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Statistical Foundations of Audit Trail Analysis
for the Detection of Computer Misuse

Paul Helman and Gunar Liepins

Abstract— We model computer transactions as generated
by two stationary stochastic processes, the legitimate (normal)
process N and the misuse process /. We define misuse (anomaly)
detection to be the identification of transactions most likely to
have been generated by /. We formally demonstrate that the
accuracy of misuse detectors is bounded by a function of the
difference of the densities of the processes N and M over the
space of transactions. In practice, detection accuracy can be far
below this bound, and generally improves with increasing sample
size of historical (training) data. Careful selection of transaction
attributes also can improve detection accuracy; we suggest several
criteria for attribute selection, including adequate sampling rate
and separation between models. We demonstrate that exactly
optimizing even the simplest of these criteria is NP-hard, thus
motivating a heuristic approach. We further differentiate between
modeling (density estimation) and nonmodeling approaches. We
introduce a frequentist method as a special case of the former,
and Wisdom and Sense, developed at Los Alamos National
Laboratory, as a special case of the latter. For nonmodeling
approaches such as Wisdom and Sense that generate statistical
rules, we show that the rules must be maximally specific to
ensure consistency with Bayesian analysis. Finally, we provide
suggestions for testing detection systems and present limited test
results using Wisdom and Sense and the frequentist approach.

Index Terms— Anomaly detection, audit trail analysis, com-
puter security, intrusion detection, probability theory.

I. INTRODUCTION

ECENT recognition that password authorization and
Rothcr administrative and physical procedures are not
sufficient by themselves to prevent misuse of computer
systems has led to the development of a variety of intrusion
detection systems. The usefulness of such systems was argued
in Denning [3] and current implementations include, for
example, IDES (Lunt et al. [10], [15]), Discovery (Tenner
[22]), MIDAS (Sebring et al. [20]) and Wisdom and Sense
(Vaccaro and Liepins {23] and Liepins and Vaccaro [13]).

Although some detection systems have expert systems com-
ponents, many flag “unusual” or “statistically suspicious”
transactions. In light of the large personnel, time, and fiscal
investment in the development of such systems, surprisingly
little has appeared in the literature that addresses their formal
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properties and limitations. The primary goal of this paper is
to provide formal criteria against which existing and future
detection systems can be measured and optimized; the research
reported here represents a first step at formally quantifying the
power and limitations of statistically based detection systems.

A. Audit Trail Analysis: Concepts and Motivations

Audit trail analysis supports an approach to intrusion detec-
tion that attempts to identify suspicious computer activities.
The approach is intended to augment traditional security mea-
sures (e.g., physical and password protections) by scrutinizing
the activities of all users, once they have gained access to
the computing system. In principle, audit trail analysis can
detect, for example, an authorized user engaged in activities
prohibited to him or her (e.g., a user altering a file in an
illegitimate manner) and one user masquerading as another
user (e.g., one user accessing the computing system via another
user’s account).

Since the technique of audit trail analysis is based on the
careful monitoring of users’ actions, serious privacy issues
must be addressed. While the law currently is evolving re-
garding the contexts in which such monitoring is permissible,
it is agreed that, at the very least, users must be notified when
their actions are monitored. Further, society must determine for
what purposes such monitoring is justified since, for example,
a degree of monitoring that might be justified for the purpose
of increasing the security of a nuclear facility might not be
justified for the purpose of ascertaining the productivity of
clerical workers.

An audit trail can be maintained for a variety of user activity
types, logging, for example, operating system commands,
database system interrogations and updates, and the details
of user interactions with specialized programs (e.g., materials
accountability software). Though the methodology described
here can be applied to the analysis of audit trails generated by
any such activity, we shall illustrate our techniques in terms
of operating system-like audit trails.

The basic unit of the audit trail is called a transaction.
A transaction provides a trace of a primitive user action
by recording attribute values that characterize the action. In
practice, system designers and security experts must determine
what collection of attributes to record for a given application
of interest. While the identification of all potentially relevant
attributes is an important aspect of the audit trail analysis
problem, the current paper does not directly consider this issue.
In fact, one of our goals is to develop a methodology that is
completely independent of the semantics of the attributes that
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define transactions, and independent of how these attributes
have been identified.

