Belief Propagation, Cavity Method and Pure Gibbs States in Combinatorial Problems: a (Personal) Survey

Andrea Montanari

Stanford University

March 21, 2007

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Cor

Introduction

- 2 Bethe-Peierls approximation
- Generic scenarios
 Relation with correlation decay
 Relation with pure state/cluster decomposition
- 4 The cavity method with many pure states

5 Conclusion

A B > A B >

Introduction

2 Bethe-Peierls approximation

Generic scenarios Relation with correlation decay Relation with pure state/cluster decomposition

4 The cavity method with many pure states

5 Conclusion

< ∃ > < ∃ >

Introduction

2 Bethe-Peierls approximation

3 Generic scenarios

- Relation with correlation decay
- Relation with pure state/cluster decomposition

4 The cavity method with many pure states

5 Conclusion

4 B K 4 B K

- 2 Bethe-Peierls approximation
- Generic scenarios
 Relation with correlation decay
 Relation with pure state/cluster decomposition
- 4 The cavity method with many pure states

5 Conclusion

4 B K 4 B K

- 2 Bethe-Peierls approximation
- 3 Generic scenarios
 - Relation with correlation decay
 - Relation with pure state/cluster decomposition
- 4 The cavity method with many pure states

5 Conclusion

- 2 Bethe-Peierls approximation
- 3 Generic scenarios
 - Relation with correlation decay
 - Relation with pure state/cluster decomposition
- 4 The cavity method with many pure states

Conclusion

- 2 Bethe-Peierls approximation
- 3 Generic scenarios
 - Relation with correlation decay
 - Relation with pure state/cluster decomposition
- 4 The cavity method with many pure states

5 Conclusion

Introduction

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Cor

ヘロト 人間ト 人間ト 人間ト

-2

On the cavity method:

 \rightarrow M. Mézard and G. Parisi, 'The Bethe lattice spin glass revisited'

On random *k*-SAT:

 \rightarrow M. Mézard, G. Parisi, and R. Zecchina, 'Analytic and Algorithmic Solution of Random Satisfiability Problems'

 \rightarrow F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian,

L. Zdeborova 'Gibbs States and the Set of Solutions of Random Constraint Satisfaction Problems'

Formalization:

 \rightarrow A. Dembo and A.Montanari, In preparation [DM07]

General:

→ M. Mézard and A. Montanari, Upcoming book (check online)

 \rightarrow google ee374

Discuss general ideas on a standard model

Check relevance/meaning on random k-SAT

Ask whatever you want Forgive me if I'll not explain everything is interesting

通 と く ヨ と く ヨ と

Discuss general ideas on a standard model

Check relevance/meaning on random k-SAT

Ask whatever you want Forgive me if I'll not explain everything is interesting

□ ► < □ ► < □ ►</p>

Discuss general ideas on a standard model

Check relevance/meaning on random k-SAT

Ask whatever you want Forgive me if I'll not explain everything is interesting

'Standard model'

 x_1 x_2 x_5 x_9 x_8 x_{10} x_{11} x_{12}

$$G = (V, E), V = [n], \underline{x} = (x_1, \ldots, x_n), x_i \in \mathcal{X}$$

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \psi_{ij}(x_i, x_j).$$

'Standard model' (assumptions)

1. G has bounded degree.

2. G has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

・ 同 ト ・ ヨ ト ・ ヨ ト

'Standard model' (assumptions)

1. G has bounded degree.

2. G has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

伺 と く ヨ と く ヨ と

1. *G* has bounded degree.

2. G has girth larger than 2ℓ (with $\ell = \ell(n) \to \infty$).

3. $\psi_{\min} \leq \psi_{ij}(x_i, x_j) \leq \psi_{\max}$ uniformly.

