of participants. For the other four evaluations in this dissertation however,

the obvious reason to invest the effort into training participants is to minimize any
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learning effects during the experimental phases of the evaluations. Training allevi-

ates those learning effects that could be attributed to transcription typing with two

thumbs on a mini-QEWRTY keyboard. In the Blind and Mobile evaluations, though

I introduce new tasks to the participants in the experimental phase of the evaluation

(Hands Blind, Fully Blind, Standing, and Walking tasks), participants continued typ-

ing in the control conditions without demonstrating learning. This result provides a

strong baseline against which to compare results from the experimental conditions.

To that end, in both the Blind and Mobile evaluations, when introducing the exper-

imental conditions, participants still typed for 100 minutes per condition. Training

participants in the new conditions helps minimize learning effects and provides cleaner

results.

In the FatThumbs evaluation I introduced an error correction condition (FatThumbs

On), and though one could argue that this task also new, I posit that there is no differ-

ence from the user experience perspective between the FatThumbs On and FatThumbs

Off conditions. From the interviews I show that participants never noticed a new

condition and their words-per-minute and accuracy results showed no learning in the

FatThumbs Off condition.

Training novice participants to expertise also ensures that each participant has

the same amount of experience typing with two thumbs. Had I chosen to recruit self

described experts, participants’ different levels of experience could have dramatically

impacted results. For example, I removed a participant from the mobile study after

discovering she used a iPhone as her primary mobile device. Preliminary analysis of

her results showed that she was typing at 43 WPM after twenty minutes of typing.

This rate obviously does not align with either my novice rates (approximately 30

wpm after 20 minutes of training) or my expert rates (60 wpm after 400 minutes of

training). Perhaps recruiting self-described experts and training them for 100 minutes

could be a compromise. This approach would reduce the training time dramatically
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while still ensuring that all participants had a similar degree of training. I am not

convinced that this is an improvement on my current procedure but it would be

interesting to investigate this approach.

10.2.2 Live Error Correction vs. Retrospective Results

One of the largest differences in the results between FatThumbs and Automatic

Whiteout is the number of errors each solution is able to target. Automatic Whiteout

is a retrospective analysis of previously collected data that targets Roll-on, Roll-off,

Key Repeats, and Off-by-one Substitution errors. FatThumbs, on the other hand,

operates on live data and targets Roll-on, Roll-off, and Equal Downtime errors. Sec-

tion 7.3.1 describes how I sampled the previously collected datasets for the analysis.

Of note, Automatic Whiteout only has the opportunity to correct the first error in a

phrase whereas FatThumbs has the opportunity to correct all of the targeted errors

as they are typed by participants. As such, while I have fewer off-by-one errors in the

FatThumbs dataset, and I am detecting/correction fewer errors with the FatThumbs

solution (not targeting Substitution errors which account for the greatest percentage

of off-by-one errors), FatThumbs still successfully corrects approximately 60% of the

off-by-ones and 15% of the total errors.

10.2.3 Improving FatThumbs

FatThumbs in its current incarnation performs well. However, there is still room

to improve this solution. Obviously reducing the false positive rate for correcting

off-by-one substitutions to the point where FatThumbs could be augmented to tar-

get off-by-one substitutions could dramatically improve the success of FatThumbs.

Currently substitutions are not targeted because I am using tri-gram probabilities

to determine which character to insert into a participant’s input stream in case of a

correction. I speculate that the reason that this approach has not proven successful
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so far is the mismatch between the QWERTY keyboard layout and tri-gram char-

acter frequencies in the English language. There are simply too many times when

tri-gram frequencies predict the incorrect letter be inserted. One suggestion to mit-

igate this challenge that merits further investigation is to identify locations on the

keyboard that have the highest level of ambiguity. For example, the “e,r,t” and “y”

characters are often difficult to successfully differentiate when comparing tri-gram

probabilities. Having identified areas of the keyboard where it is particularly chal-

lenging to correct off-by-one substitutions, I could choose to not make corrections

when off-by-one substitutions are detected in these “hot spots” on the keyboard. I

could correct off-by-one substitutions elsewhere on the keyboard and potentially re-

duce the number of false positives to the point where substitutions could once again

be included in FatThumbs.

I believe that approaching substitution errors in this manner is potentially more

beneficial than using a prefixing solution or relying on a dictionary to reduce the

off-by-one substitution false positive rate. Using a dictionary-based solution has the

potential to reduce false positives, but it makes mid-word correction nearly impossible.

Mid-word correction is one of the key differentiators of FatThumbs. I was able to

demonstrate that minor mid-word corrections can be made without distracting the

user. Using a dictionary, on the other hand, introduces a delay between the time

when the error is committed and when it is corrected. The longer the delay, the

higher the cost of introducing a false positive (because the user will often have to

delete more than one character to return to the location of the error), and greater

the likelihood that the correction is noticed by the user. The simplicity of deleting

the last character printed to the screen (or, if implemented in the firmware, of simply

not displaying the errorful character) is one of the key benefits of FatThumbs. By

correcting errors mid-word, FatThumbs has the potential to correct errors before the

user notices that they have committed a mistake thus minimizing user distraction.
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The ability to detect and correct errors without visually distracting the user (making

a correction within milliseconds), enables faster rates of input and an improved user

experience. Assuming that noticing error correction distracts or otherwise bothers

users, in the future it would be interesting to compare the impact of mid-word error

correction to word level error correction using dictionaries to quantify the impact that

changing characters at different locations in a word has on the end user experience.

10.2.4 Decision Trees as a Visualization Tool

I arrived at the process used for transitioning from Automatic Whiteout to FatThumbs

through a series of trials and errors. However, the method I employed, if executed

with rigor, has the potential to generate viable results. At the high level, I took

following steps in my approach to addressing errors in two-thumb typing:

1. Collect data from a user evaluation or multiple user evaluations

2. Identify characteristics of the data that merit investigation

3. Generate as many features as possible to investigate all aspects of those data

4. Select a machine learning approach to address the problem of interest (in my

case, decision trees) 1

5. Create an algorithmic solution that addresses the problem

6. Validate that solution by performing a retrospective analysis of the previously

collected data

7. Tune thresholds and simplify the solution by continually testing the solution on

the previously collected data

1It is worth noting that this procedure only works with machine learning techniques that descrip-
tive (i.e. human readable). Decision trees work great but this method would not be successful with
neural nets for example.
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8. Implement the simplified solution and evaluate the impact of that solution in a

new user evaluation

By following this approach, I was able to identify features of the users’ typing

that I would not have targeted had I employed only logical/obvious features in my

solution. For example, on the surface, the duration of keypress (the time between

the keydown and the keyup of the same keypress) might appear to be an obvious

indicator of an error. The length of time that someone depresses a key is an obvious

feature to target. However, duration is not one of the most discriminative features

we investigated and I was able to use the above approach to identify features that

are much more successful at error detection. When detecting and correcting Roll-

off errors, FatThumbs checks to see if the current keyup time minus the previous

keydown time is less than 170ms. I argue that this feature is not an intuitive feature

to select and it is one that I would have never thought could be used to detect

errors. However, it was a feature that was identified by using the above approach,

and I used it successfully to identify and correct Roll-off errors in the FatThumbs

evaluation. Decision trees help the HCI practitioner understand more about the

problem without introducing biases of the practitioner. Specifically, by forcing the

algorithm to make smaller and smaller decision trees that still performed well, I

gained a better understanding of the mechanisms underlying how each error type was

produced. Applied with rigor, I believe the methodology outlined above can be used

to solve a wide variety of low-level human computer interaction challenges.