For simplicity, we shall assume here that all transactions
in an audit trail are homogeneous, containing a common set
of attributes; this set of attributes defines the transaction
template. For example, a transaction template might include
the attributes user_id, command, port, time, elapsed_cpu, and
status_code. An instance of the transaction template (referred
to as a transaction instance, or simply as a transaction) is
created for each primitive user action and is appended to the
audit trail. For example, an instance of a transaction template
might include the following values.

user_id=Fred, command=execute program x, port=tty8,
time=1992.05.19.09.23.12.119, elapsed_cpu=1.4,
status_code=OK

While the techniques described in this paper are applied after
the transaction templates have been defined, a major focus
of our research is to investigate how to transform an audit
trail consisting of instances of predefined transaction templates
so that it becomes more amenable to statistical analysis. A
typical audit trail contains transactions defined over a large
number (e.g., more than 100 is not unusual) of attributes, each
of whose values may be in raw form (e.g., time might be
recorded in milliseconds and some attributes might assume
floating point values). Consequently, any reasonably-sized
training sample of transactions cannot be expected to represent
accurately the entire transaction space. Data transforms such as
attribute projection (i.e., the elimination of certain attributes)
and value aggregation (i.e., the clustering of values) therefore
are necessary to allow meaningful analysis.

B. An Overview of the Statistical Modeling Approach

We model computer transactions as generated by two sta-
tionary stochastic processes, the legitimate (normal) process N
and the misuse process M. Hence, we partition the activities
being monitored into two activity types: normal activities and
misuse activities. This simple, binary partitioning of activities
simplifies the presentation, but our results easily generalize
to applications for which we wish to refine the partition.
The exact specification of what constitutes normal and misuse
activities is application dependent. Typically, normal activities
are activities performed by an authorized user, using his or her
own account, that are consistent with intent of the issuance of
that account. The misuse activities typically of greatest concern
include an authorized user engaged in activities prohibited to
him or her (e.g., a user altering a file in an illegitimate manner),
one user masquerading as another user (e.g., one user accessing
the computing system via another user’s account), or a user
obtaining the privileges of another user, especially of a system
superuser.

We define misuse detection to be the identification of
transactions most likely to have been generated by M and
demonstrate formally that the accuracy of misuse detectors
is bounded by a function of the difference of the densities
of the processes N and M over the space of transactions.
We demonstrate further that this bound is easily achievable,

provided that both processes N and M are characterized
exactly, but that, in practice, detector accuracy can be far
below this bound due to a lack of knowledge regarding one
or both distributions.

After presenting optimality results for perfect information,
we consider the opposite extreme, misuse detection in the
absence of virtually all prior knowledge of the processes N
and M. In practice, the designers of an audit trail system in
fact utilize much prior knowledge, collecting only data which
appears to be relevant and representing this data in a useful
form. In addition, there may be available information such
as special properties of attributes (e.g., no two transactions
can have the same value for an attribute A, or attribute A
is expected to assume values with a known distribution) and
relationships between attributes. Further, in practice, there may
be available expert rules which characterize partially normal
and intrusive patterns of behavior, for example:

if (program=P) and (elapsed_cpu > 2.3)
then suspect misuse
if (user=fred) and (port # tty8 or tty10)

then suspect misuse

While such expert semantic information is a critical compo-
nent of successful intrusion detection systems, the techniques
considered in this paper are designed to utilize only a minimal
amount of prior information, specifically, a sample of trans-
actions generated by the normal process. There are several
motivations for considering such techniques, including:

1) We wish to understand the limitations of, and approaches
to, detection under the most severe informational restric-
tions. We suggest several criteria for attribute projection
in such an environment, including adequate sampling
rate and potential separation of models. We demonstrate
that the exact optimization of even the simplest versions
of such criteria are NP-hard problems.

2) In practice, we always will reach a point at which all
semantic knowledge has been applied, e.g., semantic
information has been applied to eliminate irrelevant at-
tributes and to cluster data values, and expert rules have
been used to classify known patterns of activity. The
techniques we propose would then be applied as a “last
line of defense.” While we feel that the development
of such heuristics is one of the most important and
challenging aspects of the problem, we acknowledge
that, in practice, their application should be integrated
as much as possible with the application of semantic
knowledge. Current research is considering how best to
perform this integration.

3) We anticipate many intrusion detection applications (or
applications of a similar nature) where very little expert
information is available. In fact, most researchers ac-
knowledge that it is the rule, rather than the exception,
to be confronted with a paucity of misuse experiences,
and hence known intrusion scenarios can provide only
limited coverage. A key aspect of our approach, the
employment of misuse surrogate models (see Section
[1I-B), is meant to address this reality and expand de-
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tection capabilities beyond known or conjectured misuse
scenarios. Misuse surrogates are simple, generic statis-
tical models which attempt to abstract some significant
characteristics that differentiate from normal activity one
or more classes of misuse activities, thereby allowing
our detection algorithms to differentiate from normal
behavior many classes of misuse behavior.

Hence, while expert semantic information and our
approaches ideally are integrated as described in the
previous point, the current state-of-the-science is such
that statistical techniques appear currently to be more
widely applicable. The experiences of systems such as
IDES {10], [15] and Wisdom and Sense [23], which
contain both statistical and expert components, support
this contention. Therefore, statistical techniques such as
ours which, theoretically, might appear most useful as a
last line of defense must assume an even more prominent
role until the semantics of intrusion scenarios are better
understood.

