\(\text{NP} \) stands for nondeterministic Polynomial time = problems that can be solved in poly-time on a non-deterministic machine.

allowed to guess at each step (there exists a path to the accepting state)

\(\text{NP} = \) all search problems

\(\text{P} = \) search problems that can be solved in poly-time.

Hence, \(\text{P} \subset \text{NP} \).

Eg., \(\text{MST} \in \text{P}, \) shortest paths \(\in \text{P} \).

if \(\text{P} = \text{NP} \): if we can verify solutions efficiently
then we can construct solutions efficiently.

(e.g., is verifying a proof for a theorem as hard as constructing the proof?)

if \(\text{P} \neq \text{NP} \): then there are some search problems that
can't be solved efficiently.

What are these problems?
Recall search problem:

- Given input I, find a solution S if one exists & output NO if none exists.
- Moreover, given S, in time polynomial in $|I|$, we can verify that S is in fact a solution to I.

$NP =$ all search problems = Problems where solutions can be verified efficiently

- Colorings $\in NP$
- SAT $\in NP$
- Knapsack-search $\in NP$
- MST $\in P$, hence MST $\in NP$.

NP-complete problems:

hardest problems in NP.
Colorings is NP-complete, which means

a) Colorings ∈ NP.

b) if we can solve colorings in Poly-time then we can solve every problem in NP in Poly-time.

Thus, if P ≠ NP, then there is no Poly-time algorithm for colorings.

How to show (b)?

Reductions:

Problems A & B (Example A = MST, B = Colorings)

A → B or A ≤ B

means we can reduce A to B.
\[A \rightarrow B \text{ means:} \]
if we can solve B in poly-time then we can use that algorithm to solve A in poly-time.

So we suppose there is an efficient algorithm for B, and we use that algorithm as a black-box for A.

So we take input I for A
create input \(f(I) \) for B
Run Black-box alg. for B
given solution S for \(f(I) \), convert to output \(h(s) \) for I.
given NO for \(f(I) \), output NO for I.
We need to define f & h

Prove that if S is a solution to $f(I)$
then $h(S)$ is a solution to I

If NO solution for $f(I)$
then NO solution for I.

To show colorings is NP-complete,
we need to show:

a) Colorings \in NP

b) for all $A \in$ NP,
$A \rightarrow$ Colorings

How to do (b) for all $A \in$ NP?
Suppose we know SAT is NP-complete.
So we know that for every \(A \in \text{NP} \),
\[A \rightarrow \text{SAT}. \]

Suppose we show \(\text{SAT} \rightarrow \text{Colorings} \).
Then,
\[A \rightarrow \text{SAT} \rightarrow \text{Colorings} \]
so \(A \rightarrow \text{Colorings} \).

To show Colorings is NP-complete, need to show:
(a) Colorings \(\in \text{NP} \)
(b) for a known NP-complete problem \(A \),
Show \(A \rightarrow \text{Colorings} \).

We'll take for granted that
\(\text{SAT} \) is NP-complete.
Then we'll show a bunch of other problems
are NP-complete.