10.3 Future Work

Though I have performed a detailed investigation of typing on mini-QWERTY key-

boards, there are still some under-explored areas which merit future investigation. For

example, Wobbrock et al. demonstrated the potential of correlating instantaneous

walking speed with text entry performance [17]. Inspired by this work, performing
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an analysis of errors that ties changes in instantaneous walking speed to participant

error and correction behaviors is of interest.

Texting and driving is an underexplored area that is worthy of investigation.

Evaluating the impact of driving on text entry performance is an open area of research,

and it would be interesting to compare performance while driving to the walking

performance I saw in the mobile evaluation. Can FatThumbs provide a benefit to

drivers texting on mini-QWERTY keyboards?

Virtual mini-QWERTY keyboards are the most popular mobile keyboards in the

market today. Replicating these studies (particularly the mobile study) using virtual

mini-QWERTY keyboards would be interesting future work. Do the same types of

errors occur on virtual mini-QWERTY keyboards? Is it possible to apply some of

the automatic error detection and correction principles to virtual mini-QWERTY

keyboards?

Perhaps most significantly, as I was not able to reduce the amount of false positives

to the point where I was comfortable including off-by-one substitutions in FatThumbs,

I would like to focus on ways of targeting off-by-one substitution errors more effec-

tively. Off-by-one substitutions are the most common error made when typing on

mini-QWERTY keyboards, and unfortunately my error correction solution does not

address these errors with a high level of success.

I am interested in improving and extending my analysis of Semantic Errors. Some

ways I could do this would be to address misspellings in semantic errors. Currently,

I am only examining correctly spelled insertions; in the future I will allow for aligned

search in the dictionary. One possible change to my approach could be to count the

number of potential words that match the dictionary with less than a user defined

minimum string distance. Taking this approach could yield a far greater number of

Semantic Errors than I have currently been able to uncover.
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Finally, I am interested in investigating the potential for automatic error detec-

tion to be used as a diagnostic tool. I am particularly interested in determining if

individuals with dyslexia/dysgraphia commit error patterns that differ from the error

patterns committed by those without these developmental reading disorders. If so, I

think there is great potential to use a system similar to FatThumbs as an early stage

detection solution. The potential to diagnose developmental reading disorders from

errors in a user’s two thumb text entry presents an exciting possibility.
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CHAPTER XI

CONCLUSION

The work in this dissertation was conducted in an effort to support the following

thesis statement:

FatThumbs, a method for automatically detecting and correcting typographical er-

rors associated with pressing multiple keys at once in mini-QWERTY keyboard mobile

text input, improves the text entry experience by reducing errors without distracting

the user.

In this dissertation I present a series of experiments leading up to FatThumbs, a set

of rules that automatically detects and corrects approximately 60% of the off-by-one

errors (accounting for approximately 15% of the total errors) that occur in fixed-

key mini-QWERTY keyboard text entry. FatThumbs has been shown to improve

individuals typing performance by enabling faster typing rates without allowing a

corresponding decrease in accuracy. It accomplishes this goal without distracting the

user or perceptibly degrading the user experience.

In the process of developing FatThumbs, I conducted three longitudinal evalua-

tions of text entry on mini-QWERTY keyboards. I investigated novice and expert

performance as well as explored learning rates in the Baseline evaluation. I examined

the impacts of limited visual feedback on typing performance and discovered that

though individuals’ can still type quickly and accurately when visual access to the

keyboard or display is occluded, they are unable to perform as well as they can with

full visual access to the keyboard and display. In essence, the Blind evaluation estab-

lished that people are unable to touch type on a mini-QWERTY keyboard and expect

results comparable to those they achieve when fully focused on the task of inputting
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text quickly and accurately. The third empirical investigation of mini-QWERTY key-

board text entry studied typing while in motion (the Mobile study). Though walking

degrades performance, surprisingly, I observed less than a 10% decrease in WPM with

no appreciable impact on accuracy. Neither the quantity nor the types of mistakes

differ when comparing errors made while walking to those made while stationary.

Having collected over five million keypresses across these three evaluations, I then

analyzed the errors in the studies and identified off-by-one errors as the most com-

mon error that occurs in mini-QWERTY typing. Off-by-one errors occur when an

individual accidentally presses the key either one key to the left or the right of the

intended key. These erroneous keypresses occur while trying to type the correct char-

acter as the user is pressing down or lifting off of the intended key with their thumb.

Essentially, people have large thumbs and the keys on a mini-QWERTY keyboard are

small and densely clustered resulting in the near simultaneous pressing of two keys

at the same time.

In the final stage of my dissertation, I developed a solution to automatically detect

and correct off-by-one errors that leverages features of the users’ typing and I evalu-

ated that solution on live typing. To accomplish this, I first performed a retrospective

analysis of existing data from the Baseline, and Blind evaluations to address off-by-

one insertion and substitution errors. This retrospective analysis, named Automatic

Whiteout, was validated across different users, various levels of user expertise, dif-

ferent keyboard models, and various visibility conditions. On the whole, Automatic

Whiteout was able to correct approximately 25% of total errors in the Baseline and

Blind Datasets. Encouraged by this result, I optimized the solution for implemen-

tation on Blackberry hardware. This process resulted in a dramatic overhaul of my

automatic error detection and correction solution. I reduced an algorithm that previ-

ously utilized a set of large decision trees designed to address each error class to a set

of four simple rules, one for each error class. Each rule set is comprised typically of a
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timing threshold, the location of a keypress, and a language context rule. This revised

solution is called FatThumbs. In a final longitudinal evaluation, FatThumbs was able

to successfully address 60% of targeted errors resulting in an overall reduction of 15%

of the total errors committed by participants.
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APPENDIX A

FEATURES

Here is a list of all features used to train the decision trees used to visualize the mobile

data.

