The diameter and mixing time of critical random graphs.

Yuval Peres

March 14, 2007

Joint work with: Asaf Nachmias.

Yuval Peres The diameter and mixing time of critical random graphs.

The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on *n* vertices by retaining each edge with probability *p* and deleting it with probability 1 - p, independently of all other edges. Let C_1 denote the largest component of G(n, p).

The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on *n* vertices by retaining each edge with probability *p* and deleting it with probability 1 - p, independently of all other edges. Let C_1 denote the largest component of G(n, p).

Theorem (Erdos and Rényi, 1960)

If
$$p = \frac{c}{n}$$
 then
1. If $c < 1$ then $|C_1| = O(\log n)$ a.a.s.
2. If $c > 1$ then $|C_1| = \Theta(n)$ a.a.s.
3. If $c = 1$, then $|C_1| \sim n^{2/3}$ (proved later by Bollobas, and also Luczak)

Theorem

If $p = \frac{c}{n}$ then

- 1. If c < 1 then $diam(C_1) = O(\sqrt{\log n})$ a.a.s., but there exists some other component of diameter $\Omega(\log n)$ (Luczak 1998).
- 2. If c > 1 then $diam(C_1) = \Theta(\log n)$ a.a.s.

伺 ト イヨト イヨト

Theorem

If $p = \frac{c}{n}$ then

- 1. If c < 1 then $diam(C_1) = O(\sqrt{\log n})$ a.a.s., but there exists some other component of diameter $\Omega(\log n)$ (Luczak 1998).
- 2. If c > 1 then $diam(C_1) = \Theta(\log n)$ a.a.s.

The mixing time of the lazy random walk on a graph G is

 $T_{\min}(G) = T_{\min}(G, 1/4) = \min\{t : \| \mathbf{p}^t(x, \cdot) - \pi(\cdot) \| \le 1/4, \forall x \in V\},\$

where $\|\mu - \nu\| = \max_{A \subset V} |\mu(A) - \nu(A)|$ is the total variation distance.

(1) マン・ション (1) マン・

Theorem (Fountoulakis and Reed & Benjamini, Kozma and Wormald)

If $p = \frac{c}{n}$ where c > 1, then the random walk on C_1 , the largest component of G(n, p) (the unique component of linear size), has

$$T_{\min}(\mathcal{C}_1) = \Theta(\log^2(n)).$$

伺い イヨト イヨト

Theorem (Fountoulakis and Reed & Benjamini, Kozma and Wormald)

If $p = \frac{c}{n}$ where c > 1, then the random walk on C_1 , the largest component of G(n, p) (the unique component of linear size), has

$$T_{\min}(\mathcal{C}_1) = \Theta(\log^2(n)).$$

Question: [Benjamini, Kozma and Wormald] What is the order of the mixing time of the random walk on the largest component of the critical random graph $G(n, \frac{1}{n})$?

Main Result

Theorem (Nachmias, P.)

Let C_1 denote the largest connected component of $G(n, \frac{1}{n})$. Then for any $\epsilon > 0$ there exists $A = A(\epsilon) < \infty$ such that for all large n,

•
$$\mathbf{P}\left(\operatorname{diam}(\mathcal{C}_1) \notin [A^{-1}n^{1/3}, An^{1/3}]\right) < \epsilon$$
,
• $\mathbf{P}\left(T_{\min}(\mathcal{C}_1) \notin [A^{-1}n, An]\right) < \epsilon$.

This answer the question of Benjamini, Kozma and Wormald.

Remark. This extends for *p* in the "critical window", i.e. $p = \frac{1+\lambda n^{-1/3}}{n}$.

(4月) (4日) (4日)

A general theorem

Let G be a d-regular graph and $p \in (0,1)$ and consider the random subgraph G_p is obtained from bond percolation with parameter p. We write C for a connected component of G_p .

A general theorem

Let G be a d-regular graph and $p \in (0,1)$ and consider the random subgraph G_p is obtained from bond percolation with parameter p. We write C for a connected component of G_p .

Theorem (Nachmias, P.)

If
$$p \leq \frac{1}{d-1}$$
 then for any $\epsilon > 0$ there exists $A = A(\epsilon) < \infty$ such that
1. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{E}(\mathcal{C})| > An^{2/3}\right) < \epsilon$,
2. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, \operatorname{diam}(\mathcal{C}) \notin [A^{-1}n^{1/3}, An^{1/3}]\right) < \epsilon$,
3. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, T_{\min}(\mathcal{C}) \notin [A^{-1}n, An]\right) < \epsilon$.

