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Background

The Erdos and Rényi random graph G (n, p) is obtained from the
complete graph on n vertices by retaining each edge with
probability p and deleting it with probability 1−p, independently of
all other edges. Let C1 denote the largest component of G (n, p).

Theorem (Erdos and Rényi, 1960)

If p = c
n then

1. If c < 1 then |C1| = O(log n) a.a.s.

2. If c > 1 then |C1| = Θ(n) a.a.s.

3. If c = 1, then |C1| ∼ n2/3 (proved later by Bollobas, and also
Luczak)
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Background

Theorem
If p = c

n then

1. If c < 1 then diam(C1) = O(
√

log n) a.a.s., but there exists
some other component of diameter Ω(log n) (Luczak 1998).

2. If c > 1 then diam(C1) = Θ(log n) a.a.s.

The mixing time of the lazy random walk on a graph G is

Tmix(G ) = Tmix(G , 1/4) = min{t : ||pt(x , ·)−π(·) || ≤ 1/4 ,∀x ∈ V } ,

where ||µ− ν || = maxA⊂V |µ(A)− ν(A)| is the total variation
distance.
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Background

Theorem (Fountoulakis and Reed & Benjamini, Kozma and
Wormald)

If p = c
n where c > 1, then the random walk on C1, the largest

component of G (n, p) (the unique component of linear size), has

Tmix(C1) = Θ(log2(n)) .

Question: [Benjamini, Kozma and Wormald] What is the order of
the mixing time of the random walk on the largest component of
the critical random graph G (n, 1

n )?
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Main Result

Theorem (Nachmias, P.)

Let C1 denote the largest connected component of G (n, 1
n ). Then

for any ε > 0 there exists A = A(ε) < ∞ such that for all large n,

! P
(
diam(C1) (∈ [A−1n1/3,An1/3]

)
< ε ,

! P
(
Tmix(C1) (∈ [A−1n,An]

)
< ε .

This answer the question of Benjamini, Kozma and Wormald.

Remark. This extends for p in the “critical window”, i.e.

p = 1+λn−1/3

n .

Yuval Peres The diameter and mixing time of critical random graphs.



A general theorem

Let G be a d-regular graph and p ∈ (0, 1) and consider the
random subgraph Gp is obtained from bond percolation with
parameter p. We write C for a connected component of Gp.

Theorem (Nachmias, P.)

If p ≤ 1
d−1 then for any ε > 0 there exists A = A(ε) < ∞ such that

1. P
(
∃C with |E(C)| > An2/3

)
< ε ,

2. P
(
∃C with |C| > βn2/3 , diam(C) (∈ [A−1n1/3,An1/3]

)
< ε ,

3. P
(
∃C with |C| > βn2/3 , Tmix(C) (∈ [A−1n,An]

)
< ε .

Remark: Later we will see how to relax the assumption p ≤ 1
d−1 .
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Applications of general theorem

The general Theorem implies the Theorem about G (n, 1
n ) because

lim inf
n

P(|C1| > βn2/3) → 1 , as β → 0 ,

which was first proved by Erdos and Rényi, 1960.

By the general Theorem, the same estimates for the diameter and
the mixing time hold for:

1. Random d-regular graphs on n vertices when p ≤ 1
d−1

(Nachmias, P., 2006).

2. Cartesian product of two complete graphs (van der Hofstad
and Luczak, 2006 and Borgs, Chayes, van der Hofstad, Slade
and Spencer, 2005).
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The diameter of critical random graphs

Let Γ be an infinite d-regular tree with root ρ and let Γp be the
outcome of p-bond percolation on Γ. Let C(ρ) be the component
containing ρ in Γp. Define

Lk =
{

u ∈ C(ρ) : dΓ(ρ, u) = k
}

.

Theorem (Kolmogorov, 1938)

If p = 1
d−1 then

P
(
|Lk | > 0

)
≤ c

k
.
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Some definitions

For a vertex v ∈ G let C(v) be the component containing v in Gp.
Let dp(u, v) denote the distance between u and v in Gp. Define

Bp(v , k) = {u ∈ C(v) : dp(v , u) ≤ k} ,

∂Bp(v , k) = {u ∈ C(v) : dp(v , u) = k} ,

As G is d-regular we can couple such that

|Bp(v , k)| ≤
k∑

j=0

|Lj | ,

|∂Bp(v , k)| ≤ |Lk | .
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Upper bound on the diameter

If a vertex v ∈ V satisfies diam(C(v)) > R, then
|∂Bp(v , +R/2,)| > 0, thus by our coupling

P
(
diam(C(v)) > R

)
≤ 2c

R
,

Write

X =
∣∣∣{v ∈ V : |C(v)| > M and diam(C(v)) > R}

∣∣∣ .

