Chain Matrix Multiply:

Example: for 4 matrices A, B, C, D, we want to compute \(A \times B \times C \times D \) most efficiently.

Say A is 50x20
B is 20x1
C is 1x10
D is 10x100.

Since matrix multiplication is associative, we can compute:

\[
((A \times B) \times C) \times D
\]

or

\[
(A \times (B \times C)) \times D
\]

or

\[
A \times (B \times (C \times D))
\]
What's the best way?

Take X of size $a \times b$ & Y of size $b \times c$.

$Z = XY$ is of size $a \times c$.

$$
\begin{bmatrix}
 b \\
 c \\
\end{bmatrix}
\begin{bmatrix}
 x & y & Z \end{bmatrix}

Z_{ij} = \sum_{k=1}^{b} X_{ik}Y_{kj}

To compute Z_{ij} takes b multiplications (& $b-1$ additions)

ac entries of Z,

So abc total multiplications (& similar # of additions)

Say cost of multiplying $X \times Y$ is abc.
Therefore, for the earlier example, the cost for

\[(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \times \mathbf{D}\]

is

\[
(50)(20)(1) + (50)(1)(10) + (50)(10)(100)
\]

\[
= 1000 + 500 + 50,000 = 51,500
\]

\[(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D})\]

\[
(50)(20)(1) + (1)(10)(100) + (50)(1)(100)
\]

\[
= 7,000
\]

\[(\mathbf{A} \times (\mathbf{B} \times \mathbf{C})) \times \mathbf{D}\]

\[
(20)(1)(10) + 50(20)(10) + (50)(10)(100)
\]

\[
= 200 + 10,000 + 50,000 = 60,200
\]

General Problem:

For \(n\) matrices \(A_1, A_2, \ldots, A_n\) where \(A_i\) is of size \(m_{i-1} \times m_i\),

what's min cost for multiplying \(A_1 \times A_2 \times \cdots \times A_n\)?

Input: \(M_0, M_1, M_2, \ldots, M_n\)

Goal: Determine the Parenthesization of min cost for computing \(A_1 \times \cdots \times A_n\).
Graphical view:

\((A \times B) \times (C \times D)\) as a binary tree:

\[\text{Root: } A \times B \times C \times D \]

\[\text{Internal nodes: } A \times B, C, D \]

\[\text{Leaves: } A, B, C, D \]

The leaves correspond to \(A_1, A_2, \ldots, A_n\).

Internal nodes represent intermediate computations.

Root represents \(A_1 \times A_2 \times \ldots \times A_n\).
Try prefixes for subproblems:

\[c(i) = \min \text{ cost for computing } A_1 \times A_2 \times \ldots \times A_i \]

But note that for the root, the left child is a prefix but the right child is a suffix

for some \(1 \leq i \leq n-1 \)

So the computation at the root will have cost \(m_0 \times m_i \) (since \(A_1 \times \ldots \times A_i \) has size \(m_0 \times m_i \)), \(A_{i+1} \times \ldots \times A_n \) has size \(m_i \times m_n \)

Cost for \(A_1 \times \ldots \times A_i \) is \(c(i) \)

Cost for \(A_{i+1} \times \ldots \times A_n \) is ??

\[\Rightarrow \text{ We need suffixes too!} \]
Then for next level:

\[A_1 \times \ldots \times A_i \]
\[A_i \times \ldots \times A_j \leftarrow A_{j+1} \times \ldots \times A_i \]
\[1 \leq j \leq i-1 \]

So we need substrings

Attempt 2:

For \(1 \leq i \leq j \leq n \),

let \(C(i,j) = \min \) cost of computing \(A_i \times \ldots \times A_j \)

Base case: \(C(i,i) = 0 \)

For \(i < j \) try all \(l \) for the split where \(i \leq l \leq j-1 \)

\[A_i \times \ldots \times A_j \]
\[\leftarrow A_l \times \ldots \times A_{l+k} \]
\[\leftarrow A_{l+k} \times \ldots \times A_j \]

Cost is \(m_{i-1} m_l m_j + C(i,l) + C(l+1,j) \)
Therefore,
\[c(i,j) = \min_l \{ c(i,l) + c(l+1,j) + m_{i-l,m_{j-l}} \} \]
over \(l \) s.t. \(i \leq l \leq j-1 \)

How to fill the table?

\[C = \begin{array}{c}
\text{fill in} \\
\end{array} \]

- only filling the upper-right portion

Since \(C(i,j) \) with \(i \leq j \)

Base case: \(C(i,i) \) \(i=1 \rightarrow n \) is the diagonal.

Then do \(C(i,i+1) \) since that uses \(C(i,i) \) \& \(C(i+1,i+1) \)

Then do \(C(i,i+2) \) which uses \(C(i,i), C(i,i+1), C(i+1,i+2), C(i+2,i+2) \)
Let $s = j - i$ be the "width" of the subproblem.

Base case $s = 0$: $C(i, i)$

Fill by $s = 0 \rightarrow n - 1$

Goal: compute $C(1, n)$ of width $s = n - 1$
Chan Matrix Multiply \((m_0, m_1, \ldots, m_n) \)

For \(i = 1 \rightarrow n \), \(C(i, i) = 0 \)

For \(s = 1 \rightarrow n-1 \),

For \(i = 1 \rightarrow n-s \),

Let \(j = i+s \)

\(C(i, j) = \infty \)

For \(l = i \rightarrow j-1 \)

if \(C(i, j) > m_i \cdot m_k \cdot m_j + C(i, l) + C(l+1, j) \)

then \(C(i, j) = \)

Return \(C(1, n) \)

Running time: \(O(n^3) \)