The remainder of this paper is organized as follows. Section
II details our formalism and derives our results for optimal
detection. Section III considers the problem of detection under
limited information and outlines a heuristic approach. Section
IV summarizes another class of detection systems—a class
exemplified by Wisdom and Sense developed at Los Alamos
National Laboratory—that utilize a nonmodeling approach
to generate statistical rules. This section demonstrates that
the rules generated by any such system must be maximally
specific to ensure consistency with Bayesian analysis. Finally,
Section V provides suggestions for testing detection systems
and presents limited test results comparing Wisdom and Sense
with a simple modeling approach.

II. DETECTION OBJECTIVES

A. Statistical Modeling

We model the generation of computer transactions as a
stationary, stochastic process

H:{1,2,---,} > S.

H is interpreted as mapping discrete “time units” ¢ into
a finite transaction space S, which consists of the set of
all possible instances of the (fixed) transaction template of
interest. The value of H(¢) may be interpreted as the tth
transaction generated by H.

Process H is specified as a mixture of two auxiliary station-
ary stochastic processes N (normal or legitimate transactions)
and M (misuse transactions), each having the same domain
and range as H, the selection of which is based on the output
of still another stationary stochastic process D having the same
domain and range as the other processes:

N(t) if D(t) =0
H(t) = {M(t) if DEt% =1

The three stochastic processes should be interpreted as fol-
lows. The tth transaction placed in the audit trail is generated
by either a normal or a misuse activity, as is determined by

stochastic process D. If D(t) = 0, then normal process N
is invoked to generate the ¢th transaction and hence, in this
case, H(t) = N(t); otherwise, D(t) = 1, misuse process
M is invoked to generate the tth transaction, and, hence,
H(t) = M(¢).

We assume that each of the four processes is stationary
and that N, M, and D are pairwise independent. That these
three processes are pairwise independent is a consequence
of our definitions. Processes N and M operate in isolation
(think of them, for example, as generating the activities
of potential computer users) and, hence, the tth transaction
generated by one is independent of that of the other. Process
D is independent of N and M, since it determines, without
knowledge of the identities of the fth transaction generated
by each of N and M, whether the {th transaction is to
result from a normal or misuse activity. The assumption that
the four processes are stationary simplifies the analysis, but
prevents consideration of temporal patterns that the audit trail
may contain; the assumption, in effect, forces us to view the
audit trail as an unordered collection of transactions. Current
research attempts to extend our framework so that temporal
patterns can be analyzed.

Given the preceding assumptions, the following notation is
well defined.

= Pr{D(t) = 0}, for ¢t € {1,2,---,}. That is, A is the
a priori probability that the tth transaction to be generated by
H is generated by the normal process. By our assumptions,
this probability is independent of ¢, that is, independent of the
order in which transactions occur.

h(z) = Pr{H(t) = z}, forz € Sand t € {1,2,---,}.
That is, A(x) is the probability that the #th transaction to be
generated by H is z. By our assumptions, this probability is
independent of .

n(z) = Pr{N(t) =z}, forz € Sand t € {1,2,---,}.
That is, n(z) is the probability that the {th transaction to be
generated by N is z. By our assumptions, this probability is
independent of ¢ and can be interpreted as Pr{tth transaction
in the audit trail is z | tth transaction is normal}=Pr{H(t) =
z|D(t) = 0}.

m(z) = Pr{M(t) = =}, forz € Sand t € {1,2,---,}.
That is, m(z) is the probability that the {th transaction to be
generated by M is z. By our assumptions, this probability is
independent of ¢ and can be interpreted as Pr{tth transaction
in the audit trail is z | tth transaction is misuse}=Pr{H(¢) =
z|D(t) = 1}.

It follows from our definitions and assumptions that

h(z) = Axn(z) + (1 — A) xm(z).

We note that in most applications A is close to 1. One
consequence of this fact is that samples of actual misuse
activities are rare, necessitating the application of misuse
modeling techniques such as those described in Section III-B.

Example 2.1: We illustrate by means of a simple example
the previous definitions and concepts. Suppose the transaction
template consists of only two attributes, user and command.
Suppose that the possible values for user are Fred and Sue,
while the possible values for command are Execute and Edit.
Hence, the transaction space S can be represented by the set
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{< Fred, Execute>, <Fred, Edit>, <Sue, Execute>, <Sue,
Edit>} of ordered pairs.
Assume the following probability distributions on S. For
all t € {1,2,---}:
p[N(t) =< Fred, Ezecute >|
= n(< Fred, Ezecute >) = 0.0400;
p[N(t) =< Fred, Edit >] = n(< Fred, Edit >) = 0.900
p[N(t) =< Sue, Execute >]
= n(< Sue, Ezecute >) = 0.0200;
p[N(t) =< Sue, Edit >] = n(< Sue, Edit >) = 0.0400

p[M(t) =< Fred, Ezecute >
= m(< Fred, Ezecute >) = 0.250;
p|M(t) =< Fred, Edit >] = m(< Fred, Edit >) = 0.250
p[M(t) =< Sue, Ezecute >|
= m(< Sue, Ezecute >) = 0.250;
p[M(t) =< Sue, Edit >) = m(< Sue, Edit >) = 0.250.