直 と く ヨ と く ヨ と

n variables:
$$\underline{x} = (x_1, x_2, ..., x_n)$$
, $x_i \in \{0, 1\}$

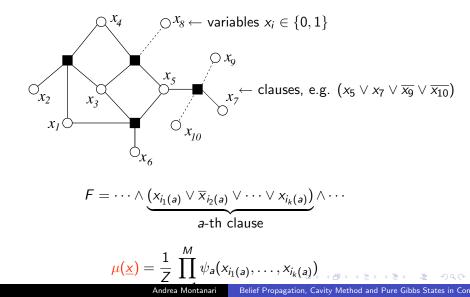
m k-clauses

$$(x_1 \lor \overline{x_5} \lor x_7) \land (x_5 \lor x_8 \lor \overline{x_9}) \land \cdots \land (\overline{x_{66}} \lor \overline{x_{21}} \lor \overline{x_{32}})$$

Hereafter $k \ge 4$ (ask me why at the end)

ゆ く き く き く

Uniform measure over solutions



Each clause is uniformly random among the $2^k \binom{n}{k}$ possible ones.

 $n, m \to \infty$ with $\alpha = m/n$ fixed.

Does not *really* satisfy assumptions 1-3 above but

直 マイド・ イマン

Each clause is uniformly random among the $2^k \binom{n}{k}$ possible ones.

 $n, m \to \infty$ with $\alpha = m/n$ fixed.

Does not *really* satisfy assumptions 1-3 above but

ゆ ト イヨ ト イヨト

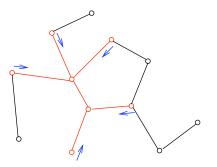
Bethe-Peierls approximation

伺 と く ヨ と く ヨ と

Definition

A 'set of messages' (aka cavity fields) is a collection $\{\nu_{i\to j}(\cdot)\}$ indexed by directed edges in G, where $\nu_{i\to j}(\cdot)$ is a distribution over \mathcal{X} .

伺 と く ヨ と く ヨ と …



Given $F \subseteq G$, $\operatorname{diam}(F) \leq 2\ell$, such that $\operatorname{deg}_F(i) = \operatorname{deg}_G(i)$ or ≤ 1

$$\nu_U(\underline{x}_U) \equiv \frac{1}{W(\nu_U)} \prod_{(ij)\in F} \psi_{(ij)}(x_i, x_j) \prod_{i\in \partial F} \nu_{i\to j(i)}(x_i) \,.$$

Definition

A probability distribution ρ on \mathcal{X}^V is an (ε, r) Bethe state, if there exists a set of messages $\{\nu_{i\to j}(\cdot)\}$ such that, for any $F \subseteq G$ with $\operatorname{diam}(F) \leq 2r$

$$||\rho_U - \nu_U||_{\tau v} \leq \varepsilon.$$

ゆ く き く き く

Consistency Condition \rightarrow Bethe Equations

Proposition (DM07)

If ρ is a $(\varepsilon, 2)$ -Bethe state with respect to the message set $\{\nu_{i \to j}(\cdot)\}$, then, for any $i \to j$

$$egin{aligned} &||
u_{i
ightarrow j} - \mathrm{T}
u_{i
ightarrow j}||_{ au v} \leq \mathcal{C}arepsilon \ , \ & \mathrm{T}
u_{i
ightarrow j}(x_i) = rac{1}{z_{i
ightarrow j}} \prod_{l\in\partial i\setminus j}\sum_{x_l}\psi_{il}(x_i,x_l)
u_{l
ightarrow i}(x_l) \ . \end{aligned}$$

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Cor

Consistency Condition \rightarrow Bethe Equations

Proposition (DM07)

If ρ is a $(\varepsilon, 2)$ -Bethe state with respect to the message set $\{\nu_{i \to j}(\cdot)\}$, then, for any $i \to j$

$$\begin{split} ||
u_{i \to j} - \mathrm{T}
u_{i \to j} ||_{\tau v} &\leq C \varepsilon \ , \\ \mathrm{T}
u_{i \to j}(x_i) &= rac{1}{z_{i \to j}} \prod_{l \in \partial i \setminus j} \sum_{x_l} \psi_{il}(x_i, x_l)
u_{l \to i}(x_l) \ . \end{split}$$

Belief Propagation For t = 0, 1, ... $\nu_{i \rightarrow j}^{(t+1)} = T\nu_{i \rightarrow j}^{(t)}$

Generic scenarios

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Cor

・ロン ・四 と ・ ヨ と ・ ヨ と ・

-2

Generic Scenarios

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

1. $\mu(\cdot)$ is a Bethe state and cannot be further decomposed. ['replica symmetric - RS']

2. $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states.