• rollon False,True

• rolloff False,True

• repeat False,True

• obosubstitute False,True

• othererror False,True

• errortype ’nonerror’, ’rollon’, ’rolloff’, ’repeat’, ’obosubstitute’, ’multiple’, ’nonobo’

• isObo False,True

• userId NUMERIC

• sessionId NUMERIC

• pp nom ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,’

’,’newline’

• p nom ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,’

’,’newline’

• ascii nom ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,’

’,’newline’
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• next nom ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,’

’,’newline’

• dt NUMERIC

• futdt NUMERIC

• prevdt NUMERIC

• futnowdiff NUMERIC

• nowprevdiff NUMERIC

• letterfreq NUMERIC

• prob1 NUMERIC

• futprob1 NUMERIC

• prob NUMERIC

• futprob NUMERIC

• bestneighbor 0 NUMERIC

• bestneighbor 1 NUMERIC

• bestneighbor 2 NUMERIC

• neighborfreq NUMERIC

• neighborfreqdiff NUMERIC

• neighborprob1 NUMERIC

• futneighborprob1 NUMERIC

• neighborprob1diff NUMERIC
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• futneighborprob1diff NUMERIC

• neighborprob NUMERIC

• futneighborprob NUMERIC

• neighborprobdiff NUMERIC

• futneighborprobdiff NUMERIC

• dropprobdiff1 NUMERIC

• dropprobdiff1abs NUMERIC

• dropprobdiff1sign NUMERIC

• dropprobdiff NUMERIC

• dropprobdiffabs NUMERIC

• dropprobdiffsign NUMERIC

• dropprobgain1 NUMERIC

• futdropprobgain1 NUMERIC

• dropprobgain NUMERIC

• hdist NUMERIC

• vdist NUMERIC

• hdistabs NUMERIC

• vdistabs NUMERIC

• hpos NUMERIC

• vpos NUMERIC
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• sameasprev nom False,True

• ppisletter nom False,True

• pisletter nom False,True

• curisletter nom False,True

• futisletter nom False,True

• curfutadjacent nom False,True

• prevcuradjacent nom False,True

• dt dd 0 p1 NUMERIC

• dt du 0 p1 NUMERIC

• dt uu 0 p1 NUMERIC

• dt ud 0 p1 NUMERIC

• dt dd 0 p2 NUMERIC

• dt du 0 p2 NUMERIC

• dt uu 0 p2 NUMERIC

• dt ud 0 p2 NUMERIC

• dt dd 1 0 NUMERIC

• dt du 1 0 NUMERIC

• dt uu 1 0 NUMERIC

• dt ud 1 0 NUMERIC

• dt dd p1 p2 NUMERIC
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• dt du p1 p2 NUMERIC

• dt uu p1 p2 NUMERIC

• dt ud p1 p2 NUMERIC

• dt dd p2 p3 NUMERIC

• dt du p2 p3 NUMERIC

• dt uu p2 p3 NUMERIC

• dt ud p2 p3 NUMERIC

• dur 1 NUMERIC

• dur 0 NUMERIC

• dur p1 NUMERIC

• dur p2 NUMERIC

• dur avg minus dur NUMERIC

• dur avg minus dur nofut NUMERIC

• du sub1 NUMERIC

• du sub2 NUMERIC

• average du 1 NUMERIC

• average du 2 NUMERIC

• average du 3 NUMERIC

• ud sub1 NUMERIC

• ud sub2 NUMERIC
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• average ud 1 NUMERIC

• average ud 2 NUMERIC

• average ud 3 NUMERIC

• uu sub1 NUMERIC

• uu sub2 NUMERIC

• average uu 1 NUMERIC

• average uu 2 NUMERIC

• average uu 3 NUMERIC

• dd sub1 NUMERIC

• dd sub2 NUMERIC

• average dd 1 NUMERIC

• average dd 2 NUMERIC

• average dd 3 NUMERIC
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APPENDIX B

EXAMPLE OF A VERY SELECTIVE DECISION TREE

W-J48

J48 pruned tree

------------------

dt uu 0 p1 ≤ 16

| prevcuradjacent nom = False

| | futprob ≤ 0.003185: nonobo (51.0/3.0)

| | futprob > 0.003185: nonerror (79.0/13.0)

| prevcuradjacent nom = True

| | curfutadjacent nom = False: rolloff (593.0/27.0)

| | curfutadjacent nom = True: multiple (32.0/5.0)

dt uu 0 p1 > 16

| prob ≤ 0

| | prevcuradjacent nom = False

| | | curfutadjacent nom = False

| | | | sameasprev nom = False

| | | | | futneighborprob ≤ 0.00578: nonobo (569.0/17.0)

| | | | | futneighborprob > 0.00578

| | | | | | neighborprob ≤ 0.008696: nonobo (178.0/20.0)

| | | | | | neighborprob > 0.008696

| | | | | | | average dd 3 ≤ -160

| | | | | | | | futneighborprob1diff ≤ 0.000411: nonobo (63.0/11.0)

| | | | | | | | futneighborprob1diff > 0.000411
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| | | | | | | | | neighborprob ≤ 0.140351: nonobo (54.0/25.0)

| | | | | | | | | neighborprob > 0.140351: obosubstitute (38.0/6.0)

| | | | | | | average dd 3 > -160

| | | | | | | | futneighborprobdiff ≤ 0.070866

| | | | | | | | | neighborprob ≤ 0.12: nonobo (58.0/19.0)

| | | | | | | | | neighborprob > 0.12: obosubstitute (75.0/16.0)

| | | | | | | | futneighborprobdiff > 0.070866: obosubstitute (357.0/37.0)

| | | | sameasprev nom = True: repeat (87.0/22.0)

| | | curfutadjacent nom = True

| | | | dropprobgain ≤ 0.009987: nonobo (32.0/12.0)

| | | | dropprobgain > 0.009987: rollon (263.0/30.0)

| | prevcuradjacent nom = True: rolloff (97.0/14.0)

| prob > 0

| | dt ud 1 0 ≤ 144

| | | dropprobdiff1abs ≤ 0.001085: multiple (30.0/16.0)

| | | dropprobdiff1abs > 0.001085

| | | | curfutadjacent nom = False

| | | | | dropprobgain ≤ 0.009346: nonerror (180.0/15.0)

| | | | | dropprobgain > 0.009346: nonobo (85.0/27.0)

| | | | curfutadjacent nom = True

| | | | | dropprobdiff ≤ 0.014085

| | | | | | dt uu 1 0 ≤ 0: nonerror (32.0/16.0)

| | | | | | dt uu 1 0 > 0: rollon (305.0/33.0)

| | | | | dropprobdiff > 0.014085

| | | | | | dropprobgain ≤ 0.005535: nonerror (241.0/21.0)

| | | | | | dropprobgain > 0.005535

| | | | | | | dt uu 1 0 ≤ 4
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| | | | | | | | dur avg minus dur ≤ -7: nonerror (37.0/5.0)

| | | | | | | | dur avg minus dur > -7

| | | | | | | | | neighborprob1diff ≤ -0.01676: nonerror (33.0/12.0)

| | | | | | | | | neighborprob1diff > -0.01676: rollon (30.0/10.0)

| | | | | | | dt uu 1 0 > 4: rollon (33.0/9.0)

| | dt ud 1 0 > 144

| | | futprob ≤ 0

| | | | prevcuradjacent nom = False

| | | | | sameasprev nom = False

| | | | | | futneighborprob ≤ 0.00813

| | | | | | | curfutadjacent nom = False

| | | | | | | | ud sub1 ≤ -220: nonobo (114.0/32.0)

| | | | | | | | ud sub1 > -220

| | | | | | | | | prob ≤ 0.027027

| | | | | | | | | | nowprevdiff ≤ 32: nonerror (42.0/16.0)