Then, if, for example, A = 0.900, we have

p[H(t) =< Fred, Ezecute >|
= h(< Fred, Execute >) = 0.0610; -~
p[H(t) =< Fred, Edit >] = h(< Fred, Edit >) = 0.835
p[H(t) =< Sue, Ezecute >|
= h(< Sue, Ezecute >) = 0.0430
p[H(t) =< Sue, Edit >] = h(< Sue, Edit >) = 0.0610.00

The objective of misuse detection is to identify those
transactions € S that are likely to be misuse, that is,
transactions x for which

Pr{D(t) = 1|H(t) = =}

is above some threshold or is large relative to the probability
for other transactions.

We observe that our problem shares many similarities with
the problem of signal detection (e.g., [7]). Indeed, many of
our error measures and the methods of Section II-B and II-
C, which apply when processes N and M are characterized
exactly, are consistent with results from the signal detection
literature. Approaches to the two problems diverge, how-
ever, when these characterizations are poor or unavailable.
In particular, the techniques considered in Sections III and IV
(e.g., attribute projection, value aggregation, the use of simple
misuse model surrogates, and statistical rule generation) appear
to have no direct analogues in the signal detection problem
domain.

B. Detectors
According to Bayes theorem and our definitions
Pr{D(t) = 1|H(¢) = =}
_ {Pr{H(t) = «[D(t) = 1}(1 - \)
T Pr{H(t)=z|D(t)=1}(1—-N)+Pr{H(t)=2|D(t) =0}

_ m@0-N __r@-y)
m(z)(L = A) +n(z)A @)1 -A)+ A
r(z)

T T T NN @
where r(z) = m(z)/n(z) if n(z) # 0. If n(z) = 0 and
m(z) # 0, we define 7(z) = oo and the last quotient of (1) to
be identically 1. If n(z) = 0 and m(z) = 0, we define r(z) =
1. We derive immediately that Pr{D(t) = 1|H(¢) = z} > 7
iff r(z) > 7A/(1 = 7)(1 - A).

In practice, the maximum number of transactions that may
be flagged during any time interval (the flagging threshold) as
well as the minimum value of the ratio r(z) = m(z)/n(zx) of
interest are specified by the System’s Security Officer (SSO).
Thus, in practice, what we hope to flag are the transactions =
with the largest ratios 7(z).

Example 2.2: Assuming the probabilities given in Example
2.1, we can compute, for example,

r(< Fred, Edit >) = 0.250/.900 = 0.278
r(< Sue, Execute >) = 0.250/.0200 = 12.5.

It can be verified that among the transactions in the space
S, < Sue, Execute > has the largest ratio (and hence should
be considered to be the most suspicious transaction), while
< Fred, Edit > has the smallest ratio (and hence should be
considered to be the least suspicious transaction). In practice,
of course, some or all of the probabilities necessary for
these calculations will be unknown; estimation techniques are
discussed in Section III. 0

We define graded M D, and binary M D, misuse detectors
as functions from S into the nonnegative reals and the binary
set {0,1}, respectively. A graded detector M D, provides a
ranking of the transactions in S: The larger the value M D, (z),
the more suspicion detector M D, attributes to transaction z.
A binary detector M D, provides an absolute classification of
each transaction ¢ € S: When M Dy(z) = 0, z is classified
as normal, while M Dy(z) = 1 classifies z as misuse.

Example 2.3: If the required probability distributions were
available, we could define a graded detector by

MD(z) = r(z).

Note that, as a consequence of identity (1), MDy(z) >
MD,(y) iff Pr{D(t) = 1|{H(t) = z} > Pr{D(t) = 1|H(t) =
y}. Similarly, if the prior probability A additionally were
available, we could define a binary detector by

={0 if r(z) <A/(1—-A)
MDy(z) = { 1 otherwise ’

As a consequence of the equivalence following (1),
MDy(z) = 1iff Pr{D(t) = 1|H(t) = 2} > 0.5. a

Generalizing Example 2.3, we see immediately that to any
graded misuse detector M D, we can associate a (nonunique)
ordered finite family (M Dy ;) of binary detectors satisfying

0 f MDy(z) <

MD =
b (z) 1 otherwise
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C. Detection Effectiveness

In general, processes N and M overlap, that is, S contains
transactions z for which both n(z) and m(z) are nonzero.
Consequently, since any misuse detector (graded or binary)
must map to the same value any two occurrences of identical
transaction instances x (one of which might be generated by
N and the other by M) some error (incorrect ranking or
classification) is unavoidable.