['one-step replica symmetry breaking - 1RSB']

3. $\mu(\cdot)$ is a Bethe state but can also be decomposed as a convex combination of Bethe states.

['dynamical' 1RSB]

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

1. $\mu(\cdot)$ is a Bethe state and cannot be further decomposed. ['replica symmetric - RS']

2. $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states.

['one-step replica symmetry breaking - 1RSB']

3. $\mu(\cdot)$ is a Bethe state but can also be decomposed as a convex combination of Bethe states.

['dynamical' 1RSB]

(日) (間) (目) (日) (日)

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

1. $\mu(\cdot)$ is a Bethe state and cannot be further decomposed. ['replica symmetric - RS']

2. $\mu(\,\cdot\,)$ is not a Bethe state but is a convex combination of Bethe states.

['one-step replica symmetry breaking - 1RSB']

3. $\mu(\cdot)$ is a Bethe state but can also be decomposed as a convex combination of Bethe states.

['dynamical' 1RSB]

(日) (間) (目) (日) (日)

$$\mu(\underline{x}) = \frac{1}{Z} \prod_{(ij)\in G} \psi_{ij}(x_i, x_j).$$

[consider a sequence of models with $n \to \infty$]

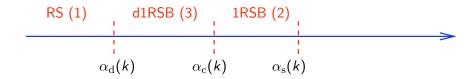
1. $\mu(\cdot)$ is a Bethe state and cannot be further decomposed. ['replica symmetric - RS']

2. $\mu(\cdot)$ is not a Bethe state but is a convex combination of Bethe states.

['one-step replica symmetry breaking - 1RSB']

3. $\mu(\cdot)$ is a Bethe state but can also be decomposed as a convex combination of Bethe states.

['dynamical' 1RSB]



$$\begin{aligned} \alpha_{\rm d}(k) &= (2^k \log k)/k + \dots & (\alpha_{\rm d}(4) \approx 9.38) \\ \alpha_{\rm c}(k) &= 2^k \log 2 - \frac{3}{2} \log 2 + \dots & (\alpha_{\rm c}(4) \approx 9.547) \\ \alpha_{\rm s}(k) &= 2^k \log 2 - \frac{1}{2}(1 + \log 2) + \dots & (\alpha_{\rm s}(4) \approx 9.93) \end{aligned}$$

* E > < E >

Relation with correlation decay

(E)

Relation with correlation decay: Notation

- $i \in \{1, \dots, N\}$ uniformly at random.
- B(i, r) ball of radius r and center i.

•
$$x_{\sim i,r} = \{ x_j : j \notin B(i,r) \}.$$

ヨト イヨト イヨト

Relation with correlation decay: Definitions

Uniqueness:

$$\sup_{\mathbf{x},\mathbf{x}'}\sum_{\mathbf{x}_i}\left|\mu(\mathbf{x}_i|\mathbf{x}_{\sim i,r})-\mu(\mathbf{x}_i|\mathbf{x}_{\sim i,r}')\right|\to 0$$

[cf. Gamarnik, Nair, Tatikonda...]

Extremality:

$$\sum_{\mathsf{x}_i,\mathsf{x}_{\sim i,\ell}} |\mu(\mathsf{x}_i,\mathsf{x}_{\sim i,r}) - \mu(\mathsf{x}_i)\mu(\mathsf{x}_{\sim i,r})| o \mathsf{0}$$

[cf. Roch, Vera...]

