Subset Sum:

Input: Positive integers a_1, \ldots, a_n and t

Output: Subset S of objects $\{1, \ldots, n\}$ where $\sum_{i \in S} a_i = t$

if such a S exists

No otherwise

Using Dynamic Programming can solve in $O(n^t)$ time.

But Subset-Sum is NP-complete.

We'll prove this today.

Why is $O(n^t)$ not poly-time?

Should be poly in n & $\log t$.
Proof that Subset Sum is NP-complete:

a) Subset-Sum ∈ NP:

Given input $a_1, ..., a_n, t, s$ in $O(n)$ time can check that

$$\sum_{i \in S} a_i = t$$

b) 3SAT → Subset Sum

Take input f for 3SAT.

Variables $x_1, ..., x_n$

Clauses $C_1, ..., C_n$

Basic assumptions about f:

- no clause contains x_i & $\overline{x_i}$
 otherwise it's clearly satisfied & we can drop the clause

- each x_i is in at least 1 clause
 otherwise set $x_i = F$ & simplify

 Similarly, $\overline{x_i}$ is in at least 1 clause.
Input for subset-sum will be numbers:

\[V_1, V_2, \ldots, V_i, V_i', S_1, S_i, \ldots, S_m, S_m' \]

\(n \) \& \(m \) will be a \(n \times m \) digit number

all numbers are base 10

\(V_i \) corresponds to \(x_i \): \(V_i \in S \) then \(x_i = 1 \)

\(V_i' \) \(\overline{x_i} \): \(V_i' \in S \) then \(x_i = 0 \)

Need that exactly 1 of \(V_i, V_i' \) in \(S \)

\(\Rightarrow \) In the \(i \)th digit of \(V_i, V_i' \& \) put a 1

all other numbers have a 0 in \(i \)th digit

Digit \(n+j \) corresponds to clause \(C_j \)

If \(x_i \) appears in \(C_j \) put a 1 in row \(V_i \) in digit \(n+j \)

If \(\overline{x_i} \) appears in \(C_j \) put a 1 in \(V_i \) in digit \(n+j \)
Wait that 1, 2, or 3 of the literals in G are included in S.

Put a 3 in digit n+j of +

Use S_j, S_j' as buffers:

So put a 1 in digit n+j of S_j & S_j'.

Put a 0 in digit n+j of all other numbers.

Then to get a sum of 3 in digit n+j

need to include 1, 2, or 3 of

literals in C_j & 0, 1, or 2 of S_j, S_j'.
Example:

\[f = (\overline{x_1 x_2 x_3}) \land (\overline{x_1 x_2 x_3}) \land (\overline{x_1 x_2 x_3}) \land (\overline{x_1 x_2}) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_1')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_2')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_3')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(v_4')</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(v_1 = 1000011 \)
\(v_1' = 1001100 \)

\(t = 1113333 \)
Subset Sum has a solution iff 3SAT \(f \) is satisfiable.

\[\iff \]
For 1st \(n \) digits, include \(v_i \) or \(v_i' \) to get a 1 in digit \(i \),
if \(v_i \) included \(\implies x_i = T \)
if \(v_i' \) included \(\implies x_i = F \)

For digit \(n+j \),
to get a sum of 3 need to include at least one of the literals
So \(C_j \) is satisfied

\[\iff \]
If \(x_i = T \), add \(v_i \) to \(S \)
\(x_i = F \), add \(v_i' \) to \(S \)
So \(i \)th digit of \(f \) is satisfied

For clause \(C_j \) at least one literal is satisfied
add \(S_j \) or \(S_j' \) if needed
to get a sum of 3 in digit \(n+j \).
Knapsack:
input: \(n \) objects with weights \(w_1, \ldots, w_n \) & values \(v_1, \ldots, v_n \)
Capacity \(B \)
Value \(V \)
output: subset of objects with
\[
\sum_{i \in S} w_i \leq B
\]
& \[
\sum_{i \in S} v_i \geq V
\]
NO if no such \(S \) exists

Knapsack is NP-complete:

a) Knapsack \(\in \text{NP} \):
Given Knapsack input \& \(S \), in \(O(n) \) time
Can check that \(S \) is a solution.
b) Subset Sum \rightarrow Knapsack

Take input a_1, \ldots, a_n & t for Subset Sum

Set $V_i = w_i = a_i$

Set $B = V = t$

Then Knapsack is trying to find a subset S where

\[\sum_{i \in S} w_i \leq B \iff \sum_{i \in S} a_i \leq t \]

\[\sum_{i \in S} V_i \geq V \iff \sum_{i \in S} a_i \geq t \]

\[\sum_{i \in S} a_i = t \]

So same as Subset Sum.