CUDA Overview

Cliff Woolley, NVIDIA
Developer Technology Group
GPGPU Revolutionizes Computing

Latency Processor + Throughput processor

CPU + GPU
Low Latency or High Throughput?

CPU
- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

GPU
- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation
Low Latency or High Throughput?

- **CPU architecture** must **minimize latency** within each thread
- **GPU architecture** hides latency with computation from other thread warps
1. Copy input data from CPU memory to GPU memory
Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
GPU ARCHITECTURE
GPU Architecture:
Two Main Components

Global memory
- Analogous to RAM in a CPU server
- Accessible by both GPU and CPU
- Currently up to 6 GB
- Bandwidth currently up to 150 GB/s for Quadro and Tesla products
- ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
- Perform the actual computations
- Each SM has its own:
 - Control units, registers, execution pipelines, caches
GPU Architecture – Fermi: Streaming Multiprocessor (SM)

- 32 CUDA Cores per SM
 - 32 fp32 ops/clock
 - 16 fp64 ops/clock
 - 32 int32 ops/clock
- 2 warp schedulers
 - Up to 1536 threads concurrently
- 4 special-function units
- 64KB shared mem + L1 cache
- 32K 32-bit registers
GPU Architecture – Fermi: CUDA Core

- Floating point & Integer unit
 - IEEE 754-2008 floating-point standard
 - Fused multiply-add (FMA) instruction for both single and double precision
- Logic unit
- Move, compare unit
- Branch unit
GPU Architecture – Fermi: Memory System

- **L1**
 - 16 or 48KB / SM, can be chosen by the program
 - Hardware-managed
 - Aggregate bandwidth per GPU: 1.03 TB/s

- **Shared memory**
 - User-managed scratch-pad
 - Hardware will not evict until threads overwrite
 - 16 or 48KB / SM (64KB total is split between Shared and L1)
 - Aggregate bandwidth per GPU: 1.03 TB/s
GPU Architecture – Fermi: Memory System

- ECC protection:
 - DRAM
 - ECC supported for GDDR5 memory
 - All major internal memories are ECC protected
 - Register file, L1 cache, L2 cache
Overview of Tesla C2050/C2070 GPU

<table>
<thead>
<tr>
<th>C2050 Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor clock</td>
<td>1.15 GHz</td>
</tr>
<tr>
<td># of CUDA cores</td>
<td>448</td>
</tr>
<tr>
<td>Peak floating-point perf</td>
<td>1.03 Tflops (SP)</td>
</tr>
<tr>
<td>Memory clock</td>
<td>1.5 GHz</td>
</tr>
<tr>
<td>Memory bus width</td>
<td>384 bit</td>
</tr>
<tr>
<td>Memory size</td>
<td>3 GB / 6 GB</td>
</tr>
</tbody>
</table>
Anatomy of a CUDA C/C++ Application

- **Serial** code executes in a **Host** (CPU) thread
- **Parallel** code executes in many **Device** (GPU) threads across multiple processing elements
void serial_function(...) {
 ...
}
void other_function(int ...) {
 ...
}
void saxpy_serial(float ...) {
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
void main() {
 float x;
 saxpy_serial(...);
 ...
}
void saxpy_serial(int n, float a, float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nbblocks, 256>>>(n, 2.0, x, y);
CUDA C: C with a few keywords

- **Kernel**: function called by the host that executes on the GPU
 - Can only access GPU memory
 - No variable number of arguments
 - No static variables

- **Functions must be declared with a qualifier**:
 - **__global__*/: GPU kernel function launched by CPU, must return void
 - **__device__/**: can be called from GPU functions
 - **__host__/**: can be called from CPU functions (default)
 - **__host__/** and **__device__/** qualifiers can be combined
CUDA Kernels

Parallel portion of application: execute as a **kernel**
- Entire GPU executes kernel, many threads

CUDA threads:
- Lightweight
- Fast switching
- 1000s execute simultaneously

<table>
<thead>
<tr>
<th></th>
<th>Host</th>
<th>Executes functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Device</td>
<td>Executes kernels</td>
</tr>
<tr>
<td>GPU</td>
<td>Device</td>
<td></td>
</tr>
</tbody>
</table>
CUDA Kernels: Parallel Threads

- A **kernel** is a function executed on the GPU as an array of threads in parallel.

