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Introduction
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Sources

On the cavity method:
— M. Mézard and G. Parisi, 'The Bethe lattice spin glass revisited’

On random k-SAT:

— M. Mézard, G. Parisi, and R. Zecchina, 'Analytic and Algorithmic
Solution of Random Satisfiability Problems’

— F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian,

L. Zdeborova ‘Gibbs States and the Set of Solutions of Random
Constraint Satisfaction Problems’

Formalization:
— A. Dembo and A.Montanari, In preparation [DM07]

General:
— M. Mézard and A. Montanari, Upcoming book (check online)

— google ee374
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Structure of the presentation

Discuss general ideas on a standard model
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Structure of the presentation

Discuss general ideas on a standard model

Check relevance/meaning on random k-SAT
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Structure of the presentation

Discuss general ideas on a standard model

Check relevance/meaning on random k-SAT

Ask whatever you want
Forgive me if I'll not explain everything is interesting
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‘Standard model’

G=(V,E), V=1n, x=(x1,..., %), i € X

M(K):% H @bU(Xi’Xj)'

(i)eG
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‘Standard model’ (assumptions)

1. G has bounded degree.
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‘Standard model’ (assumptions)

1. G has bounded degree.

2. G has girth larger than 2¢
(with £ = {4(n) — ).
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‘Standard model’ (assumptions)

1. G has bounded degree.

2. G has girth larger than 2¢
(with £ = {4(n) — ).

3. Ymin < Yij(Xi, Xj) < Ymax uniformly.
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k-satisfiability

n variables: x = (x1,x2,...,%,), x; € {0,1}

m k-clauses

(VX Vxr)A(xsVxgVXg)A--- A (Xeg V Xa1 V X32)

Hereafter k > 4 (ask me why at the end)
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Uniform measure over solutions

X OXs « variables x; € {0,1}

O Xy

o clauses, e.g. (x5 V x7V Xg V X10)
7

F = .../\(Xl-l(a)\/?,-2(3)\/.--\/X;k(a))/\...

a-th clause

L M
p(x) = 7 Hwa(xil(a)a ces Xi(a))



k-satisfiability

Each clause is uniformly random among the 2"(2) possible ones.

n,m — oo with o = m/n fixed.
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k-satisfiability

Each clause is uniformly random among the 2"(2) possible ones.

n,m — oo with o = m/n fixed.

Does not really satisfy assumptions 1-3 above but ...
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Bethe-Peierls approximation
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Bethe-Peierls ‘approximation’

Definition

A ‘set of messages’ (aka cavity fields) is a collection {v;_;(-)}
indexed by directed edges in G, where v;_,;(-) is a distribution
over X.
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/

Given F C G, diam(F) < 2/, such that degg(i) = degg(i) or <1

U(XU H ¢(U XHXJ H Vi—j(i) XI

(iHeF i€oF
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Bethe states

Definition

A probability distribution p on XV is an (e, r) Bethe state, if there
exists a set of messages {vi_,j(-)} such that, for any F C G with
diam(F) < 2r

llou — vullrv < e.
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Consistency Condition — Bethe Equations

Proposition (DM07)

If pis a (e, 2)-Bethe state with respect to the message set
{vinj(-)}, then, for any i — j

||viej — TVi—>j||Tv < Ce,

I D vl x)vimi(x) -

Zi—j 1€9i\j Xi

TVIHJ XI =
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Consistency Condition — Bethe Equations

Proposition (DM07)

If pis a (e, 2)-Bethe state with respect to the message set
{vinj(-)}, then, for any i — j

||viej — TVi—>j||Tv < Ce,

I D vl x)vimi(x) -

Zi—j 1€9i\j Xi

TVIHJ XI =

Fort=0,1,...

D) ()

i—j i—j
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Generic scenarios
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Generic Scenarios

M(K):% H @bU(Xi’Xj)'

(i)eG

[consider a sequence of models with n — o]
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Generic Scenarios

M(K):% H @bU(Xi’Xj)'

(i)eG

[consider a sequence of models with n — o]

1. p(-) is a Bethe state and cannot be further decomposed.
[‘replica symmetric - RS’]
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Generic Scenarios

y(x)Z% 1T #itxi.x)-

(i)eG

[consider a sequence of models with n — o]
1. p(-) is a Bethe state and cannot be further decomposed.
[‘replica symmetric - RS’]

2. p(-) is not a Bethe state but is a convex combination of Bethe

states.
[‘one-step replica symmetry breaking - 1RSB']

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Co



Generic Scenarios

y(x)Z% 1T #itxi.x)-

(i)eG

[consider a sequence of models with n — o]

1. p(-) is a Bethe state and cannot be further decomposed.
[‘replica symmetric - RS’]

2. p(-) is not a Bethe state but is a convex combination of Bethe
states.
[‘one-step replica symmetry breaking - 1RSB']

3. u(-) is a Bethe state but can also be decomposed as a convex

combination of Bethe states.
‘dynamical’ 1RSB
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What happens in k-SAT?

