Median:

Given an unsorted list \(A = [a_1, \ldots, a_n] \) of \(n \) numbers

Find the median
(for odd \(n \) so \(n = 2l + 1 \) then we want to find the \((l+1)\)st smallest)

More generally, given \(k \) where \(1 \leq k \leq n \) find the \(k \)th smallest in \(A \).

Easy algorithm: sort \(A \) in \(O(n \log n) \) time then output the \(k \)th element in the sorted list.

Our goal: \(O(n) \) time algorithm.

Basic idea is like QuickSort:
- Choose a good pivot \(P \) (How?)
- Partition \(A \) based on \(P \)
 & recurse on appropriate sublist.
Select(A, k):

1) Choose a pivot \(p \) ← this is the challenging step to do
2) Partition \(A \) into \(A_{<p}, A=p, A_{>p} \)
3) If \(k \leq |A_{<p}| \) then
 return (Select(\(A_{<p}, k \))
 - If \(|A_{<p}| < k \leq |A_{<p}| + |A=p| \) then
 output \(p \)
 - If \(k > |A_{<p}| + |A=p| \) then
 return (\(A_{>p}, k-|A_{<p}| - |A=p| \))

Example: \(A = [5, 2, 20, 17, 11, 13, 8, 9, 11] \)

- Size 4
- Size 2
- Size 3

if \(k \leq 4 \), find \(k^{th} \) smallest in \(A_{<p} \)
if \(k = 5 \) or \(6 \), then \(11 \) is \(k^{th} \) smallest
if \(k > 6 \), then find \((k-6)^{th}\) smallest in \(A_{>p} \)
How to choose the pivot p?

Aiming for $O(n)$ running time
So we want a recurrence such as:

$$T(n) = T\left(\frac{9}{10}n\right) + O(n)$$

This solves to $T(n) = O(n)$

In fact for any $c < 1$,

$$T(n) = T(cn) + O(n) = O(n)$$

So if the pivot p guarantees that:

$$|A_{<p}| < cn \quad \text{&} \quad |A_{>p}| < cn$$

Then we are done.

But even if we have 2 subproblems

one of size an & one of size bn

if $a+b < 1$ so that

our recurrence is

$$T(n) = T(an) + T(bn) + O(n)$$

for $a+b < 1$ this solves to

$$T(n) = O(n).$$
We'll end up with $a = \frac{1}{5}$ & $b = \frac{7}{10}$
by spending $T\left(\frac{n}{5}\right)$ time to choose a pivot.
Then this pivot will have: $|A_{<p}| \leq \frac{7}{10}n$
& $|A_{>p}| \leq \frac{7}{10}n$

Let's say a pivot p is good if
$|A_{<p}| \leq \frac{3}{4}n$ & $|A_{>p}| \leq \frac{3}{4}n$

Think of sorted A:

\[\begin{array}{c}
\text{these are good pivots} \\
\frac{n}{4} \quad \frac{n}{2} \quad 3n/4
\end{array} \]

So to find the median we first need a "near-median"

How can we find a good pivot in $O(n)$ time?
Randomized approach:

Choose a random element of A

Check if it's a good pivot

if it is good use it as pivot

else try again

Probability that random element of A is a good pivot = \(\frac{1}{2} \) = \(\frac{1}{n} \)

In expectation, 2 tries to get a good pivot.

Then expected running time is

\[T(n) = T\left(\frac{3}{4}n\right) + O(n) = O(n) \]

But this is just expectation, & many times it may be much worse.

So need worst-case running time.
Deterministic approach: [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Want to choose a subset S of A

We find the median(S) recursively

& use $p = \text{median}(S)$

Say $|S| = \frac{n}{5}$ (the choice of $\frac{1}{5}$ doesn’t matter at this point)

Worst case: S is the $\frac{N}{5}$ smallest elements of A.

So $p = \text{median}(S)$ is the $\frac{N}{10}$ th smallest of A

thus, $|A < p| \leq \frac{9}{10} n$ & $|A > p| \leq \frac{9}{10} n$

(actually in this case $|A < p| \leq \frac{n}{10}$)

Then our running time is

$T(n) = T\left(\frac{N}{5}\right) + T\left(\frac{9}{10} n\right) + O(n)$

↑

↑

to find $\text{median}(S)$

if we run A > p

But $\frac{1}{5} + \frac{9}{10} > 1$ So this doesn’t solve to $O(n)$!
Need a more clever choice of S.
For each $x \in S$, want that at least a few
elements of A are $\geq x$ & a few are $\leq x$.
So break A into groups of size 5
(assume n is a power of 5)

Let $G_1, G_2, \ldots, G_{\frac{n}{5}}$ be groups of 5
elements each.

Since each group has $O(1)$ elements we
can sort a group in $O(1)$ time,
and sort all groups in $O(n)$ time.

Let m_i be the median of G_i
Let $S = \{ m_1, m_2, \ldots, m_{\frac{n}{5}} \}$

This is our S &
let $p = \text{median}(S)$.

We'll see that this gives a good pivot.
Fast Select \((A, k)\):

input: unsorted \(A = [a_1, \ldots, a_n]\) where \(n\) is a power of 5

& integer \(k\) where \(1 \leq k \leq n\)

output: \(k^{th}\) smallest of \(A\)

1) Break \(A\) into \(\frac{n}{5}\) groups of 5 elements each.
 Call these groups \(G_1, G_2, \ldots, G_{\frac{n}{5}}\)

2) For \(i = 1 \rightarrow \frac{n}{5}\), sort \(G_i\)

3) Let \(m_i = \text{median}(G_i)\)
 Let \(S = \{m_1, m_2, \ldots, m_{\frac{n}{5}}\}\)

4) \(p = \text{Fast Select}(S, \frac{n}{10})\) (so \(p\) is the median\((S)\))

5) If \(k \leq A < p\) then return \(\text{Fast Select}(A < p, k)\)

6) If \(k \leq |A < p|\) then return \(\text{Fast Select}(A < p, k)\)
 If \(|A < p| + |A = p| \leq k\) then return \(p\)
 If \(k > |A < p| + |A = p|\) then return \(A > p, k - |A < p| - |A = p|\)
Claim: p is a good pivot

In particular

\[\geq \frac{3n}{10} \text{ elements of } A \text{ are } \leq p \text{ so } |A \geq p| \leq \frac{7n}{10} \]

\[\& \geq \frac{3n}{10} \text{ elements are } \geq p \text{ so } |A \leq p| \leq \frac{7n}{10} \]

From the claim, the running time is thus:

\[T(n) \leq T\left(\frac{n}{3}\right) + T\left(\frac{7n}{10}\right) + O(n) \]

\[\text{step (4)} \quad \text{step (6)} \]

Since \(\frac{1}{3} + \frac{7}{10} = \frac{9}{10} < 1 \)

then \(T(n) = O(n) \).
Proof of claim:

Sort the groups by their medians so that:

\[m_1 \leq m_2 \leq \ldots \leq m_n \]

Then \(p = m_{\frac{n}{10}} \)

Here's the picture:

\[S \]

\[G_1, G_2 \]

\[G_{\frac{n}{10}} \]

\[G_{\frac{n}{5}} \]

Which elements of \(S \) are guaranteed to be \(\leq p \)?

\[m_1, m_2, \ldots, m_{\frac{n}{10}} \text{ are } \leq m_{\frac{n}{10}} = p. \]

& for each of these, 3 elements in its group are \(\leq p \).

Hence, \(\geq (3)(\frac{n}{10}) \text{ are } \leq p \)

Similarly, \(\geq 3 \frac{n}{10} \text{ are } \geq p \)