Next section:

- What's NP-completeness mean?
- What's P=NP or P≠NP mean?
- How do we show that a problem is intractable = unlikely to be solved efficiently

P = class of all search problems that are solvable in polynomial time

NP = class of all search problems (regardless of time required to solve them)

Search problem:

Roughly - problem where we can efficiently verify solutions

So, P=NP or P≠NP addresses whether or not:

Solving a problem is as easy as verifying a solution
Formally, what is a search problem?

Search problem:

Given instance I (e.g., graph G), we are asked to find a solution if one exists, and if none exists, we output NO.

For a search problem, if we are given a solution S, we are given a solution S, we can verify in time polynomial in $|I|$ that S is a solution to I.

So when there is a solution, we can verify it is a solution efficiently.

If there are NO solutions, we do not need to do anything.

Need that: $|S| \leq \text{poly}(|I|)$ and there is an algorithm A that takes I & S as input, and in polynomial-time verifies that S is a solution to I.
Examples of search problems:

\[k\text{-coloring}: \]

Input: graph \(G = (V, E) \) & integer \(k \geq 0 \).

Output: assignment of \(k \) colors to the vertices \(V \) so that adjacent vertices get different colors, and \(\text{NO} \) if no \(k\text{-coloring} \) of \(G \).

Given \(G \) & a \(k\text{-coloring} \), in \(O(n^k) \) time we can verify that it is a valid coloring.

Hence, coloring \(\in \text{NP} \).

\[\text{SAT}: \]

Input: Boolean formula \(f \) in CNF with \(n \) variables & \(m \) clauses.

Output: satisfying assignment, if one exists \(\text{NO} \) otherwise.

Given \(f \) and an assignment in \(O(nm) \) time we can verify that \(f \) is satisfied (spend \(O(n) \) time per clause).

Hence, SAT \(\in \text{NP} \).
Knapsock:

input: \(n \) objects with integer weights \(w_1, \ldots, w_n \) & integer values \(v_1, \ldots, v_n \)

capacity \(B \).

output: Subset \(S \) of objects with total weight \(\leq B \) & maximum total value.

Given instance \(\{w_1, \ldots, w_n; v_1, \ldots, v_n; B\} \) & subset \(S \), we can verify that the total weight is \(\leq B \) in \(O(n) \) time, but how do we verify that has maximum value? Not clear how to do it. It's an optimization problem.
Look at search version:

Input: \(w_1, \ldots, w_n, v_1, \ldots, v_n, B \) \& goal \(q \).

Output: Subset \(S \) with

- Total weight \(\leq B \) \((\sum_{i \in S} w_i \leq B) \)
- Total value \(\geq q \) \((\sum_{i \in S} v_i \geq q) \)

& No if no such \(S \) exists.

Given \(S \) in \(O(n) \) time can check that it has total weight \(\leq B \) & total value \(\geq q \).

\[\Rightarrow\text{Knapsack-search \(\in \) NP.}\]

Note: If we can solve the search version in poly-time then we can solve the optimization version by doing binary search for max \(q \in \{1, \ldots, V\} \) which has a solution.
MST:
input: \(G = (V,E) \) with positive edge lengths
output: Tree \(T \) with min weight.

MST is a search problem.
Hence, MST \(\in \text{NP} \).

Why?
Given \(G \) \& \(T \), we can run Kruskal's or Prim's to verify that \(T \) has min weight.
Then run BFS or DFS to verify that \(T \) is a tree.