A general theorem

Let G be a d-regular graph and $p \in (0,1)$ and consider the random subgraph G_p is obtained from bond percolation with parameter p. We write C for a connected component of G_p .

Theorem (Nachmias, P.)

If
$$p \leq \frac{1}{d-1}$$
 then for any $\epsilon > 0$ there exists $A = A(\epsilon) < \infty$ such that
1. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{E}(\mathcal{C})| > An^{2/3}\right) < \epsilon$,
2. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, \operatorname{diam}(\mathcal{C}) \notin [A^{-1}n^{1/3}, An^{1/3}]\right) < \epsilon$,
3. $\mathbf{P}\left(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, T_{\min}(\mathcal{C}) \notin [A^{-1}n, An]\right) < \epsilon$.

Remark: Later we will see how to relax the assumption $p \leq \frac{1}{d-1}$.

Applications of general theorem

The general Theorem implies the Theorem about $G(n, \frac{1}{n})$ because

$$\liminf_{n} \mathbf{P}(|\mathcal{C}_1| > \beta n^{2/3}) \to 1, \quad \text{as } \beta \to 0,$$

which was first proved by Erdos and Rényi, 1960.

Applications of general theorem

The general Theorem implies the Theorem about $G(n, \frac{1}{n})$ because

$$\liminf_n \mathbf{P}(|\mathcal{C}_1| > \beta n^{2/3}) \to 1\,, \quad \text{as } \beta \to 0\,,$$

which was first proved by Erdos and Rényi, 1960.

By the general Theorem, the same estimates for the diameter and the mixing time hold for:

- 1. Random *d*-regular graphs on *n* vertices when $p \leq \frac{1}{d-1}$ (Nachmias, P., 2006).
- 2. Cartesian product of two complete graphs (van der Hofstad and Luczak, 2006 and Borgs, Chayes, van der Hofstad, Slade and Spencer, 2005).

イロト 不得下 イヨト イヨト

The diameter of critical random graphs

Let Γ be an infinite *d*-regular tree with root ρ and let Γ_p be the outcome of *p*-bond percolation on Γ . Let $C(\rho)$ be the component containing ρ in Γ_p . Define

$$\mathcal{L}_k = \left\{ u \in \mathcal{C}(\rho) : d_{\Gamma}(\rho, u) = k \right\}.$$

イロト イポト イヨト イヨト

The diameter of critical random graphs

Let Γ be an infinite *d*-regular tree with root ρ and let Γ_p be the outcome of *p*-bond percolation on Γ . Let $C(\rho)$ be the component containing ρ in Γ_p . Define

$$\mathcal{L}_k = \left\{ u \in \mathcal{C}(\rho) : d_{\Gamma}(\rho, u) = k \right\}.$$

Theorem (Kolmogorov, 1938) If $p = \frac{1}{d-1}$ then $\mathbf{P}(|\mathcal{L}_k| > 0) \le \frac{c}{k}$.

Some definitions

For a vertex $v \in G$ let C(v) be the component containing v in G_p . Let $d_p(u, v)$ denote the distance between u and v in G_p . Define

$$B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) \le k \},\$$

$$\partial B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) = k \},\$$

Some definitions

For a vertex $v \in G$ let C(v) be the component containing v in G_p . Let $d_p(u, v)$ denote the distance between u and v in G_p . Define

$$B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) \le k \},\$$

$$\partial B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) = k \},\$$

As G is d-regular we can couple such that

$$egin{aligned} |B_p(\mathbf{v},k)| &\leq \sum_{j=0}^k |\mathcal{L}_j|\,, \ &|\partial B_p(\mathbf{v},k)| &\leq |\mathcal{L}_k|\,. \end{aligned}$$

高 とう モン・ く ヨ と

Upper bound on the diameter

If a vertex $v \in V$ satisfies diam $(\mathcal{C}(v)) > R$, then $|\partial B_p(v, \lceil R/2 \rceil)| > 0$, thus by our coupling

$$\mathbf{P}(\operatorname{diam}(\mathcal{C}(\mathbf{v})) > R) \leq \frac{2c}{R}$$
,

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

3

Upper bound on the diameter

If a vertex $v \in V$ satisfies diam $(\mathcal{C}(v)) > R$, then $|\partial B_p(v, \lceil R/2 \rceil)| > 0$, thus by our coupling

$$\mathbf{P}(\operatorname{diam}(\mathcal{C}(v)) > R) \leq \frac{2c}{R}$$
,

Write

$$X = \Big| \{ v \in V : |\mathcal{C}(v)| > M ext{ and } \operatorname{diam}(\mathcal{C}(v)) > R \} \Big|$$