In this section, we demonstrate that the effectiveness of any
misuse detector is limited by the disparity of the distributions
n and m. When the distributions are highly similar, no
detector can reliably distinguish between legitimate and misuse
transactions. Conversely, when the distributions are highly
dissimilar, in principle, the transactions can be distinguished
with high reliability.

Consider a misuse detector M D (either graded or binary).
We define weighted symmetric error as the sum

(1= X)m(=x)

3;S(a max{MD(zx) — (o) ,0}
(1= XNm(z)
+ bmaX{W — MD(z),0})xh(z). (2)

Since it follows from Bayes Theorem (1) that the quantity
((1 = Aym(z))/h(z) is equivalent to Pr{D(t) = 1|H(t) =
x}, the first term of the expression (2) is seen to measure
overestimation of error and the second term underestimation.
Further note that, in particular, when M D is a binary detector
and MD(z) = 0, the error term for z € S is Pr{D(t) =
1|/H(t) = =z}, while this term is Pr{D(¢t) = O/H(¢) = z}
when M D(z) = 1. Because frequently these types of errors
are not considered to be of equal importance we have weighted
them by the constants a and b, respectively.

By the law of large numbers,

1-Nm(z) . 1 &
e S AmE 2 PO

t=1

SH(t)=x

where the notation E indicates a sum over a subsequence

=1
BHe(t):z
of transactions, each of whose identity is x. Thus, the sum (2)
can be written as

T
.1
Tll_I:I;o T ; amax{MD o H(t) — D(t),0}

+ bmax{D(t) - MD o H(t),0}. €))

Using the identities (z) = m(z)/n(z) and h(z) = X *
n(z) + (1 — A) *x m(z) we write

(L= Nm(@) _ (1= Nmla)
h(z) An(z) + (1 = A)m(z)
(1 - Nr(x) r(z)

A+ =Nr(2) T or@) + A/ (1 =AY
From this we see that for any binary detector M Dy,
weighted symmetric error is minimized whenever

MDy(z) = {0 if r(z) <ad/(1-A)b
1 otherwise

Henceforth, we deal only with the equally weighted case;
the unequal case follows analogously.

For binary detectors, we can separate symmetric error into
two types of error, type I (lack of sensitivity) and type II (false
alarm). Analogously to (3), we can write these errors as limits
of finite sums

T
type I error: Tlgnw = Z |MDy o H(t) — 1]
t=1:D(t)=1

T
> MD,oH(t)
t=1:D(t)=0

type II error: Tl:rréo =

where the sums are taken over subsequences of transactions
generated by M and N, respectively. It follows trivially that
symmetric error equals A*type II error + (1— A) * type I error.

The following theorem establishes that symmetric error
is bounded below by a function of the disparity of the
distributions m and n.

Theorem 1: For any binary misuse detector M Dy, the
symmetric error is bounded below by

> min(An(z), (1 - A)m(=)).

z€S

@

Further, this bound on symmetric error is achieved by the
binary misuse detector defined as
0 ifr(z) <A/(1-AX)

MD ={
o(z) 1 otherwise

Proof: limr_.ee 2 321 |MDy 0 H(t) — D(t)| = (1 -

NS aes(l - MDy(@))m(@) + A Y, cs MDy(@)n(z).
Direct algebraic manipulation verifies that M D, achieves
this lower bound when it is defined as in the theorem’s
statement. a

III. DETECTING MISUSE WHEN
THE INFORMATION IS IMPERFECT

The previous sections introduced binary and graded misuse
detectors and specified optimality conditions. Unfortunately,
the optimal detectors introduced in the previous sections are
of somewhat limited practical applicability in that they assume
that misuse detection is to be performed with the benefit
of perfect information. In particular, the optimal detectors
require:

1) Knowledge of the a priori values A and (1 — A) on the

two processes.

2) Knowledge of the distribution of the normal process, that

is, n(z) for all transactions = € S.
3) Knowledge of the distribution of the misuse process, that
is, m(z) for all transactions z € S.
We consider now the implications of this information not being
readily available.

A. Good Estimates of A are not Readily Available

In the previous section we defined and analyzed detectors
which yield a value—either continuous or binary—indicating
whether each transaction encountered should be flagged. Sym-
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metric error measures in terms of deviation from Pr{D(t) =
1|H(t) = z} how well the detector can be expected to perform.

In this theoretical development, the likelihood ratio r(z) =
m(z)/n(z) played a central role in optimal detection. We
show now that in practice as well as in theory the ratio is
pivotal.

