 (For part (c): First write an expression for the probability that two bins receive the same number of balls, call that quantity P.)

2. [Mitzenmacher-Upfal] Exercise 5.11.

4. Here we are going to prove the inequality we used in Monday’s class when analyzing randomized QuickSort.

 (a) Prove that:
 $$k! \geq \left(\frac{k}{e}\right)^k.$$
 Use that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$

 (b) Prove that:
 $$\binom{n}{k} \leq \left(\frac{ne}{k}\right)^k.$$

 (c) Prove that:
 $$2^n \binom{n}{k} \leq \binom{n}{k+1} \text{ for } k \leq n/4.$$

 (d) Prove that:
 $$\sum_{i=0}^{k} \binom{n}{i} \leq 2 \binom{n}{k} \text{ for } k \leq n/4.$$

 (e) Let X_1, \ldots, X_k be $0 - 1$ random variables representing k unbiased coin flips. Hence,
 $$\Pr[X_i = 1] = \Pr[X_i = 0] = 1/2.$$
 Prove that:
 $$\Pr[X_1 + X_2 + \cdots + X_k \leq k/4] \leq 2(0.68)^{k/4}$$