Then we have $\mathbf{E}X \leq \frac{2cn}{R}$. So we have

イロト 不得下 イヨト イヨト 二日

Upper bound on the diameter

If a vertex $v \in V$ satisfies diam $(\mathcal{C}(v)) > R$, then $|\partial B_p(v, \lceil R/2 \rceil)| > 0$, thus by our coupling

$$\mathbf{P}\left(\operatorname{diam}(\mathcal{C}(v)) > R\right) \leq \frac{2c}{R},$$

Write

$$X = \left| \{ v \in V : |\mathcal{C}(v)| > M \text{ and } \operatorname{diam}(\mathcal{C}(v)) > R \}
ight|.$$

Then we have $\mathbf{E}X \leq \frac{2cn}{R}$. So we have

$$\mathsf{P} \quad \left(\exists \mathcal{C} \text{ with } |\mathcal{C}| > M \text{ and } \operatorname{diam}(\mathcal{C}) > R \right) \leq \mathsf{P}(X > M) \leq \frac{2cn}{MR},$$

and taking $M = \beta n^{2/3}$ and $R = A n^{1/3}$ concludes the proof.

Lower bound on the diameter

In the infinite tree we have

$$\mathsf{E}\sum_{j=0}^k |\mathcal{L}_j| \le 2k\,,$$

・ロン ・回 と ・ヨン ・ヨン

æ

Lower bound on the diameter

In the infinite tree we have

$$\mathsf{E}\sum_{j=0}^k |\mathcal{L}_j| \le 2k\,,$$

If $v \in V$ satisfies diam $(\mathcal{C}(v)) \leq r$ and $|\mathcal{C}(v)| > M$, then $|B_p(v, r)| > M$. Thus by our coupling

$$\mathbf{P}\Big(\operatorname{diam}(\mathcal{C}(v)) \leq r \text{ and } |\mathcal{C}(v)| > M\Big) \leq \frac{2r}{M}.$$

Lower bound on the diameter

In the infinite tree we have

$$\mathsf{E}\sum_{j=0}^k |\mathcal{L}_j| \le 2k\,,$$

If $v \in V$ satisfies diam $(\mathcal{C}(v)) \leq r$ and $|\mathcal{C}(v)| > M$, then $|B_p(v, r)| > M$. Thus by our coupling

$$\mathbf{P}\Big(\operatorname{diam}(\mathcal{C}(v)) \leq r \text{ and } |\mathcal{C}(v)| > M\Big) \leq \frac{2r}{M}.$$

Write

$$Y = \left| \{ v \in V : |\mathcal{C}(v)| > M \text{ and } \operatorname{diam}(\mathcal{C}(v)) < r \} \right|.$$

イロン イ団ン イヨン イヨン 三日

Lower bound on the diameter (continued)

We learn that $\mathbf{E}Y \leq \frac{2rn}{M}$. As before this gives

$$\begin{aligned} \mathbf{P} & \left(\exists \mathcal{C} \in \mathbf{CO}(G_p) \text{ with } |\mathcal{C}| > M \text{ and } \operatorname{diam}(\mathcal{C}) > r \right) \\ \leq & \mathbf{P}(Y > M) \leq \frac{2rn}{M^2}. \end{aligned}$$

and taking $M = \beta n^{2/3}$ and $r = A^{-1} n^{1/3}$ concludes the proof.

Upper bound on the size of components

For any $v \in V$ we have

 $\left\{ |\mathcal{C}(v)| > M \right\} \subset \left\{ |\mathcal{C}(v)| > M \text{ and } \operatorname{diam}(\mathcal{C}(v)) \le r \right\} \cup \left\{ \operatorname{diam}(\mathcal{C}(v)) > r \right\}.$

Upper bound on the size of components

For any $v \in V$ we have

 $\{|\mathcal{C}(v)| > M\} \subset \{|\mathcal{C}(v)| > M \text{ and } \operatorname{diam}(\mathcal{C}(v)) \le r\} \cup \{\operatorname{diam}(\mathcal{C}(v)) > r\}.$

Write

$$Z = \left| \{ v \in V : |\mathcal{C}(v)| > M \} \right|.$$

We have shown that

$$\mathbf{E}Z \le \left(\frac{2c}{r} + \frac{2r}{M}\right)n.$$

Upper bound on the size of components

For any $v \in V$ we have

 $\{|\mathcal{C}(v)| > M\} \subset \{|\mathcal{C}(v)| > M \text{ and } \operatorname{diam}(\mathcal{C}(v)) \le r\} \cup \{\operatorname{diam}(\mathcal{C}(v)) > r\}.$

