Today: hashing but first a toy problem

Balls into bins:

n balls & n bins (or buckets)

Each ball is thrown into a random bin
(independent of what happened for
the other balls)

Let load of bin i = # of balls assigned
to bin i.

How large is the max load?

= Max # of balls in a bin.

Max load is $O(\log n)$ with high probability

$\geq 1 - 1/\text{poly}(n)$

Can refine to $\Theta(\frac{\log n}{\log \log n})$
Better idea:

Assigns balls sequentially into bins

For $i=1 \rightarrow n$

- Choose 2 random bins say $j \& k$
- Let $L(j)$ & $L(k)$ denote their current load
- If $L(j) < L(k)$, assign ball i to bin j
 else assign ball i to bin k
 (So ball i goes to the smaller of the 2 bins)

Then max load is $O(\log \log n)$ with high prob.

If choose 2 bins then get $O(\frac{\log \log n}{\log d})$
 (instead of 2)
Hashing:

Running example:

Database of unacceptable passwords

Queries check if a password is allowed or not. Need to check quickly

HUGE set $U = \text{universe of possible passwords}$

HashTable H size n

$H = [0,1,\ldots, n-1]$

Map elements of U into bins $[0,1,\ldots, n-1]$

Use hash function $h: U \rightarrow [0,1,\ldots, n-1]$

Chain hashing, $H[i]$ is a linked list of elements stored there.

Start with empty list at each $H[i]$.

Let S be the set of unacceptable passwords. We store S in H.
To add $x \in U$ into S
- compute $h(x)$
- add x onto linked list at $H[h(x)]$

To check: is yes?
- compute $h(y)$
- check linked list at $H[h(y)]$
 \[\text{to see if it contains } y. \]

query time = load at bin $h(y)$.

$|S| = m$, $|H| = n$

We're putting m balls into n bins.

If h is a random function so $h(x)$ is random over $\{0, 1, \ldots, n-1\}$

Max query time is max load.

When $m = n$ max load is $O(\log n)$.

To get max load $O(1)$ need $n = \Omega(m^2)$.
Better approach:

Use 2 hash functions

\[h : U \rightarrow \{0, 1, \ldots, n-1\} \]
\[h_2 : U \rightarrow \{0, 1, \ldots, n-1\} \]

To add \(x \in U \) into \(S \):
- compute \(h_1(x) \) & \(h_2(x) \)
- add \(x \) to least loaded of \(h_1(x) \) & \(h_2(x) \)

To check: is \(y \) yes?
- compute \(h_1(y) \) & \(h_2(y) \)
- check list at \(H[\bar{h}_1(y)] \) & \(H[\bar{h}_2(y)] \)
 (Requires checking 2 lists but both are much smaller)

Now, for random \(h_1 \) & \(h_2 \),
if \(m = n \), max load is only \(O(\log \log n) \).
Bloom filters:

- Faster queries = $O(1)$ time
- Less space
- Simpler
- But: false positives with small probability

Maintain set $S \subseteq U$.

Operations:

- $\text{Insert}(x)$: add x into S
- $\text{Query}(x)$: is $x \in S$?
 - if $x \in S$, we always output YES
 - if $x \notin S$, we usually output NO
 - but we have a false positive (output YES) with small probability
 - false positive rate.
H is a 0-1 array of size n. (No linked list!)
Start with H as all 0s.
hash function \(h: U \to \{0, 1, \ldots, n\} \)

To add \(x \) into \(S \), set \(H[h(x)] = 1 \).

To check if \(x \) is in \(S \):
if \(H[h(y)] = 1 \) then output YES
if \(H[h(y)] = 0 \) then output NO.

Problem:
if \(y \in S \) but we added \(z \) into \(S \)
where \(h(y) = h(z) \)

then we get a false positive for the query: is \(y \in S \)?
Better approach:

\[k \text{ hash functions: } h_1, h_2, \ldots, h_k \]

for each \(i \), \(h_i : V \rightarrow \{0, 1, \ldots, n-1\} \)

Start: Set \(H[i] = 0 \) for all \(i \in \{0, 1, \ldots, n-1\} \)

So \(H \) is the all \(0 \)-vector.

To add \(x \) into \(S \):

for \(i = 1 \rightarrow k \), set \(H[h_i(x)] = 1 \)

(sor set \(k \) bits to 1)

To check if \(\text{YES?} \)

if for all \(i \), \(H[h_i(y)] = 1 \)

then output \(\text{YES} \)

else (if 1 or more = 0)

output \(\text{NO} \).

if \(\text{YES} \), then for query: is \(\text{YES?} \)

we always output \(\text{YES} \)

if \(\text{YES} \), then we might output \(\text{YES} \) if

for all \(i \), there is \(z \in S \) & \(j \)

where \(h_i(y) = h_j(z) \).
What is the probability of a false positive?

Recall, hash table H of size $|H| = n$
& storing database S of size $|S| = m$
where $|H| = n > |S| = m$

Want to make n as small as possible
let $c = \frac{n}{m}$ so $c > 1$.
want c small.

For $y \notin S$ to get a false positive need that
the k bits at $h_1(y), \ldots, h_k(y)$ are set to 1.

For a specific bit b where $b \in \{0, \ldots, n-1\}$
what's the probability $H[b] = 1$?

$\Pr(H[b] = 1) = 1 - \Pr(H[b] = 0)$

We are throwing mk balls randomly into n bins,
$\Pr(H[b] = 0) = \Pr(\text{all } mk \text{ balls miss bin } b)$

$= (1 - \frac{1}{n})^{mk} = e^{-mk/n} = e^{-k/c}$ since $c = \frac{n}{m}$

Recall $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \geq 1 - x$
& for small x, $e^{-x} \approx 1 - x$,

$\Pr(H[b] = 1) = 1 - e^{-k/c}$
For $y \in S$,
\[
\Pr(\text{false positive for } y) = \Pr(\text{for all } i, \ H[h_i(y)] = 1) \sim (1 - e^{-k/c})^k = \text{false positive rate}
\]

What's the best choice for k?

k big \Rightarrow putting too many 1's in H

k small \Rightarrow checking too few bits of H.

Let $f = (1 - e^{-k/c})^k$ = false positive rate.

Let's minimize f as a function of k.

Let $g = \ln f = k \ln (1 - e^{-k/c})$

So $f = e^g$ & we'll minimize g to make it easier.

\[
\frac{dg}{dk} = \ln (1 - e^{-k/c}) + \frac{k}{1 - e^{-k/c}} \times \frac{1}{c} \times e^{-k/c}
\]

Set $k = \frac{c}{c} \ln 2$.

Then $\frac{dg}{dk} = -\ln 2 + \ln 2 = 0$ & can check this is a minimum.
Plugging in $k = c \ln 2$, the false positive rate is

\[f = (1 - e^{-k/c})^c = \left(1 - \frac{1}{2}\right)^{c \ln 2} = \left(\frac{1}{2}\right)^c = 0.6185^c \]

and

\[\Pr(\mathcal{H}[\mathcal{E}] = 0) = e^{-k/c} = \frac{1}{2} \]

So \mathcal{H} is a random 0-1 string.

Examples:

<table>
<thead>
<tr>
<th>$k = 1$: $c = 10$:</th>
<th>0.09516</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c = 100$:</td>
<td>0.00995</td>
</tr>
<tr>
<td>$k = c \ln 2$: $c = 10$:</td>
<td>0.0082</td>
</tr>
<tr>
<td>$c = 100$:</td>
<td>1.3×10^{-21}</td>
</tr>
</tbody>
</table>