RS(1)  dIRSB(3) = 1RSB(2)
aq(k) ae(k) as(k)
aq(k) = (2% log k) /k + ... (q(4) =~ 9.38)
ac(k) =2Klog2 — 2 log2+ ... (ae(4) ~ 9.547)
as(k) =2Klog2 — 1(1 + log2) + ... (as(4) =~ 9.93)
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Relation with correlation decay
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Relation with correlation decay: Notation

e i€ {1l,..., N} uniformly at random.

e B(i,r) ball of radius r and center i.

o xuir=1{xj: j&B(i,r)}.
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Relation with correlation decay: Definitions

Uniqueness:
sup Y _ |u(xilxeir) = p(xilxL; )| — 0
x,x! x;
[cf. Gamarnik, Nair, Tatikonda. . .]

Extremality:

> Iy i) = (i) (xeir)| — 0

Xi X b
[cf. Roch, Vera...]
Concentration:

Z ‘#(Xi(ly e aXi(k)) - #(Xi(l)) T :U(Xi(k))‘ —0

Xi(1) - Xi(k)
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Relation with correlation decay

RS < Extremality
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Relation with correlation decay

RS < Extremality

d1RSB < No extremality; Concentration
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Relation with correlation decay

RS < Extremality

d1RSB < No extremality; Concentration

1RSB < No extremality; No concentration
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Relation with correlation decay

RS < Extremality

d1RSB < No extremality; Concentration

1RSB < No extremality; No concentration

[First rigorous under a suitable (WEAK) interpretation of two sides]
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First steps

Theorem (DMO07)

If p is extremal ‘with rate 6( - )’ then it an (e, r) Bethe state for
anyr</t{ande> Cé(l—r).
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First steps

Theorem (DMO07)

If p is extremal ‘with rate 6( - )’ then it an (e, r) Bethe state for
anyr</t{ande> Cé(l—r).

Theorem (Tatikonda-Jordan 02)

If 1 is unique ‘with rate 6(-)’ then it an (e, r) Bethe state for any
r <t ande> CH(l—r), with respect to the message set output
by belief propagation.
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What happens in k-SAT?

RS (1) “d1RSB (3) 1RSB (2)
ay (k) aq(k) ae(k) as(k)
ay(k) = (2logk)/k + ... [rigorous!]
aq(k) = (2Xlog k) /k + ... (va(4) ~9.38)
ac(k) =2Klog2 — 2 log2+ ... (e(4) ~ 9.547)
as(k) =2Klog2 — (1 + log2) + ... (as(4) =~ 9.93)
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Relation with pure state/cluster decomposition
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Pure states/cluster decomposition

It is a partition Q, U ---UQyn = X", such that

#(aqu)
(1 = 1(Q2q))1(€2q)

where C(e) > 0 for € small enough.

< exp{—C(€)n}.

N
M('):quﬂq(‘)-
g=1

The 14( ) are Bethe states. |
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Pure states: Generic scenarios

Let N(9) the minimal number of states with measure > 1 —§

RS= N(S) =1

d1RSB= N = en(x%e)

1RSB= N(6) = ©(1) [— unbounded random variable]
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Pure states decomposition in k-SAT

4 N
{ )
- : \ - :
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aq(k) ae(k) as(k)

[cf. Mora, Achlioptas]
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The cavity method with many pure states
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Many Bethe states (d1RSB)

N
i)=Y wang().
g=1

(a) }

i—j

with pg( ) Bethe wrt message set {v
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Many Bethe states (d1RSB)

N
i)=Y wang().
g=1

(a) }

with fiq( ) Bethe wrt message set {v;
Let {v;j_;} be the random message set defined by
{n g = {Vi(i)j} with probability wy.

for g=1,..., N, and M(v) denote its distribution.
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The structure of M(v): 1RSB messages

Definition

A ‘set of IRSB messages’ is a collection {Q;—.;(-)} indexed by
directed edges in G, where Q;—;( ) is a distribution over the set of
probability measures over X .
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The structure of M(v): induced distribution

/

Given F C G, diam(F) < 2/, such that degg(i) = degg(i) or <1

1
QU(VU) = 7U HH(V,_)J = TVi—»J VU) H QI—U I—>J )

i—j icoF
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... where

W(ve) = H Wij(viej, Vj—i) H Wi({vi—i, | € 0i})

(i))eF ieF

is the partition function on F with b.c. {v;_j)}
[log W(vE) is the Bethe free energy|
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1RSB Bethe States

Almost a Definition

A probability distribution M(v) is an (e, r) 1RSB Bethe state, if
there exists a set of 1RSB messages {Qi—;(-)} such that, for any
F C G with diam(F) < 2r

||MU_ QUHTV LE.
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1RSB consistency equations

Qimj(+) ox /Z{V/—u'}]l(f(l//—w') e ) ] dQ-i(vimi)

1€di\j

Formally Qi—>f =T Qi—>j

Andrea Montanari Belief Propagation, Cavity Method and Pure Gibbs States in Co



1RSB consistency equations

Qi) x [ 2o W) € ) T] d0it)

1€di\j

Formally Qi—>f =T Qi—>j

General Survey Propagation/1RSB Message Passing

(t+1) _ s (1)
Qi—>j =T QI—)_/

[IRSB bounds, cf. Franz]
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Conclusion

e Many (difficult!) open problems.

@ Theory of Gibbs measures on (a class of) finite graphs.
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