CS 4540 Fall 2014, Homework 1

Out: Wednesday August 20, 2014
Due: Wednesday August 27, 2014

Homework Problems

1. Explain how to implement Karger's algorithm so that one run takes $O\left(n^{2}\right)$ time. Be sure to explain in detail how you implement the steps of the algorithm.
2. In the notation of class and Eric's handwritten notes, the event \mathcal{E}_{i} is the event that the i-th contracted edge is not in the minimum cut. We showed that:

$$
\operatorname{Pr}\left(\mathcal{E}_{2} \mid \mathcal{E}_{1}\right) \geq\left(1-\frac{2}{n-1}\right)
$$

This says that the probability that the second edge contraction is not in the minimum cut, given that the first edge contraction is not in the minimum cut, is $\geq 1-2 /(n-1)$. Did we use the conditioning? In other words, let $\overline{\mathcal{E}_{1}}$ denote the event that the first contracted edge is in the minimum cut, so it's the complement of the event \mathcal{E}_{1}. Is it true that:

$$
\operatorname{Pr}\left(\mathcal{E}_{2} \mid \overline{\mathcal{E}_{1}}\right) \geq\left(1-\frac{2}{n-1}\right)
$$

This says that the probability that the second edge contraction is not in the minimum cut, given that the first edge contraction is in the minimum cut, is $\geq 1-2 /(n-1)$. Explain why or why not this is true.
3. Number of min st-cuts: In Monday's class we will show that every graph has $\leq n^{2}$ cuts of minimum size. This will follow easily from our analysis of Karger's algorithm. This fact is not the case for minimum st-cuts. Define a family of n-vertex graphs with specified vertices s and t, and then prove for this family there are an exponential number of $s t$-cuts of minimum size.
4. Modified algorithm: Suppose at each step we choose a random pair of vertices v and w (ignoring whether or not v and w are neighbors or not), and then we contract v and w. So instead of choosing a random edge to contract as in Karger's algorithm, we choose a random pair of vertices to contract. If v and w are not neighbors the contraction is defined the same as before we just don't have a self-loop to delete. Show that there are graphs for which this modified algorithm has exponentially small probability of finding a minimum cut.
It suffices to show that the probability the algorithm succeeds is of the form $\leq p^{n}$ for some constant p where $1>p>0$. For example, it's OK to prove that it succeeds with probability $\leq(7 / 8)^{n / 4}$. (Don't be fixated on having your analysis exactly matching these numbers $n / 4,7 / 8$, they are just examples that may not be correct for your example.)