Concentration:

$$\sum_{x_{i(1)}...x_{i(k)}} |\mu(x_{i(1)},...,x_{i(k)}) - \mu(x_{i(1)}) \cdots \mu(x_{i(k)})| \to 0$$

 $\mathsf{RS} \Leftrightarrow \mathsf{Extremality}$

 $d1RSB \Leftrightarrow No extremality; Concentration$

 $1RSB \Leftrightarrow No extremality; No concentration$

[First rigorous under a suitable (WEAK) interpretation of two sides]

高 と く ヨ と く ヨ と

 $\mathsf{RS} \Leftrightarrow \mathsf{Extremality}$

$d1RSB \Leftrightarrow No extremality; Concentration$

1RSB \Leftrightarrow No extremality; No concentration

[First rigorous under a suitable (WEAK) interpretation of two sides]

ゆ と く き と く き と

 $\mathsf{RS} \Leftrightarrow \mathsf{Extremality}$

 $d1RSB \Leftrightarrow No \ extremality; \ Concentration$

 $1RSB \Leftrightarrow No extremality; No concentration$

[First rigorous under a suitable (WEAK) interpretation of two sides]

 $\mathsf{RS} \Leftrightarrow \mathsf{Extremality}$

 $d1RSB \Leftrightarrow No extremality; Concentration$

 $1RSB \Leftrightarrow No extremality; No concentration$

[First rigorous under a suitable (WEAK) interpretation of two sides]

글 > - < 글 >

Theorem (DM07)

If μ is extremal 'with rate $\delta(\cdot)$ ' then it an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$.

Theorem (Tatikonda-Jordan 02)

If μ is unique 'with rate $\delta(\cdot)$ ' then it an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$, with respect to the message set output by belief propagation.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

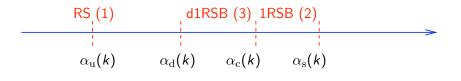
Theorem (DM07)

If μ is extremal 'with rate $\delta(\cdot)$ ' then it an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$.

Theorem (Tatikonda-Jordan 02)

If μ is unique 'with rate $\delta(\cdot)$ ' then it an (ε, r) Bethe state for any $r < \ell$ and $\varepsilon \ge C\delta(\ell - r)$, with respect to the message set output by belief propagation.

(4月) (4日) (4日)



$$\begin{aligned} &\alpha_{\rm u}(k) = (2\log k)/k + \dots & [\text{rigorous!}] \\ &\alpha_{\rm d}(k) = (2^k \log k)/k + \dots & (\alpha_{\rm d}(4) \approx 9.38) \\ &\alpha_{\rm c}(k) = 2^k \log 2 - \frac{3}{2} \log 2 + \dots & (\alpha_{\rm c}(4) \approx 9.547) \\ &\alpha_{\rm s}(k) = 2^k \log 2 - \frac{1}{2}(1 + \log 2) + \dots & (\alpha_{\rm s}(4) \approx 9.93) \end{aligned}$$

伺 ト く ヨ ト く ヨ ト

Relation with pure state/cluster decomposition

Pure states/cluster decomposition

Definition

It is a partition $\Omega_1 \cup \cdots \cup \Omega_N = \mathcal{X}^n$, such that

$$\frac{\mu(\partial_{\epsilon}\Omega_q)}{(1-\mu(\Omega_q))\mu(\Omega_q)} \leq \exp\{-C(\epsilon)n\}.$$

where $C(\epsilon) > 0$ for ϵ small enough.

$$\mu(\cdot) = \sum_{q=1}^{N} w_q \mu_q(\cdot).$$

The $\mu_q(\cdot)$ are Bethe states.

Let $N(\delta)$ the minimal number of states with measure $\geq 1 - \delta$

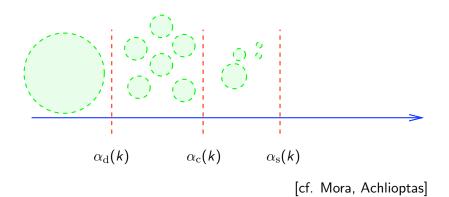
 $\mathsf{RS} \Rightarrow \qquad \mathsf{N}(\delta) = 1$

 $d1RSB \Rightarrow \qquad N = e^{n(\Sigma \pm \varepsilon)}$

 $1 \text{RSB} \Rightarrow N(\delta) = \Theta(1) \quad [\rightarrow \text{ unbounded random variable}]$

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 の Q (>

Pure states decomposition in *k*-SAT



The cavity method with many pure states

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Cor

伺 ト イヨト イヨト

Many Bethe states (d1RSB)

$$\mu(\,\cdot\,)=\sum_{q=1}^N w_q\mu_q(\,\cdot\,)\,.$$

with $\mu_q(\cdot)$ Bethe wrt message set $\{\nu_{i \to j}^{(q)}\}$

Let $\{\nu_{i \to j}\}$ be the random message set defined by $\{\nu_{i \to j}\} = \{\nu_{i \to j}^{(q)}\}$ with probability w_q . for $q = 1, \dots, N$, and $M(\nu)$ denote its distribution.