| | | | | | | | | | nowprevdiff > 32: nonobo (43.0/12.0)

| | | | | | | | | prob > 0.027027

| | | | | | | | | | average ud 2 ≤ -108

| | | | | | | | | | | futprob1 ≤ 0.004625: nonerror (42.0/4.0)

| | | | | | | | | | | futprob1 > 0.004625

| | | | | | | | | | | | bestneighbor 2 ≤ 103: nonobo (31.0/10.0)

| | | | | | | | | | | | bestneighbor 2 > 103: nonerror (30.0/13.0)

| | | | | | | | | | average ud 2 > -108: nonerror (530.0/70.0)

| | | | | | | curfutadjacent nom = True: nonerror (55.0/24.0)

| | | | | | futneighborprob > 0.00813

| | | | | | | neighborprob ≤ 0.001684

| | | | | | | | du sub1 ≤ -24: nonobo (41.0/8.0)
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| | | | | | | | du sub1 > -24: nonerror (66.0/11.0)

| | | | | | | neighborprob > 0.001684

| | | | | | | | dropprobdiff ≤ 0.209524

| | | | | | | | | futneighborprob ≤ 0.441176

| | | | | | | | | | average du 3 ≤ -138

| | | | | | | | | | | futprob1 ≤ 0.03352: obosubstitute (62.0/27.0)

| | | | | | | | | | | futprob1 > 0.03352: nonobo (61.0/12.0)

| | | | | | | | | | average du 3 > -138

| | | | | | | | | | | neighborprobdiff ≤ -0.015748: nonerror (83.0/33.0)

| | | | | | | | | | | neighborprobdiff > -0.015748

| | | | | | | | | | | | p nom = r: obosubstitute (21.0/10.0)

| | | | | | | | | | | | p nom = k: obosubstitute (0.0)

| | | | | | | | | | | | p nom = i: obosubstitute (8.0/4.0)

| | | | | | | | | | | | p nom = e: obosubstitute (13.0/6.0)

| | | | | | | | | | | | p nom = y: obosubstitute (0.0)

| | | | | | | | | | | | p nom =

| | | | | | | | | | | | | dur avg minus dur ≤ 16: nonerror (36.0/20.0)

| | | | | | | | | | | | | dur avg minus dur > 16: obosubstitute (32.0/13.0)

| | | | | | | | | | | | p nom = w: obosubstitute (8.0/3.0)

| | | | | | | | | | | | p nom = a: obosubstitute (32.0/6.0)

| | | | | | | | | | | | p nom = t: obosubstitute (6.0/2.0)

| | | | | | | | | | | | p nom = c: obosubstitute (8.0/1.0)

| | | | | | | | | | | | p nom = h: obosubstitute (2.0)

| | | | | | | | | | | | p nom = d: obosubstitute (17.0/1.0)

| | | | | | | | | | | | p nom = n: nonerror (9.0/4.0)

| | | | | | | | | | | | p nom = m: obosubstitute (3.0)

| | | | | | | | | | | | p nom = o: nonerror (8.0/5.0)
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| | | | | | | | | | | | p nom = v: nonerror (1.0)

| | | | | | | | | | | | p nom = s: obosubstitute (10.0/6.0)

| | | | | | | | | | | | p nom = z: obosubstitute (0.0)

| | | | | | | | | | | | p nom = u: obosubstitute (5.0/1.0)

| | | | | | | | | | | | p nom = g: nonerror (5.0/1.0)

| | | | | | | | | | | | p nom = l: obosubstitute (6.0/2.0)

| | | | | | | | | | | | p nom = p: obosubstitute (4.0/1.0)

| | | | | | | | | | | | p nom = f: obosubstitute (8.0/3.0)

| | | | | | | | | | | | p nom = b: nonobo (3.0/1.0)

| | | | | | | | | | | | p nom = j: obosubstitute (0.0)

| | | | | | | | | | | | p nom = x: obosubstitute (0.0)

| | | | | | | | | | | | p nom = q: obosubstitute (0.0)

| | | | | | | | | futneighborprob > 0.441176: obosubstitute (99.0/12.0)

| | | | | | | | dropprobdiff > 0.209524: nonerror (47.0/13.0)

| | | | | sameasprev nom = True

| | | | | | dt du 0 p1 ≤ 100: nonerror (42.0/11.0)

| | | | | | dt du 0 p1 > 100: repeat (34.0/17.0)

| | | | prevcuradjacent nom = True

| | | | | prob ≤ 0.078652: rolloff (40.0/17.0)

| | | | | prob > 0.078652: nonerror (49.0/6.0)

| | | futprob > 0

| | | | sameasprev nom = False

| | | | | prevcuradjacent nom = False

| | | | | | futneighborprobdiff ≤ 0.019231

| | | | | | | futdt ≤ 68

| | | | | | | | dropprobgain ≤ -0.031088: nonerror (94.0/3.0)

| | | | | | | | dropprobgain > -0.031088: nonobo (31.0/13.0)
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| | | | | | | futdt > 68

| | | | | | | | average du 2 ≤ -148

| | | | | | | | | curisletter nom = True: nonerror (6977.0/250.0)

| | | | | | | | | curisletter nom = False

| | | | | | | | | | prob ≤ 0.296

| | | | | | | | | | | dropprobdiff1abs ≤ 0.142045

| | | | | | | | | | | | dur 1 ≤ 108

| | | | | | | | | | | | | du sub1 ≤ -164: nonobo (33.0/11.0)

| | | | | | | | | | | | | du sub1 > -164: nonerror (33.0/10.0)

| | | | | | | | | | | | dur 1 > 108: nonerror (36.0/5.0)

| | | | | | | | | | | dropprobdiff1abs > 0.142045: nonerror (43.0/3.0)

| | | | | | | | | | prob > 0.296: nonerror (505.0/23.0)

| | | | | | | | average du 2 > -148: nonerror (52001.0/661.0)

| | | | | | futneighborprobdiff > 0.019231

| | | | | | | neighborprobdiff ≤ -0.027027: nonerror (6620.0/184.0)

| | | | | | | neighborprobdiff > -0.027027

| | | | | | | | neighborprob ≤ 0.428571

| | | | | | | | | dur 0 ≤ 52

| | | | | | | | | | futprob ≤ 0.092308

| | | | | | | | | | | hdistabs ≤ 0: obosubstitute (31.0/15.0)

| | | | | | | | | | | hdistabs > 0: nonerror (51.0/19.0)

| | | | | | | | | | futprob > 0.092308: nonerror (92.0/17.0)

| | | | | | | | | dur 0 > 52: nonerror (3125.0/322.0)

| | | | | | | | neighborprob > 0.428571: obosubstitute (39.0/2.0)

| | | | | prevcuradjacent nom = True: nonerror (4125.0/67.0)

| | | | sameasprev nom = True

| | | | | pisletter nom = True: nonerror (1874.0/47.0)
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| | | | | pisletter nom = False: repeat (62.0/13.0)

Number of Leaves : 91

Size of the tree : 156
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APPENDIX C

