1. [Mitzenmacher-Upfal] Exercise 5.7.
(For part (c): First write an expression for the probability that two bins receive the same number of balls, call that quantity P.)
2. [Mitzenmacher-Upfal] Exercise 5.11.
3. [Mitzenmacher-Upfal] Exercise 5.24.
4. Here we are going to prove the inequality we used in Monday's class when analyzing randomized QuickSort.
(a) Prove that:

$$
k!\geq\left(\frac{k}{e}\right)^{k}
$$

Use that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$
(b) Prove that:

$$
\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k}
$$

(c) Prove that:

$$
2\binom{n}{k} \leq\binom{ n}{k+1} \text { for } k \leq n / 4
$$

(d) Prove that:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq 2\binom{n}{k} \text { for } k \leq n / 4
$$

(e) Let X_{1}, \ldots, X_{k} be $0-1$ random variables representing k unbiased coin flips. Hence,

$$
\operatorname{Pr}\left[X_{i}=1\right]=\operatorname{Pr}\left[X_{i}=0\right]=1 / 2
$$

Prove that:

$$
\operatorname{Pr}\left[X_{1}+X_{2}+\cdots+X_{k} \leq k / 4\right] \leq 2(.68)^{k / 4}
$$