- All threads execute the same code, can take different paths.

- Each thread has an ID:
 - Select input/output data
 - Control decisions

```c
float x = input[threadIdx.x];
float y = func(x);
output[threadIdx.x] = y;
```
CUDA Kernels: Subdivide into Blocks
CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks
CUDA Kernels: Subdivide into Blocks

- Threads are grouped into blocks
- Blocks are grouped into a grid
Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads
CUDA Kernels: Subdivide into Blocks

- Threads are grouped into blocks
- Blocks are grouped into a grid
- A kernel is executed as a grid of blocks of threads
Kernel Execution

- Each kernel is executed on one device.
- Multiple kernels can execute on a device at one time.

CUDA-thread

- Each thread is executed by a core.

CUDA-thread-block

- Each block is executed by one SM and does not migrate.
- Several concurrent blocks can reside on one SM depending on the blocks’ memory requirements and the SM’s memory resources.

CUDA-core

- Each kernel is executed on one device.
- Multiple kernels can execute on a device at one time.

CUDA-streaming-Multiprocessor

CUDA-enabled-GPU

CUDA-kernel-grid
Thread blocks allow cooperation

- Threads may need to cooperate:
 - Cooperatively load/store blocks of memory all will use
 - Share results with each other or cooperate to produce a single result
 - Synchronize with each other
Thread blocks allow scalability

- Blocks can execute in any order, concurrently or sequentially
- This independence between blocks gives scalability:
 - A kernel scales across any number of SMs
CUDA MEMORY SYSTEM
Memory hierarchy

- Thread:
 - Registers
Memory hierarchy

- **Thread:**
 - Registers
 - Local memory
Memory hierarchy

- **Thread:**
 - Registers
 - Local memory

- **Block of threads:**
 - Shared memory
Memory hierarchy: Shared memory

```c
__shared__ int a[SIZE];
```

- Allocated per thread block, same lifetime as the block
- Accessible by any thread in the block
- Latency: a few cycles
- High aggregate bandwidth:
 - $14 \times 32 \times 4 \, \text{B} \times \frac{1.15 \, \text{GHz}}{2} = 1.03 \, \text{TB/s}$
- Several uses:
 - Sharing data among threads in a block
 - User-managed cache (reducing gmem accesses)
Memory hierarchy

- Thread:
 - Registers
 - Local memory

- Block of threads:
 - Shared memory

- All blocks:
 - Global memory
Memory hierarchy: Global memory

- Accessible by all threads of any kernel
- Data lifetime: from allocation to deallocation by host code
 - cudaMalloc (void ** pointer, size_t nbytes)
 - cudaMemcpy (void * pointer, int value, size_t count)
 - cudaFree (void* pointer)
- Latency: 400-800 cycles
- Bandwidth: 156 GB/s
- Note: requirement on access pattern to reach peak performance
CUDA Programming Resources

CUDA Toolkit
- Compiler, libraries, and documentation
- Free download for Windows, Linux, and MacOS

GPU Computing SDK
- Code samples
- Whitepapers

Instructional materials on NVIDIA Developer site
- CUDA introduction & optimization webinar: slides and audio
- Parallel programming course at University of Illinois UC
- Tutorials
- Forums
GPU Tools

Profiler
- Available for all supported OSs
- Command-line or GUI
- Sampling signals on GPU for:
 - Memory access parameters
 - Execution (serialization, divergence)

Debugger
- Linux: cuda-gdb
- Windows: Parallel Nsight
- Runs on the GPU
Questions?