THE DOCUMENT SHARED WITH PARTICIPANTS

DETAILING THE PURPOSE OF THE FATTHUMBS

EVALUATION

Thank you so much for participating in our study. Here are some details about what

we were studying and why:

Our study was designed to examine the impact of automatic error detection on

mini-qwerty keyboard typing performance. In order to do this, we decided to train

each of our participants until they were expert mini-qwerty typists. From previous

studies, we have determined that it takes 300 minutes of typing on a mini-qwerty

keyboard device to achieve expertise. As such, we had you type for fifteen 20-minute

sessions using the phone. Once you had been trained to be an expert mini-qwerty

typist, we put you (and everyone else) into the experimental phase of the study. For

your last two typing sessions, instead of typing for 20 minutes, we had you type until

you had completed 10 blocks of 10 phrases each (100 phrases). Half of those blocks

randomly had our error correction algorithm turned on, half of them did not. So

over the last two sessions, you typed 100 phrases with automatic error correction

enabled and 100 phrases with it turned off. Everyone is going to go through the

same procedure as you have. We did not mention or discuss correcting errors earlier

because we wanted to see if our method was noticeable, and if it was, we wanted to

learn how noticing the error correction impacted your performance.

Do you have any questions or comments for us about the study now that you

know what we were specifically investigating?

Thanks again for your participation. We hugely appreciate it!
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APPENDIX D

FULL INTERVIEW TRANSCRIPTS FROM THE

FATTHUMBS EVALUATION

D.1 Participant 1001

Exit Interview (a semi-structured interview):

Can you discuss some of the challenges you encountered entering text into your

mobile device?

My nails got in the way a lot. Sometimes I would look at the keyboard

and sometimes at the screen. Depending on which I was looking at it was

hard to know if I made a mistake or to take more time to fix it. Sometimes

my fingers would slide on the keys.

In the beginning I was just looking at the keyboard. Towards the end I

had a hard time deciding which one to look at. I typed faster if I looked

at the screen but sometimes my eyes would wander towards the keyboard

and look at it.

At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?

No, every once in a while it would stop and think but I was usually in the

middle of typing so it never really effected anything.

How do you feel about how you did in the study? Were you pleased with your

performance?
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I think did well. I enjoyed it. I think I would get faster but eventually

I wouldn’t have any motivation to get any faster. So I would just stop

trying to type faster.

In addition to exploring text entry performance, we were also investigating a novel

spelling correction algorithm. Some of our participants evaluated this software, others

did not. Which group were you in? How could you tell?

Spelling correction? I don’t think it ever corrected my spelling. When I

made a mistake I would have to go back and manually fix it.

When I was staring at the keyboard I would look at what I was supposed

to be typing and go down and type the wrong word or type an a instead

of a v. That would be a common mistake I’d make. An then other times

I would just type the letter next to the letter I was supposed to hit.

Did you realize that automatic error correction software was active? If so, did you

find the automatic error correction helpful? Why or why not?

Oh, that’s why it seemed faster. (she said out loud while reading) That’s

cool.

Any questions for us?

No, I think that is it.

D.2 1002

Exit Interview (a semi-structured interview):

1. Can you discuss some of the challenges you encountered entering text into your

mobile device?

The keys are really small. I think that was the biggest challenge just

learning how to get used to hitting right in the middle of my thumb so

151



it would just the key and nothing else around it. I think my fingernails

kind of got in the way sometimes and they would hit the key above what

I was trying to hit. But I think mainly the biggest challenge was the size

of the keys.

I don’t think my process really changed. I just got faster and more ac-

customed to where the keys were. I was starting to be able to look more

at the words I was typing and not at the letters. So my thumbs kind of

adapted to where the keys were. I didn’t have to look down to see where

I needed to put my thumbs on each key. This is why I had the speed

increase.

In the beginning were you looking more at the keyboard and at the end more at the

screen?

Yeah, it was probably half and half and that is why it felt so slow. And

towards the end it was probably more closer to 75%-80% looking at the

word and 20-25% looking at the letters.

Did you feel like you made a lot of mistakes?

I think I was pretty accurate. I always try to leave my accuracy pretty

high. I think every third or fourth block of ten phrases I would have to

delete halfway through because I noticed I hit a “s” instead of a “a” I

think I was fairly accurately.

2. At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?

Every now and then it seemed like there was a little hourglass that would

pop up and then there would be delayed for just split second and then the
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letters I was typing would catch up. But other than that, nothing1.

3. How do you feel about how you did in the study? Were you pleased with your

performance?

I think I did pretty well. I had pretty high number and accuracy and I

could see steady increases in speed every time and I can only assume that

that is pretty good.

What were things you felt like you did particularly well?

Well, I think the thing I did the most well was typing accurately because

my accuracy was pretty high.

What was your accuracy all the way the through?

I think the lowest I ever got was 99.1 and I got a 100% one time so that

was cool and exciting.

I think you were the only participant to do that so far.

Yes.. awesome, awesome.

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this software,

others did not. Which group were you in? How could you tell?

I was not in the one that had the spelling correction software.

How could you tell?

Because I spell things wrong.

1the hourglass appeared on the screen when Blacktwidor went into garbage collection mode. It
introduced a very brief delay. Though minor, this delay was noticeable and several of the participants
comment on it.
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5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?

Ohhh. ok. Interesting, ok, hmmm. I had no idea. I guess that’s the point.

Now that I think about it, I did notice that the sessions were shorter at

the end.

D.3 1003

Exit Interview (a semi-structured interview):

1. Can you discuss some of the challenges you encountered entering text into your

mobile device?

Pressing multiple buttons at once. That was probably my biggest prob-

lem. Really early on, just cause I am touch typist I don’t really think

about where the keys are, I was not as familiar with the keyboard as I

thought I might had been but that went away pretty quickly. I found after

the first few sessions I could zone out and still be looking at the keyboard

to see where my hands were but not to see if I was pressing “T”. I didn’t

have to look at it.

“B’ on a regular keyboard kind of in the middle of the “G” and “T” but

on this keyboard it was over to the side so a lot of time when I meant to

press “N” I would press “B”. I also had problems with the “Q” and “P”

because they were really far on the edge and am not used to using the

edge of the keyboard.

Mostly in the beginning, it got a bit getting use to but near the end I

wasn’t too concerned about it.

2. At any point in the study did you notice your mobile device behaving errati-

cally? Can you describe that behavior?
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I think sometimes when I pressed space too early and I went to backspace

to add a letter to a word it would delete the space plus the last letter that

I typed. But that is like total speculation. But I think that might have

happened, because I would press backspace twice to go back the space I

had enter plus the last letter and then when I would enter the new letter

then part of the word would be missing like it had deleted more then I

thought I had.

3. How do you feel about how you did in the study? Were you pleased with your

performance?

I’m not sure. You guys said I did well.

Were you satisfied with it?

Yeah.

Do you feel like you could have typed faster?

No, I tried pretty hard.

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this software,

others did not. Which group were you in? How could you tell?

I just texted entered things. So I don’t think I evaluated the software.

