Subset-Sum:

- **input:** Positive integers a_1, \ldots, a_n & t
- **output:** subset S of objects $\{1, \ldots, n\}$ where $\sum_{i \in S} a_i = t$
 - if such a S exists
 - **NO** otherwise

Can solve in $O(nt)$ time.

But Subset-Sum is NP-complete

Proof of:

a) Subset-Sum is NP:
 - given inputs a_1, \ldots, a_n, t & S
 - in $O(n)$ time can check that $\sum_{i \in S} a_i = t$

b) 3SAT \rightarrow Subset-Sum
 - Take input f for 3SAT
 - Variables x_1, \ldots, x_n
 - Clauses C_1, \ldots, C_m
Basic assumptions about f:
- No clause contains $x_i \& \overline{x_i}$; otherwise it's satisfied & we can drop it.
- Each x_i is in at least 1 clause; otherwise set $x_i = F$ & reduce similarly each $\overline{x_i}$ is in ≥ 1 clause.

The input to subset-sum will be numbers:

$v_1, v_2, \ldots, v_n, v_n, s_1, s_1, \ldots, s_m, s_m$

& t will be an $n+m$ digit number

All numbers will be base 10.

v_i corresponds to x_i; $v_i \in S$ then $x_i = T$
$v_i \in \overline{S}$ to x_i; $v_i \in S$ then $x_i = F$

We need that exactly 1 of $v_i, v_i \in S$, is in S.
To achieve this: in the i^{th} digit of $v_i, v_i \in S$, put a 1
All other numbers have a 0 in i^{th} digit.
Digit $n+j$ corresponds to clause C_j.

If $x_i \in C_j$, put a 1 in digit $n+j$ for x_i.
If $\overline{x}_i \in C_j$, put a 1 in digit $n+j$ for x_i.

Want that 1, 2 or 3 of literals in C_j are included in S.

\Rightarrow Put a 3 in digit $n+j$ of $+$.

Use S_j, \overline{S}_j as buffers.

\Rightarrow Put a 1 in digit $n+j$ of S_j, \overline{S}_j.

\Rightarrow Put a 0 in digit $n+j$ of all other numbers not yet defined here.

To get a sum of 3 in digit $n+j$ need to include

1 literal of C_j + 1 of S_j, \overline{S}_j

or 3

0
Example:

\[f = (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \land x_2) \]

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(V_1')</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(V_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(V_2')</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(V_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(V_3')</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_1')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(S_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_2')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(S_3')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(S_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(S_4')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Total count of 1's and 0's in the table.
Subset-Sum has a solution iff 3SAT f is satisfiable.

\(\Rightarrow \) For 1st \(n \) digits, include \(\overline{v}_i \) or \(v_i \) (but not both) to get a 1 in digit \(i \):

- if \(v_i \in S \Rightarrow x_i = T \)
- if \(\overline{v}_i \notin S \Rightarrow x_i = F \)

For digit \(n+j \):

- to get a sum of 3 need to include \(\geq 1 \) of literals in \(C_j \)

So \(C_j \) is satisfied.

\(\Leftarrow \) if \(x_i = T \), add \(v_i \) to \(S \)
- if \(x_i = F \), add \(\overline{v}_i \) to \(S \)

\(\Rightarrow \) so i-th digit of \(\overline{f} \) is satisfied.

For clause \(C_j \) at least 1 literal is satisfied then add \(S_j \) &/or \(\overline{S}_j \) if needed to get a sum of 3 in digit \(n+j \).
Knapsack:

- Input: \(n \) objects with weights \(w_1, \ldots, w_n \) & values \(v_1, \ldots, v_n \)
- Capacity \(B \)
- Value \(V \)

Output: subset \(S \) of objects with

\[
\sum_{i \in S} w_i \leq B
\]

&

\[
\sum_{i \in S} v_i \geq V
\]

& NO if no such \(S \) exists

Knapsack is NP-complete

Proof:

a) Knapsack is in NP:

Given input to knapsack \(S \)
then in \(O(n) \) time can check
that \[
\sum_{i \in S} w_i \leq B \& \sum_{i \in S} v_i \geq V.
\]
b) SubsetSum \Rightarrow Knapsack

Take input a_1, \ldots, a_n & t for subset-sum

Set $V_i = W_i = a_i$

Set $B = V = t$

Then Run knapsack on w_1, \ldots, w_n

V_i, \ldots, V_n

B, V

We're trying for a subset S where:

\[\sum_{i \in S} w_i \leq B \iff \sum_{i \in S} a_i \leq t \]

\[\sum_{i \in S} V_i \geq V \iff \sum_{i \in S} a_i \geq t \]

\[\sum_{i \in S} a_i = t \leq \sum_{i \in S} a_i \]

So same as subset-sum.