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Many Bethe states (d1RSB)

$$\mu(\cdot) = \sum_{q=1}^{N} w_q \mu_q(\cdot).$$

with $\mu_q(\cdot)$ Bethe wrt message set $\{\nu_{i\to j}^{(q)}\}$

Let $\{\nu_{i\to j}\}\$ be the random message set defined by $\{\nu_{i\to j}\} = \{\nu_{i\to j}^{(q)}\}\$ with probability w_q . for $q = 1, \dots, N$, and $M(\nu)$ denote its distribution.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

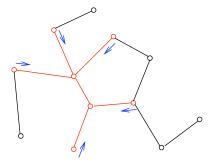
The structure of M(ν): 1RSB messages

Definition

A 'set of 1RSB messages' is a collection $\{Q_{i\to j}(\cdot)\}$ indexed by directed edges in G, where $Q_{i\to j}(\cdot)$ is a distribution over the set of probability measures over \mathcal{X} .

伺 と く ヨ と く ヨ と

The structure of $M(\nu)$: induced distribution



Given $F \subseteq G$, $\operatorname{diam}(F) \leq 2\ell$, such that $\operatorname{deg}_F(i) = \operatorname{deg}_G(i)$ or ≤ 1

$$Q_U(\nu_U) \equiv \frac{1}{Z_U} \prod_{i \to j} \mathbb{I}(\nu_{i \to j} = \mathrm{T}\nu_{i \to j}) W(\nu_U) \prod_{i \in \partial F} Q_{i \to j(i)}(\nu_{i \to j(i)}).$$

$$W(\nu_F) = \prod_{(ij)\in F} W_{ij}(\nu_{i\to j}, \nu_{j\to i}) \prod_{i\in F} W_i(\{\nu_{I\to i}, I\in\partial i\})$$

is the partition function on *F* with b.c. $\{\nu_{i \to j(i)}\}$ [log $W(\nu_F)$ is the Bethe free energy]

ゆ マ イ ヨ マ イ ヨ マ

Almost a Definition

A probability distribution $M(\nu)$ is an (ϵ, r) 1RSB Bethe state, if there exists a set of 1RSB messages $\{Q_{i\to j}(\cdot)\}$ such that, for any $F \subseteq G$ with diam $(F) \leq 2r$

$$||\mathsf{M}_U - Q_U||_{\mathsf{TV}} \le \varepsilon$$
.

$$Q_{i\to j}(\cdot) \propto \int z\{\nu_{I\to i}\} \mathbb{I}(f(\nu_{I\to i}) \in \cdot) \prod_{I\in\partial i\setminus j} \mathsf{d} Q_{I\to i}(\nu_{I\to i})$$

Formally $Q_{i \rightarrow j} = T^* Q_{i \rightarrow j}$

General Survey Propagation/1RSB Message Passing

$$Q_{i \rightarrow j}^{(t+1)} = \mathrm{T}^* Q_{i \rightarrow j}^{(t)}$$

[1RSB bounds, cf. Franz]

イロン 不良 とくほう 不良 とうほ

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Con

$$Q_{i\to j}(\cdot) \propto \int z\{\nu_{I\to i}\} \mathbb{I}(f(\nu_{I\to i}) \in \cdot) \prod_{I\in\partial i\setminus j} \mathrm{d} Q_{I\to i}(\nu_{I\to i})$$

Formally $Q_{i \rightarrow j} = T^* Q_{i \rightarrow j}$

General Survey Propagation/1RSB Message Passing

$$Q_{i \to j}^{(t+1)} = \mathrm{T}^* Q_{i \to j}^{(t)}$$

[1RSB bounds, cf. Franz]

- 人間 とうきょう 人間 とうきょう

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Con

• Many (difficult!) open problems.

• Theory of Gibbs measures on (a class of) finite graphs.

(*) *) *) *)