So you were not in the experimental group, is what you are saying?

No, I don’t think so.

5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?
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I didn’t notice. Some of them, I was like, there was no way that I got

them 100% correct, but then it said I got 100% correct, and I was like

whatever.

I had no idea.

D.4 1004

Exit Interview (a semi-structured interview):

1. Can you discuss some of the challenges you encountered entering text into your

mobile device?

First off, I would say that the initial challenge was just figuring out how

to click the individual buttons, the size of the buttons, trying to... making

sure you were accurate while still being quick. Learning the initial layout

of the keyboard, certainly. But more the size of the buttons was the

challenge for me.

How did the challenges changes over time?

It got better. Every time I would try to ramp up the speed I would notice

that the same challenges would come back a bit. So, I would step up the

speed a little bit, and I would still keep missing them, then I would get

better and I would be more accurate at that speed and then I would be

able to step it up to the next speed. I noticed I was able to get each button

individually pretty cleanly once I had practiced it a couple of times.

Just by doing it. Almost slowing yourself down. I would try to maintain a

reasonable speed that I thought I could do and work more on accuracy a

little bit and then try to step it up to the next one. That would sometimes

happen three times every 20 min sessions or towards the end I couldn’t
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get any higher. I tried to get more accurate. The end was kind of bad, to

be fair.

I think I could do a little better. I think I could probably get it up two

or three words per minutes more. But I think I pretty much was at the

fastest that what my brain could keep up with my finger movement. I

don’t think I could do much faster than that. I think I could get more

accurate. I don’t think I could go that long at that speed. I got some in

the 90s, some in the 70’s some in the 60’s but the average would be like

78 and I would say that I couldn’t get higher than that average.

A lot of my mistakes were like dyslexic mistakes at first, and I got a little

bit better. When I figured out “read it, memorize it and then spit it back

out.” Then some of those led to some dyslectic mistakes. At the end

when I was trying to get really fast it was just my fingers wouldn’t go to

the right space. My finger just couldn’t make it all the way to the edge

and corner. I would hit the button next to it. Or I would miss spaces, I

missed a lot of spaces. I would miss a lot of letters. And then after that

the next letters were toast.

At first I deleted and went back to make sure my accuracy was good. And

then I realized that it wasn’t worth it. I stopped using delete. I gave up

on mistakes. I basically told myself to just accept the fact that you missed

it and go for the next letter as quickly as I could. Because if you just miss

one letter or switch two letters in a row then your accuracy is still pretty

good and it’s still readable as well. I stopped worrying about it.

2. At any point in the study did you notice your mobile device behaving errati-

cally? Can you describe that behavior?

I don’t think it was the device. There was a couple of times that I thought
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I clicked enter and I didn’t. I wasn’t sure if it was the phone not keeping

up with me or whether it was me hitting two buttons simultaneously. I

don’t know why it did it. But it was certainly a couple of times when I

thought I hit enter and it didn’t happen. Other than that it was fine.

Talk about hitting buttons simultaneously. Did you do that often?

I did. I did every time I tried to speed it up that was like the initial

learning curve I would hit two buttons. I obviously got better at it over

time. It was more at first, I was able to correct that problem. The size of

the buttons was actually very good even for my fingers which I guess are

average size. It happened when I was trying to go too fast.

3. How do you feel about how you did in the study? Were you pleased with your

performance?

I was pretty happy with it. I thought I did well. I thought that I wish I

had tried to push myself earlier in it. I realized how quickly I could go. I

really didn’t have any clue. At first I was disappointed because I’m good

on a desktop computer so I was expecting to be able to type pretty fast.

But towards the end I was very happy with it. I like to get over 80. But

we’ll take it.

How fast do you think you type on a desktop computer?

I think I type about 110, 115.

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this software,

others did not. Which group were you in? How could you tell?

I think I was in the one that didn’t have the error correction. It didn’t

change anything that I typed. So I typed it, it stayed, I guess.
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Would you have liked to have been in that group.

No, I would have hated it, probably. I don’t know how the software works,

but I think that would have slowed me down... for sure. And I mean, error

correction, I have no idea what it’s going to correct me to, necessarily. So,

I liked not having it.. for sure.

5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?

So I did have some error corrections in there? I didn’t notice it. I didn’t

notice it at all. I guess I would be more focused on my typing. So I would

look at the phase and then type it as quickly and accurately as I could.

And then not look at the word per minute so I didn’t even know if it was

correcting or not. I would look at the accuracy number and it would still

be about 100 so I’m like there’s no error correction. I mean, I wasn’t even

thinking about it. I had no idea.

There were definitely times I would hit two keys. Looking back on it,I

actually do feel like there were some times, I guess you were saying it was

just the last two times, that it was there. I felt like I was able to get one

letter out a lot. I was like, ok that’s odd, because I thought I hit two. But

I didn’t notice it. I would have never known it was doing a correction. I

thought it was my correct type. I also noticed it a little bit before too,

but I wasn’t really paying attention what was showing up on the screen

during the last half of the study. I was all about how quickly I could move

on to the next one.

D.5 1005

Exit Interview (a semi-structured interview):
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1. Can you discuss some of the challenges you encountered entering text into your

mobile device?

Typing, first of all, was one of them. Like, the buttons being... Figuring

out a good way to position the fingers on the buttons, and not mashing

down two buttons at one time and having to backspace. Very early on in

the study, I was sometimes hitting “enter” instead of backspace so I would

skip like the second half of the line and not being able to go back to it.

It got easier later on, I don’t know why. The other day I could remember

in particular that the way I was going about it my fingers kept slipping

on the buttons I guess because I was using my nails or something. But

today and yesterday, I didn’t notice at all.

Did you feel like you had the same challenges in the beginning as you did in the

end?

I think I got the hang of...I definitely got used to where the backspace

and enter buttons were so I wasn’t making the mistake of hitting enter

prematurely anymore. And also, just typing on the keypad got a little bit

easier.

Did you feel like you still made the same mistakes like pushing two keys at once?

That still did happen.

Even as you got faster?

Yeah, occasionally it would be just k’s instead j’s or something. It was

still going on but less, not as frequent.

2. At any point in the study did you notice your mobile device behaving errati-

cally? Can you describe that behavior?
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I didn’t notice anything wrong with the phone itself. I didn’t notice any

technical problems.

3. How do you feel about how you did in the study? Were you pleased with your

performance?

I feel like I was pretty quick. There might be people faster than me though

I don’t feel like I was the best one.

What were some of the things you think you did really well?

I feel like the accuracy stayed pretty high and was pretty consistent. I

think that was a good thing that I did. I was usually in the same range

of wpms too.

I wanted to do better. There were times when I would hit 70 wpms but

a few days ago I would get that once or twice. And I thought I would be

reaching that more often but like today I still had some lines that were 40

(wpm). Because maybe I would make a mistake and have to backspace.

Whenever you have to backspace something that just takes your time

down a lot. I wasn’t really getting in the 70’s or high 60’s.

Do you think you could type faster given more time or do you think you have

leveled off?