Then we have EX ≤ 2cn
R . So we have

P
(
∃C with |C| > M and diam(C) > R

)
≤ P(X > M) ≤ 2cn

MR
,

and taking M = βn2/3 and R = An1/3 concludes the proof.
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Lower bound on the diameter

In the infinite tree we have

E
k∑

j=0

|Lj | ≤ 2k ,

If v ∈ V satisfies diam(C(v)) ≤ r and |C(v)| > M, then
|Bp(v , r)| > M. Thus by our coupling

P
(
diam(C(v)) ≤ r and |C(v)| > M

)
≤ 2r

M
.

Write

Y =
∣∣∣{v ∈ V : |C(v)| > M and diam(C(v)) < r}

∣∣∣ .
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Lower bound on the diameter (continued)

We learn that EY ≤ 2rn
M . As before this gives

P
(
∃C ∈ CO(Gp) with |C| > M and diam(C) > r

)

≤ P(Y > M) ≤ 2rn

M2
.

,
and taking M = βn2/3 and r = A−1n1/3 concludes the proof.
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Upper bound on the size of components

For any v ∈ V we have

{|C(v)| > M} ⊂ {|C(v)| > M and diam(C(v)) ≤ r}∪{diam(C(v)) > r} .

Write
Z =

∣∣∣{v ∈ V : |C(v)| > M}
∣∣∣ .

We have shown that

EZ ≤
(2c

r
+

2r

M

)
n .

Thus,

P
(
|C1| > M

)
≤ P

(
Z > M

)
≤

( 2c

rM
+

2r

M2

)
n ,

and taking M = An2/3 and r =
√

An1/3 concludes the proof.
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Upper bound on the mixing time

The upper bound Tmix(C1) ≤ O(n) follows from

Lemma
Let G = (V , E) be a graph. Then the mixing time of a lazy simple
random walk on G satisfies

Tmix(G , 1/4) ≤ 8|E(G )|diam(G ) .
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Lower bound on the mixing time

Let R(u ↔ v) denote the effective resistance between u and v .

Lemma (Tetali 1991)

For a lazy simple random walk on a finite graph where each edge
has unit conductance, we have

Evτz =
∑

u∈V

deg(u)[R(v ↔ z) + R(z ↔ u)−R(u ↔ v)] .

Lemma (Nash-Williams 1959)

If {Πj}J
j=1 are disjoint cut-sets separating v from z in a graph with

unit conductance for each edge, then the effective resistance from
v to z satisfies

R(v ↔ z) ≥
J∑

j=1

1

|Πj |
.
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Lower bound on the mixing time (continued)

For a graph G = (V , E), write dG (x , y) for the graph distance
between x and y . For any vertex v , let

B(v , r) = BG (v , r) = {u ∈ v : dG (u, v) ≤ r} ,

∂B(v , r) = ∂BG (v , r) = {u ∈ v : dG (u, v) = r} .

! An edge e between ∂B(v , j − 1) and ∂B(v , j) is called a lane
for (v , r) if it there is a path with initial edge e from
∂B(v , j − 1) to ∂B(v , r) that does not return to ∂B(v , j − 1).

! Say that a level j (with 0 < j < r) has L lanes for (v , r) if
there are at least L edges between ∂B(v , j − 1) and ∂B(v , j)
which are lanes for (v , r).

! Let k < r . A vertex v is called L-lane rich for (k, r), if more
than half of the levels j ∈ [k/2, k] have L lanes for (v , r).
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Lower bound on the mixing time (continued)

Lemma
Let G = (V , E) be a graph and let v ∈ V . Suppose that
|B(v , h)| ≥ m, that v is not L-lane rich for (k, r), that

|E(B(v , r))| < |E(G)|
3 and that h < k

4L . Then

Tmix(G ) ≥ mk

12L
.
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Another general theorem

Recall the definitions:

Bp(v , k) = {u ∈ C(v) : dp(v , u) ≤ k} ,

∂Bp(v , k) = {u ∈ C(v) : dp(v , u) = k} ,

Theorem (Nachmias, P.) If p ∈ (0, 1) satisfies

(i) E|E(Bp(v , k))| ≤ c1k ,

(ii) P(|∂Bp(v , k)| > 0) ≤ c2/k ,

then for large enough A

1. P
(
∃C with |E(C)| > An2/3

)
< ε ,

2. P
(
∃C with |C| > βn2/3 , diam(C) (∈ [A−1n1/3,An1/3]

)
< ε ,

3. P
(
∃C with |C| > βn2/3 , Tmix(C) (∈ [A−1n,An]

)
< ε .
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An open question

Consider T d
n = {0, . . . , n − 1}d , the d-dimensional discrete torus

with side n and consider p-bond percolation on it. Let V = nd

denote the volume of this graph.

Theorem (Borgs, Chayes, van der Hofstad, Slade and Spencer
2005)

Let d be large but fixed, and n →∞. Then there exists some pc

such that there exists a “critical window” around pc . I.e., for all
p = pc + Θ(V−1/3) we have

|C1| ∼ V 2/3 .

Question: Does this pc have properties (i) and (ii)?
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