Definition 1: A graded detector M D, is consistent with
the ratio = if, for all transactions z;,z; € S, r(z;) <
r(z;) => MDy(z;) < MDy(x;). A binary detector M Dy
is consistent with the ratio r if, for all transactions z;,2; € S,
7‘(.’,!,‘1) < 'I‘(l‘j) => MD},(SL’Z) < MDb(IEj).

Results of the previous section imply that for any value of
), the optimal detector, binary or graded, will be consistent
with r. However, without knowledge of J, it is impossible
to construct an optimal M D. For example, in the case of a
binary detector, it is impossible to determine, for the unknown
X in question, the optimal threshold of r-values beyond which
M Db(l‘) = 1.

Without knowledge of A, we must shift slightly our detection
goals. While we cannot make a judgement involving the
absolute probability that a transaction x is generated by the
misuse process M, we aspire to make relative judgements
regarding the set of transactions encountered over some in-
terval of time. For example, we might desire to do the
following:

a) Rank from most to least suspicious the transactions
encountered in a given time interval, permitting the SSO
to prioritize the transactions he/she considers carefully,
and to investigate as many as he/she wishes. Supplied
with such information, the SSO, for example, at the
end of each business day could investigate in decreasing
order of suspicion the day’s transactions. In this manner,
the SSO could pursue as many transactions as time
permits, or could terminate the day’s investigation upon
reaching a point in the ranking at which the transactions
appear normal.

b) Given a fixed k, identify the k most suspicious trans-
actions in a time interval. This information is similar
to a), but is based on a security policy that exactly k
transactions will be investigated per time interval (e.g.,
per business day). Note that, in principle, b) is easier to
accomplish than a), since the information required for b)
is derivable from that of a).

c) Given a fixed «, identify a mass a collection of trans-
actions with the property that no transaction outside the
collection is more suspicious than a transaction in the
collection. This goal does require that we estimate h(z)
which, in turn, requires knowledge of A. However, it
often is reasonable to estimate h(z) as n(z) (i.e., because
) is often believed close to 1). This information supports
a more dynamic version of b). For example, a security
policy might be to investigate the most suspicious 1%
of all computer activities encountered (e.g., a = .01).

We present now a second measure of a detector’s performance,
one which is appropriate in the context of these goals. Though
the measure is most appropriately applied to a graded detector,
for the sake of full generality, we define it for any detector,
graded or binary.

Definition 2: Let M D be a misuse detector and let the
processes N, M, H, and D be understood. The prioritization
penalty for M D’s evaluation of the unordered pair {x,z’} of
transactions is defined as follows.

PEN(MD,{z,z'}) =
Pr{D(t) = 1|H(t) = z} = Pr{D(t') = O|H(t') = «'}
it MD(z) < MD(z') -
1/2xPr{D(t) # D(t)|H(t) = x AH(t') = 2}
it MD(z) = MD(z")

M D’s prioritization penalty on a transaction pair {z,z’}
for which MD(x) < MD(z') is the probability that z is
generated by the misuse process while z’ is generated by the
normal process; hence, M D’s penalty on such a pair {z,z'}
measures the probability that the detector incorrectly ranks
the suspiciousness of the two transactions, and hence that it
misdirects the SSO. The penalty on a transaction pair {z,x’}
for which MD(z) = MD(xz') reflects the fact that in this
case M D gives the SSO no guidance, forcing the SSO to
use some other means to rank these transactions. Since we
do not wish to assume any knowledge regarding what these
other means might be, we postulate that the SSO has a 50%
chance of misranking a pair of transactions not ordered by
MD, whenever these transaction in fact are generated by
different processes.

The prioritization error of a detector M D is the sum of its
prioritization penalties weighted over all transaction pairs, and
for ranking serves as the counterpart of symmetric error.

Definition 3: The prioritization error of a misuse detector
MD is

S~ PEN(MD,, {z,a'})h(z)h(z").
{z,2'}CS

®)

The following theorem demonstrates that just as when A
is known and minimization of symmetric error is the goal,
a graded detector must be consistent with 7 to minimize
prioritization error. As is discussed in the sections which
follow, the result has much practical significance for the design
of actual misuse detection algorithms.

Theorem 2: A graded detector M D, minimizes prioritiza-
tion error if and only if M D, is consistent with 7.

Proof: First rewrite

3" PEN(MDy, {z,2'})h(z)h(z")

{z,x’'}CS
= Y PEN(MDy, {z,2'})h(z)h(z")
{z,z'}CS$
z#z!
+ > PEN(MD,, {z,z})h(z)*. (6)
€S

The contribution of the second term to the right hand side is
independent of M D,; hence, we can limit our attention to the
first term. Since the error is linear over pairs of transactions,
we can limit our attention to a single pair {x,z'}.
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Suppose first that 7(z’) > r(z). Observe that, in this case,
it follows from (1) that for any 0 < A < 1

Pr{D(t) = 1|H(t') = 2’} > Pr{D(t) = 1|H(t) = =}
and, equivalently,

Pr{(D(t) = O|H(t) = z} > Pr{(D(#') = O[H(t') = z'}.

