Key recurrences for divide-and-conquer algorithms:

\[T(n) = T\left(\frac{n}{2}\right) + O(1) = O(\log n) \] (binary search)

\[T(n) = T\left(\frac{n}{2}\right) + O(n) = O(n) \]

\[T(n) = 2T\left(\frac{n}{2}\right) + O(1) = O(n) \]

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n \log n) \] (Merge Sort)

From the desired recurrence we get a high level idea of the algorithm.

Divide & Conquer approach:

1) Break into subproblems of the same type.
 Typically problems of half the size.

2) Recursively solve these subproblems

3) Combine/merge solutions to subproblems to get solution to whole problem.
Counting inversions:

Given 2 ordered lists of \(n \) items, find # of inversions = pairs in different order in the 2 lists.

Example: Songs A, B, C, D, E

Person 1: A > B > C > D > E

Person 2: A > C > D > B > E

2 inversions: \((B, D), (B, C)\)

Applications:

Collaborative filtering - Given a person's rankings (e.g., for books, movies, or restaurants), find a person with similar rankings so can offer recommendations.

MetaSearch - Look at a query on several search engines to try to find similarities & generate a merged mega-list.
Can assume the items are labelled 1, 2, ..., n
& the 1st list is 1 > 2 > 3 > ... > n.
(can always renumber to achieve this).

Then the other list is given as

\[a_1, \ldots, a_n \]

where \(a_i \) = position of item \(i \) in 2nd list.

Earlier example:

\[
\begin{array}{cccccc}
\text{items} & A & B & C & D & E \\
\text{Person 1} & 1 & 2 & 3 & 4 & 5 \\
\text{Person 2} & 1 & 4 & 3 & 2 & 5 \\
\end{array}
\]

\# of inversions

= \# of pairs \(i, j \) where \(i < j \) & \(a_i > a_j \)

= 2 since \((i=2, j=4) \) has \(a_i = 4 > a_3 = 3 \)
& \((i=2, j=3) \) has \(a_i = 4 > a_j = 2 \)
Naive approach:

Look at all \(ij \) pairs where \(i < j \)
\[
\Rightarrow O(n^2) \text{ time.}
\]

Try for \(O(n \log n) \) algorithm:

So aim for recurrence:
\[
T(n) = 2T(\frac{n}{2}) + O(n) \\
= O(n \log n)
\]

Idea: Break input \(A = [a_1, \ldots, a_n] \) into \(A_L = [a_1, \ldots, a_{\frac{n}{2}}] \)
\& \(A_R = [a_{\frac{n}{2}+1}, \ldots, a_n] \)

1) Find \# of inversions in \(A_L \)
2) Find \# of inversions in \(A_R \)
3) In \(O(n) \) time, find \# of inversions of pairs \(ij \) with \(i \in A_L \) \& \(j \in A_R \)
4) Return sum of these 3 quantities.

How to do step (3) in \(O(n) \) time?
Example:

\[A = [1, 5, 4, 8, 10, 2, 6, 9, 12, 11, 3, 7] \]
\[A_L = [1, 5, 4, 8, 10, 2] \quad A_R = [6, 9, 12, 11, 3, 7] \]

5 inversions in \(A_L \):

\[(5, 4), (5, 2), (4, 2), (8, 2), (10, 2)\]

8 inversions in \(A_R \):

\[(6, 3), (9, 3), (9, 7), (12, 11), (12, 3), (12, 7), (11, 3), (11, 7)\]

9 inversions in \(A_L \leftrightarrow A_R \):

\[(5, 3), (4, 3), (8, 6), (8, 7), (8, 3), (10, 6), (10, 9), (10, 3), (10, 7)\]

How to compute this in \(O(n) \) time?
Take element of A_z:

Say for 5, need to compute # of elements of A_k that are < 5.

In general for $a_i \in A_z$, compute # of elements of A_k that are < a_i.

If A_k was sorted then this is easy to compute.

And if A_z was sorted, using a pair of Pointers, we could compute it for all elements of A_z in $O(n)$ total time.

Key: Sorting A_z & Sorting A_k does not effect # of inversions $A_z \leftrightarrow A_k$.

But we don't have time to sort.

Since our algorithm "looks" like MergeSort when counting inversions in A_z (or A_k) then sort it too!
Change problem to count-and-sort

Input: \(A = [a_1, \ldots, a_7] \)

Output: # of inversions & sorted \(A \).

High level algorithm:

1) Break \(A \) into \(A_L = \{1, \ldots, \frac{n}{2}\} \) items
 \(A_R = \{\frac{n}{2} + 1, \ldots, n\} \) items

2) Recursively find # of inversions within \(A_L \)
 & sort \(A_L \)

3) Recursively find # of inversions within \(A_R \)
 & sort \(A_R \)

4) Scan sorted \(A_L \) & \(A_R \) to:
 a) find # of inversions between \(A_L \) & \(A_R \)
 b) sort \(A_L \) & \(A_R \)
Idea of step (4):

\[A_L = \{2, 4, 5, 8, 10\} \quad A_R = \{3, 6, 7, 9, 11, 12\} \]

Pointers to current smallest in each take smaller of 2:

a) if from \(A_R \) then increase count by \# \text{remaining in} \(A_L \)

b) paste it onto merged sorted list & move pointer right by one.

Count-and-Sort(A)

input: \(A = [a_1, \ldots, a_n] \) where \(n \) is a power of 2

output: \# of inversions & sorted \(A \)

Let \(A_L = [a_1, \ldots, a_{n/2}] \) & \(A_R = [a_{n/2+1}, \ldots, a_n] \)

\[(\text{count}_1, B) = \text{count-and-sort}(A_L)\]

\[(\text{count}_2, C) = \text{count-and-sort}(A_R)\]

\[(\text{count}_3, D) = \text{count-and-merge}(B, C)\]

return \((\text{count}_1 + \text{count}_2 + \text{count}_3, D)\)
Count-and-Merge(B,C):

input: sorted $B = [b_1, \ldots, b_k]$ & $C = [c_1, \ldots, c_l]$
output: # of inversions between B & C
and sorted $B \cup C$

if $k = 0$, return $(0,C)$
if $l = 0$, return $(0,B)$
if $b_i < c_j$, then
\[\text{count}_D = \text{count-and-merge}([b_1, \ldots, b_k], C) \]
\[\text{return} (\text{count}, [b_1, D]) \]
else
\[\text{count}_D = \text{count-and-merge}(B, [c_1, \ldots, c_l]) \]
\[\text{return} (k + \text{count}, [c_1, D]) \]

Running time is just like MergeSort:
\[T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n \log n). \]