Write

$$Z = \left| \{ v \in V : |\mathcal{C}(v)| > M \} \right|.$$

We have shown that

$$\mathbf{E}Z \leq \left(\frac{2c}{r} + \frac{2r}{M}\right)n.$$

Thus.

$$\mathbf{P}(|\mathcal{C}_1| > M) \le \mathbf{P}(Z > M) \le \left(\frac{2c}{rM} + \frac{2r}{M^2}\right)n,$$

and taking $M = An^{2/3}$ and $r = \sqrt{An^{1/3}}$ concludes the proof.

The diameter and mixing time of critical random graphs.

Upper bound on the mixing time

The upper bound $T_{\min}(\mathcal{C}_1) \leq O(n)$ follows from

Lemma

Let $G = (V, \mathcal{E})$ be a graph. Then the mixing time of a lazy simple random walk on G satisfies

 $T_{\min}(G, 1/4) \leq 8|\mathcal{E}(G)|\operatorname{diam}(G).$

▲□→ ▲注→ ▲注→

Lower bound on the mixing time

Let $\mathcal{R}(u \leftrightarrow v)$ denote the effective resistance between u and v. Lemma (Tetali 1991)

For a lazy simple random walk on a finite graph where each edge has unit conductance, we have

$$\mathsf{E}_{\mathsf{v}}\tau_{\mathsf{z}} = \sum_{u\in\mathsf{V}} \deg(u) [\mathcal{R}(\mathsf{v}\leftrightarrow\mathsf{z}) + \mathcal{R}(\mathsf{z}\leftrightarrow\mathsf{u}) - \mathcal{R}(\mathsf{u}\leftrightarrow\mathsf{v})] \,.$$

Lower bound on the mixing time

Let $\mathcal{R}(u \leftrightarrow v)$ denote the effective resistance between u and v. Lemma (Tetali 1991)

For a lazy simple random walk on a finite graph where each edge has unit conductance, we have

$$\mathsf{E}_{\mathsf{v}}\tau_{\mathsf{z}} = \sum_{\mathsf{u}\in\mathsf{V}} \deg(\mathsf{u})[\mathcal{R}(\mathsf{v}\leftrightarrow\mathsf{z}) + \mathcal{R}(\mathsf{z}\leftrightarrow\mathsf{u}) - \mathcal{R}(\mathsf{u}\leftrightarrow\mathsf{v})]\,.$$

Lemma (Nash-Williams 1959)

If $\{\Pi_j\}_{j=1}^J$ are disjoint cut-sets separating v from z in a graph with unit conductance for each edge, then the effective resistance from v to z satisfies

$$\mathcal{R}(\mathsf{v}\leftrightarrow z)\geq \sum_{j=1}^{J}rac{1}{|\mathsf{\Pi}_{j}|}\,.$$

For a graph $G = (V, \mathcal{E})$, write $d_G(x, y)$ for the graph distance between x and y. For any vertex v, let

$$B(v,r) = B_G(v,r) = \{u \in v : d_G(u,v) \le r\},\$$

$$\partial B(v,r) = \partial B_G(v,r) = \{u \in v : d_G(u,v) \le r\}.\$$

For a graph $G = (V, \mathcal{E})$, write $d_G(x, y)$ for the graph distance between x and y. For any vertex v, let

$$B(v,r) = B_G(v,r) = \{u \in v : d_G(u,v) \le r\},\$$

$$\partial B(v,r) = \partial B_G(v,r) = \{u \in v : d_G(u,v) = r\}.$$

An edge e between ∂B(v, j − 1) and ∂B(v, j) is called a lane for (v, r) if it there is a path with initial edge e from ∂B(v, j − 1) to ∂B(v, r) that does not return to ∂B(v, j − 1).

(本間) (本語) (本語) 三語

For a graph $G = (V, \mathcal{E})$, write $d_G(x, y)$ for the graph distance between x and y. For any vertex v, let

$$B(v,r) = B_G(v,r) = \{u \in v : d_G(u,v) \le r\},\$$

$$\partial B(v,r) = \partial B_G(v,r) = \{u \in v : d_G(u,v) = r\}.$$

- An edge e between ∂B(v, j − 1) and ∂B(v, j) is called a lane for (v, r) if it there is a path with initial edge e from ∂B(v, j − 1) to ∂B(v, r) that does not return to ∂B(v, j − 1).
- Say that a level j (with 0 < j < r) has L lanes for (v, r) if there are at least L edges between ∂B(v, j − 1) and ∂B(v, j) which are lanes for (v, r).