I would say I kind of leveled off. I think. I guess I was making progress up

to this point so it’s possible that I could still make some more progress.

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this software,

others did not. Which group were you in? How could you tell?

You had an error correction software? Was I suppose to know this be-

forehand? What was the error correction thing do? Does it just know
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words so that if you hit a wrong key it would substitute in the letter it

thinks... I think I was not under the error correction software. Because I

feel pretty confident that I was hitting the right letters. Like the button

mashing problems I was having where I would hit two buttons at the same

time or maybe the wrong one it would still be there. I feel that an error

correction software would avoid that.

5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?

Interesting...I didn’t notice it. No, I didn’t.

Not a distraction?

Not in the 100 phrases... yeah I didn’t notice it. Yeah, what I was

doing, I didn’t really look back on my sentences very often. I would just

kind of trust where my fingers were going and I would hit enter as soon

as... I wasn’t really checking so maybe I just didn’t notice it was being

implemented as I was typing.

When you were at the end of the study were you spending most of your time

looking at the screen or looking at the keys, or where was your attention?

Well, I would read the sentence and then yeah, my eyes would be on the

keys. I would kind of just look at the center of the keyboard And I don’t

know, my eyes would maybe dart back and forth.

D.6 1006

Exit Interview (a semi-structured interview):

1. Can you discuss some of the challenges you encountered entering text into your

mobile device?
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Well, I guess the first thing that comes to mind, is just that I feel like I

may have really big fingers, so I would occasionally try to press a button

and I would accidentally press another button as well with that. So if I

press C I would actually end up pressing C,V, or something like that. I

guess I also sometimes had a little bit of trouble figuring out which key

was where, like I would forget where the X or the Z button was.

So talk a little more about the mistake when you would press two keys at once.

I think that was a bit involuntary. It only happened some of the time. So

I think it was just a matter of how my fingers were placed on the keys,

so maybe it was more flat as opposed to straight down on the key. So

that would usually happened, like I would pressing at a certain angle, so

I would end up pressing the next key as well.

Did you challenges change throughout the study or were they pretty consistent

all the way through?

I would imagine they were pretty consistent. The study for me took

pretty longer than most people decided to take it. I think I had a little

trouble with it at the beginning but it definitely seemed more evident. It

happened more often later in the study. Like today and the last time I was

here, it definitely became evident that I became frustrated with myself.

Do you think that was because you were going faster as you went a long?

That could be part of it. It definitely seemed like I got faster with the

typing as the study went on.

2. At any point in the study did you notice your mobile device behaving errati-

cally? Can you describe that behavior?
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There were times when the thing kind of paused like it was trying to

registered what I typed in. I noticed that. I think that was pretty much

it.

Did that happen consistently throughout or did that happen more in the beginning

verses the end or vice versa?

It was pretty consistent. I don’t think there was a certain reason why it

would it at times. It was just random moments.

3. How do you feel about how you did in the study? Were you pleased with your

performance?

Yeah, I thought I did pretty good. I would probably reconsider if I were to

understand how well other people would do. Yeah I thought I did alright.

Do you feel like you could have typed a lot faster if the study was longer. Do you

think you would have continued to improve?

Maybe a little bit. It definitely seemed like I was starting to reach a bit of

the plateau. I would usually get up to something around the 40 range. i

would occasionally have the 50 whenever there was an easy ones, when you

weren’t typing really long words or something like that, the complicated

ones.

4. In addition to exploring text entry performance, we were also investigating a

novel spelling correction algorithm. Some of our participants evaluated this software,

others did not. Which group were you in? How could you tell?

I was the one without it. I just kept typing and it didn’t really seem to

correct anything.
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5. Did you realize that automatic error correction software was active? If so, did

you find the automatic error correction helpful? Why or why not?

I guess I did kind of notice that a little bit, it was weird. I actually typed

in something and then it backspace a little bit and I thought I actually

pressed the backspace. Well you got me.

D.7 1007

Exit Interview (a semi-structured interview):

Can you discuss some of the challenges you encountered entering text into your

mobile device?

First off, I wasn’t too familiar with the keyboard other than briefly using

my dad’s keyboard. The keyboard was kind of small and it was kind of

hard figuring out the best way to use it. It just took time getting used to

it more than anything else.

Towards the end, I was able to do better because I had learned the key-

board and was able to move around faster on the keyboard. When I

started out I was trying to figure out the best way to do it.

I started out just using my left thumb for the left side of the keyboard

and the right thumb for the right side but towards the end, if there were

several letters in a row that were on the left side, then I’d use the other

thumb and come over to just go faster instead of just using one thumb for

each side.

Did you feel like that helped?

A little bit, yeah. Because otherwise, you’re just sitting there moving one

thumb while the other thumb is not doing anything. Moving both means

you have more usage of your thumbs.
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Do you feel like you made many mistakes doing that?

At the beginning, trying it out, I feel like I made a couple of mistakes.

Just like pushing multiple keys at once. And then towards the end, I got

better at it. More precise with the movement of my thumbs.

Do yo feel like you made the same mistakes all the way through the study or do

you feel like those changed as you progressed?

I feel like pretty much. Most of my problems were pushing more than one

key at once. So I’d enter a couple of keys and then I’d have to backspace

if I wanted to do it correctly or if I wanted to just leave it. That was a

decision I had to make.

Do you feel like that decision changed over time?

A little bit towards the end. I was just going more for speed than accuracy.

If I did do a double, if I pushed two letters at once, I’d just let it go and

just keep typing. Because I feel like it slows you down a lot when you go

back. You’re retyping everything twice and you have the backspaces on

top of that. It really cuts down your ability to perform.

At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?

Only just briefly. When you’re typing really fast and the little clock comes

on the screen and spin for a second and then all the text would come out

all at once instead of letter by letter. But that was only three or four

times total.

Anything else?

Not that I noticed, or distracted or bothered me or anything.
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How do you feel about how you did in the study? Were you pleased with your

performance?

Yeah, absoultely. I saw a pretty good improvement going from 30 to 48.

It is pretty exciting to see yourself improve and get better at it.

In addition to exploring text entry performance, we were also investigating a novel

spelling correction algorithm. Some of our participants evaluated this software, others

did not. Which group were you in? How could you tell?

I feel like I didn’t. You’re saying it would correct spelling errors? I didn’t

see it correct anything so..I don’t know. I didn’t notice anything if I was.

Did you realize that automatic error correction software was active? If so, did you

find the automatic error correction helpful? Why or why not?

Now that you mention it, I vaguely remember that it might have switched

once or twice. I didn’t really think anything much of it because I was

trying to go as fast as possible but I was like I think I might have changed

once or twice. But I certainly didn’t know it.

D.8 1008

Exit Interview (a semi-structured interview):

Can you discuss some of the challenges you encountered entering text into your

mobile device?

I’ve had a flip phone since high school and that had physical buttons

but no but it was not a qwerty keyboard. So basically the only qwerty

keyboard I have typed on that is that small is on a touchscreen. So it was

weird actually pressing different buttons with my thumb. And I would

accidentally press two buttons at once. Which on a touchscreen you don’t
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have to worry about because it would opt to choose one. Whereas on the

Blackberry sometimes I would make two letters press at the same time if

that makes sense. And that was kind of hard to get use to where to put

my finger so that I would press only one.