For the pair {x,2'}, M D, is consistent with r if and only
if the contribution to the prioritization error by the pair is

Pr{D(t') = OJH(t') = 2’} Pr{D(t) = 1|H(t) = z}h(z)h(z").

O

If for the pair {z,z'} MDy is inconsistent with 7, then

cither M D,(z') < MDy(z) or MDy(z') = MDgy(z). In the
first case, the contribution to the prioritization error is

Pr{D(t) = 1{H(t") = 2"} Pr{D(t) = O|H(t) = z}h(z)h(z").
®)
In the second case, it is the average of the terms (7) and
(8). Since (8) is larger than (7) whenever r(z") > r(z), the
required result follows. A symmetric argument applies when
r(z) > r(z'). When r(z) = r(z’), we need only observe that
all detectors are consistent with r on such pairs and since, in
this case (7) is equal to (8), such pairs contribute the same
error to all detectors. a
While prioritization error is most appropriately applied to a
graded detector, the following result is of some interest.
Corollary 1: 1f a binary detector M Dy has minimal priori-
tization error among the set of all binary detectors, then M D,
is consistent with 7.
Proof: Follows immediately from Theorem 2. O
Notice that, for binary detectors, the implication of Theorem
2 holds in only one direction since, for example, a binary
detector M D, which is identically zero on the transaction
space is consistent with r.

B. Unknown Distributions of the Processes

To this point, we have proceeded under the implicit as-
sumption that the distributions n and m are reliably estimable
and that therefore 7 can be determined. The degree to which
this assumption is valid has a large potential bearing on our
detection capability.

Approaches for estimating n include neural networks (Jones
et al. [11], Poggio [17]; Qian et al [18]), Parzen windows
(Parzen [16]), nonparametric methods (Loftsgaarden and Que-
senberry [14]), projection-pursuit techniques (Friedman et
al. [5]), k-nearest neighbor methods (Duda and Hart [4D),
pseudo-Bayes estimators (Bishop et al. [1]), modified fre-
quency estimators (Good [8]), and the frequentist estimator
(Liepins and Vaccaro [13]). All but the last three of these
methods are best suited to continuous variables. For purposes
of this paper, we will restrict our attention to the frequentist
estimator. The frequentist estimator simply estimates n(z) as
the quotient of the number of occurrences of « in the historical
database D B (which we assume is generated by process N and
has been screened to eliminate contaminants such as missing,
erroneous, or imprecise attribute values) divided by the total
number of occurrences of all transactions. As we shall see
below, characteristics of our problem (e.g., a small sample

DB relative to the size of the transaction space S) mandate
that the frequentist estimator be used in conjunction with data
transformation techniques such as attribute projection and data
aggregation. Such estimators treat as equivalent transactions
whose values on designated sets of attributes (i.e., sets on
which we project) fall into the same aggregate of data values;
the hope is that we can obtain meaningful frequency estimates
for the induced transaction equivalence classes based on the
total number of occurrences of transactions from each class.
The subsections which follow contain details of this approach.

In contrast, historical misuse data appear not to be widely
available and hence m cannot be estimated directly.! Some
researchers approach this problem by constructing from se-
mantic information and whatever documented misuse activities
may be available application specific misuse models. Instead,
we pursue an approach that utilizes simple generic models
as surrogates for actual misuse models. While no claim is
made that these simple surrogates resemble closely actual
misuse activity, the hope is that each surrogate employed
will abstract some significant characteristics that differentiate
from normal activity one or more classes of misuse activity.
In this way, a detector that estimates a collection 7;(x) of
ratio values, each using some surrogate M; to derive an
approximation 7n;(z) for the numerator, is able to differentiate
from normal behavior many classes of misuse behavior. This
appears to be a reasonable approach, especially in the context
of the severely information-limited application environments
in which we often must operate.

We generate surrogate misuse models M by applying to
the normal process N simple functional relationships. In
particular, an estimate 77 is generated from the functional F[]
and the estimate A(-) by the relation m(-) = F[a(-)]. The
concept is best illustrated by means of example.

Example 3.1: Two promising misuse surrogates are the uni-
form and independence models. The uniform model assumes
that all transactions (whether historically seen or unseen) are
equally likely. The functional used in this case is simply the
constant relation

1

m(@) = Fla0) = g7

The independence model treats as independent the distri-

butions of the individual attributes of a transaction, with the

marginal probabilities derived from those of process N. That

is, for any L-attribute transaction ¥ =< &1,-*+,Z;,"**,TL >

and marginal probabilities n;(z) = n(yly; = z;) (i.e., ni(x)

denotes the probability that the ith attribute A; of an arbitrary

transaction generated by N will have value equal z;), m(z)
is the product

forall z € S.

m(z) = L n;(z).

