KnapSack: n objects with
integer weights \(w_1, \ldots, w_n\)
& integer values \(v_1, \ldots, v_n\)
and capacity \(B\)

Goal: find subset \(S\) of objects
which maximizes \(\sum_{i \in S} v_i\)
subject to \(\sum_{i \in S} w_i \leq B\)

Last class: \(O(nB)\) time solution for version
with one copy of each object.

Today: unlimited supply of each object.
First try define subproblems like last class:
\[K(i, b) = \text{max value achievable using a subset of objects } 1 \ldots i \]
\& capacity \(b \).

Now we can't just decide whether to include object \(i \) or not, we need to decide how many copies to include.

for capacity \(b \),
we can include \(\leq \frac{b}{w_i} \) copies.

So we try \(l = 0 \Rightarrow \left\lfloor \frac{b}{w_i} \right\rfloor \)

if we add \(l \) copies of object \(i \),
we gain value \(lv_i \).
\& then to fill the rest
we use \(K(i-1, b-lw_i) \).

Hence,
\[K(i, b) = \max_{0 \leq j \leq \left\lfloor \frac{b}{w_i} \right\rfloor} \left\{ K(i-1, b-lw_i) + lv_i \right\} \]
Is there a simpler solution?

Since unlimited supply we don’t need to keep track of which objects we’re used

\[K(b) = \max \text{ value achievable with capacity } b, \]
\[\text{all objects } 1, \ldots, n \text{ are allowed} \]

To get the recurrence, try all possibilities for the last object, call it \(l \), that we add \(l \) in. We need that object \(l \) fits, so that means \(w_l \leq b \).

Then, we gain \(v_l \) for it, and we use the best solution for the remaining capacity \(b - w_l \)

So, it’s \(v_l + K(b - w_l) \)

Hence:

\[K(b) = \max_1^n \left(\sum_{l=1}^n K(b - w_l) + v_l \right) : 1 \leq l \leq n, w_l \leq b \]

In words, \(K(b) \) equals the max of \(K(b-w_l) \) where we maximize over \(l \) such that \(1 \leq l \leq n \) & \(w_l \leq b \).
k is now a one-dimensional table

\[k = \begin{bmatrix} 0 & 1 & \cdots & B \end{bmatrix} \]

fill from $b = 0 \to B$

KnapSack WithRepeat $(w_i, \ldots, w_n, v_i, \ldots, v_n, B)$

for $b = 0 \to B$

\[k(b) = 0 \]

for $l = 1 \to n$

if $w_l \leq b \& k(b) < k(b - w_l) + v_l$

then $k(b) = k(b - w_l) + v_l$

Return($k(B)$)

Running time: $O(nB)$