How did you deal with that?

I bent my thumbs more and just kind of made them more pointy. I made

them more perpendicular to the phone. That way I had more accuracy

with what buttons I was pressing.

Did you find it easier or more difficult to type on a phone with the fixed-keys vs.

your previous touchscreen experience.

Well, actually I use to say that I hated Blackberries because my mom had

one. But now if I had a Blackberry I would not mind because I’m really

good on typing on it now. So I think I would say I prefer a physical one

actually. But the only problems is that a Blackberry doesn’t do everything

an iPhone does and that’s what I want. But yes, if iPhones had physical

keyboards, I would choose the physical keyboard.

Did you have different challenges in the beginning of the study to when you

finished?

You mean different challenges from the first session to like now? Yeah,

yeah, pretty much the button pressing, where I would press two buttons

at once. As well as, this is unrelated to the typing part of it, but like

reading the phrase that came up. Sometimes I would like misread it or I

would rephrase it in my head the way I would have written it you know?

Cause there’s like just bias I guess for someone reads something and they
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think of I would have said it differently. Or, like, I think you guys avoided

using contractions because obviously you can’t do an apostrophe so the

one that said “a dog is the best friend of a man” in my head I typed it

“dog is mans best friend” just with “m a n s” and I did that a lot, it

didn’t matter what session it was. But that, again, wasn’t typing, that

was just reading. But typing wise, yeah, it was just me typing more than

one button at once. And then also I got the backspace and enter button

confused a couple of times.

Can you describe things you think you did particularly well?

Well, this might be cheating but, I was good at remembering the phrases.

So I would like see the first word and know what the rest of the phrase

was and then just go from there. Instead of having to like type it, look,

type it, and keep looking back and forth, I would just memorize it. So, I

just got to know most of the phrases and I would say that helped me a

lot.

So, did you spend most of your time look at the screen or at the keyboard?

At the keyboard. Definitely. I think the percentage would have gone

down if I had answered that after the first session instead of this session

but still, overall, I looked at the keyboard more.

Did you make a lot of corrections as you went through the study?

The first half I did. The first four or five sessions. With that percentage

going down as the sessions went on. Because I was like “I have to be

perfect” and then I was like “No, that’s ok” because my accuracy was still

really good. I got above 94%, 93% and I was just focused on going faster.
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At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?

How do you feel about how you did in the study? Were you pleased with your

performance?

In addition to exploring text entry performance, we were also investigating a novel

spelling correction algorithm. Some of our participants evaluated this software, others

did not. Which group were you in? How could you tell?

Is this like the iPhone autocorrect? No, I wasn’t in that group. It would

have been helpful if I had been. It could have saved me time correcting

mistakes. Because then when all was said and done I wouldn’t have wasted

those one or two seconds. Which isn’t that long in the grand scheme of

things. But in there (looks at the study office) it is. Every second counts.

Talk to me a little bit more about the mistakes you made.

Well, I could feel the mistakes in my fingers. You know? If I pressed two

buttons at once, I could feel on the pads of my thumb that there were two

buttons on my thumb at once that were being pressed. Occasionally, if I

hit one button but it was just the wrong letter, somehow, I just knew I

hit the “v” instead of the “b” and so I would check it just to make sure.

And I was like “oh yea, I did, I messed up.” And sometimes I thought

I messed up and I didn’t and then I wasted like half a second looking at

that and I’m like “oh crap!” but I got to know where the keys were and

I could do it without looking and stuff. So that was pretty cool.

Did you realize that automatic error correction software was active? If so, did you

find the automatic error correction helpful? Why or why not?

Do you have any comments, observations, or feedback for me or any other member

of the research team?
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Thank you so much for your participation!

D.9 1009

Exit Interview (a semi-structured interview):

Can you discuss some of the challenges you encountered entering text into your

mobile device?

In the beginning, I’ve never owned a Blackerry and I’ve only used one like

one time. So I didn’t have any experience using a qwerty keyboard on a

phone before. So that was, starting off, the hardest part was using my

thumbs and trying to connect that to where I would put my fingers on a

normal computer keyboard but that, like, went away real quick.

Did you have other challenges in the study?

Once I started getting up past fifty words per minute it became very hard

to type accurately. I was mashing the buttons so hard. I was typing faster

than I could read the phrase and process it. I was typing faster than I

could think. I was typing faster than I was doing those first two things so

that slipped me a little bit.

Did you find that the challenges changed over the course of the study?

Yeah, absolutely. In the beginning, it was more how to type on the key-

board. But towards the end, the challenge was trying to anticipate the

letters as they were coming and trying to process it quickly enough to be

able to type it fast enough.

At any point in the study did you notice your mobile device behaving erratically?

Can you describe that behavior?
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Yes. On the first phase, whenever I would type it, I would almost always

have a pause after hitting the enter button. Which didn’t seem to effect

the time, the wpm or anything but, after a while I started anticipating

that. And then there were the time blips that would come up every now

and then. Andmaybe once or twice I felt like it might have glitched when

I was typing. But that could have been human error. I was typing so fast

it was too hard to tell.

Were you pleased with your performance?

Yeah. If you told me after the first two sessions that I would be able type

over 50 wpm at 95% accuracy I would have told you that you were crazy.

Cause, in fact I had some other friends who were doing the study and

they told me they were typing like in the 50s and 60s and I was like “I

can’t even imagine what that must be like” and then I was doing that in

the last two (sessions).

How did that feel to get to that point?

Well, you know, I have major olympic fever right now. So it became sort

of a sports, competition, quest for me. So yeah, it felt really good.

In addition to exploring text entry performance, we were also investigating a novel

spelling correction algorithm. Some of our participants evaluated this software, others

did not. Which group were you in? How could you tell?

I did NOT have autocorrect. That would have been awesome. You know,

that explains a lot about my friends. Since that was not told, it was weird

comparing to my friends, in retrospect.

Weird in what way?
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I was comparing myself to them and they were saying they were typing

65wpm at 100% or 99% accuracy. And I was like, “I don’t think that’s

physically possible.” You know, on the Blackberry you can only go so fast

and there is just no way you can go that fast unless you really practice.

And that’s basically what I was doing. So, that explains a lot.

So, you didn’t feel like it was awkward or weird to have the autocorrection turned

on?

Wait, what? I didn’t have it. What? Woh, I feel like an idiot now. I was

sure that I didn’t have it.

I remember when I was typing very quickly, I was just absolutely mashing

buttons. It would automatically delete and have the right word. I thought

I had just hit the delete button, I was going so fast. It never occurred to

me that that is what it was.

Autocorrection. Wow. I mean, wow. That’s really funny. I had no idea.

I guess from the experiment standpoint, I’m not a conspiracy theorist for

this experiment. I decided not to worry about the blips or anything. I

just quickly put that out of my mind because I was just so focused on

typing speed that I was just not remotely thinking about it.
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