イロト 不得下 イヨト イヨト 二日

For a graph $G = (V, \mathcal{E})$, write $d_G(x, y)$ for the graph distance between x and y. For any vertex v, let

$$B(v,r) = B_G(v,r) = \{u \in v : d_G(u,v) \le r\},\$$

$$\partial B(v,r) = \partial B_G(v,r) = \{u \in v : d_G(u,v) = r\}.$$

- An edge e between ∂B(v, j − 1) and ∂B(v, j) is called a lane for (v, r) if it there is a path with initial edge e from ∂B(v, j − 1) to ∂B(v, r) that does not return to ∂B(v, j − 1).
- Say that a level j (with 0 < j < r) has L lanes for (v, r) if there are at least L edges between ∂B(v, j − 1) and ∂B(v, j) which are lanes for (v, r).
- Let k < r. A vertex v is called L-lane rich for (k, r), if more than half of the levels j ∈ [k/2, k] have L lanes for (v, r).

Lemma

Let $G = (V, \mathcal{E})$ be a graph and let $v \in V$. Suppose that $|B(v, h)| \ge m$, that v is not L-lane rich for (k, r), that $|\mathcal{E}(B(v, r))| < \frac{|\mathcal{E}(G)|}{3}$ and that $h < \frac{k}{4L}$. Then

$$T_{\min}(G) \geq rac{m\kappa}{12L}$$
.

向下 イヨト イヨト

Another general theorem

Recall the definitions:

$$B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) \le k \},\$$

$$\partial B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) = k \},\$$

・ロト ・回ト ・ヨト ・ヨト

æ

Another general theorem

Recall the definitions:

$$B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) \le k \},\$$

$$\partial B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) = k \},\$$

<u>Theorem</u> (Nachmias, P.) If $p \in (0, 1)$ satisfies

(i) $\mathbf{E}|\mathcal{E}(B_p(v,k))| \le c_1 k$, (ii) $\mathbf{P}(|\partial B_p(v,k)| > 0) \le c_2/k$,

Another general theorem

Recall the definitions:

$$B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) \le k \},\$$

$$\partial B_p(v,k) = \{ u \in \mathcal{C}(v) : d_p(v,u) = k \},\$$

<u>Theorem</u> (Nachmias, P.) If $p \in (0, 1)$ satisfies

(i)
$$\mathbf{E}|\mathcal{E}(B_p(v,k))| \leq c_1 k$$
,
(ii) $\mathbf{P}(|\partial B_p(v,k)| > 0) \leq c_2/k$,
then for large enough A
1. $\mathbf{P}(\exists \mathcal{C} \text{ with } |\mathcal{E}(\mathcal{C})| > An^{2/3}) < \epsilon$,
2. $\mathbf{P}(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, \operatorname{diam}(\mathcal{C}) \notin [A^{-1}n^{1/3}, An^{1/3}]) < \epsilon$,
3. $\mathbf{P}(\exists \mathcal{C} \text{ with } |\mathcal{C}| > \beta n^{2/3}, T_{\mathrm{mix}}(\mathcal{C}) \notin [A^{-1}n, An]) < \epsilon$.

An open question

Consider $T_n^d = \{0, ..., n-1\}^d$, the *d*-dimensional discrete torus with side *n* and consider *p*-bond percolation on it. Let $V = n^d$ denote the volume of this graph.

Theorem (Borgs, Chayes, van der Hofstad, Slade and Spencer 2005)

Let d be large but fixed, and $n \to \infty$. Then there exists some p_c such that there exists a "critical window" around p_c . I.e., for all $p = p_c + \Theta(V^{-1/3})$ we have

$$|\mathcal{C}_1| \sim V^{2/3}$$
 .

An open question

Consider $T_n^d = \{0, ..., n-1\}^d$, the *d*-dimensional discrete torus with side *n* and consider *p*-bond percolation on it. Let $V = n^d$ denote the volume of this graph.

Theorem (Borgs, Chayes, van der Hofstad, Slade and Spencer 2005)

Let d be large but fixed, and $n \to \infty$. Then there exists some p_c such that there exists a "critical window" around p_c . I.e., for all $p = p_c + \Theta(V^{-1/3})$ we have

$$|\mathcal{C}_1| \sim V^{2/3}$$
 .

Question: Does this p_c have properties (i) and (ii)?