CS 4540, Fall 2014 Homework 9 due: Wednesday, November 19, 2014.

Problem 1: In Wednesday's class (November 12) we defined the following condition. For an undirected planar graph G = (V, E), an orientation \overrightarrow{G} satisfies condition (\star) if

on every internal face f of G there is an odd number of edges that are clockwise in \overrightarrow{G} with respect to f.

We proved that (\star) implies that \overrightarrow{G} is Pfaffian. Recall that proof. In the below figure, consider the even length cycle C = a, b, c, d, e, f, g, h, a in G. And the edges show an orientation \overrightarrow{G} that satisfies (\star) but the cycle C has an even number of clockwise edges. What goes wrong in the proof or why doesn't the proof apply? Explain. Does there exist an orientation \overrightarrow{G} of this graph which satisfies (\star) and where C has an odd number of clockwise edges? Show such an orientation or give a nice proof why there does not exist one.

Problem 2:

At the end of Wednesday's class (November 12) we talked about the fact that: the number of permutations consisting of all even length cycles and corresponding to edges in G is equal to (the number of perfect matchings of G)². Prove this fact.

Do so by showing a bijection directly between the two, don't use the graph \overleftarrow{G} .