The functional used to approximate the independence model
derives as follows from the observed marginal distributions
ni(x) the estimate m(x).

m(z) = Fla()] = 2,7 (). o

' Were historical misuse data available, any proposed misuse model would
be at least partially testable.
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Example 3.2: We illustrate the consequences of the uniform
and independence surrogates by means of a small two attribute
example. Suppose that transaction templates consist of the
attributes user and command, with respective value sets {Fred,
Sue} and {execute, edit}. Suppose further that the historical
database DB consists of 100 transactions, yielding observed
frequencies of the four possible transactions as shown below.

execute edit
Fred 4 90
Sue 2 4

The frequentist estimator 7 of N computes, for example,
n(<Fred, execute>) = 0.0400 and 7i(<Sue, execute>) = 0.0200.

When the uniform model is used for the misuse surrogate,
we obtain for any z € S my(z) = 0.250, and hence 7y <Fred,
execute> = 6.25 and Fy<Sue, execute> = 12.5. Therefore,
under the uniform misuse surrogate, <Sue,execute> is deemed
to be the most suspect transaction simply because it is the
least frequent in the sample. More generally, the uniform
misuse surrogate has the property that it is consistent with
anomaly detection, where anomaly detection is defined to be
the problem of flagging a collection of the transactions least
likely to have been generated by N, without reference to a
misuse process M. Many detectors reported in the literature
(e.g., [10], [23]) appear to be performing anomaly detection,
without making explicit the misuse model.

When the independence model is used for the misuse
surrogate, we obtain

m(<Fred,execute>) = (0.940) * (0.0600) = 0.0564
mr(< Sue.execute>>) = (.0600) * (0.0600) = 0.00360
71(< Fred, execute>) = 1.41; 77 <Sue, execute> = 0.180.

Therefore, under the independence surrogate, <Fred,execute>
is deemed the most suspicious transaction because Fred is
doing something relatively unusual, for him. Clearly, each of
these misuse surrogates detects better than the other certain
classes of misuse. O

Preliminary experimental results indicate that the use of
these surrogates in our detection algorithms allow us to
distinguish rather well between normal and misuse transac-
tions, for a wide range of simulated N and M processes.
While we believe simple misuse surrogates such as those
described above to be reasonable starting points, we envision
a framework in which several surrogates are used as the basis
for competing detectors which are combined to yield a single
evaluation. We envision further an approach in which learning
techniques are applied to modify the models in response to
feedback on the detectors’ performance. The hope is that for
each target application, a collection of simple, generic models
can evolve into models most appropriate for the application.

Consider now the accuracy of the estimate ¥ = m/n
under the simplifying assumption that the exact functional
relationship M = F[N] is known. In this case, the major
obstacle to accurately estimating 7 is that posed by a finite
sample.

a) The mass of transactions not represented in the historical

database DB is large. All x ¢ DB will have equal es-
timated densities, i.e., 7(z) = 0, forcing the conclusion

that either 7(z) = oo or, in the case that m(z) = 0,
that #(z) = 1. Hence, we cannot rank the transactions
within each of these two categories, though the r-values
of transactions not in D B actually may be quite different.
Further, in the case the ratio is estimated as co, we are
forced to classify the unseen transactions as among the
most suspicious. If the total mass of this collection of
transactions is large, we are led to flag an unacceptably
large number of suspicious transactions.

b) More generally, the difference between A(z) and n(z)
may be small, even for z,z’ represented in the his-
torical transactions. Consequently, we may have little
confidence in the prioritization by 7-values.

In principle, an infinite sample of historical transactions
addresses both of these problems. In practice, a sample of
sufficient size to be representative of the event space in its raw
form (|| might be on the order of 10*°° potential transactions)
generally is unobtainable. We suggest that attribute projection
and value aggregation (considered in the subsections which
follow) are two approaches to transforming the raw event
space in order to overcome sample size limitations and the
attendant inability to estimate the ratio r. In general, there
are many sets of attributes that could be selected and many
ways to aggregate their values. We desire our solutions to
result in: a) distinguishability between the induced measures
n and m; b) good spread of the r-values; c) preservation of
the probability structure of S (were full information available);
and, d) small mass of unseen transactions. Estimating the mass
of the unseen transactions has been addressed by a number of
authors including Good [8] and Robbins [19]. Robbins showed
that for independent trials generating a sample Z of cardinality
k, an unbiased estimator of the mass of the unseen transactions
is 1/(1 + k) times the number of singleton transactions in
7', where Z' = Z augmented with one additional randomly
drawn transaction.

Attribute Selection: Loosely speaking, the more (nonde-
pendent) attributes, the more likely that each transaction is
unique, and the less likely that any fixed sized historical
database represents a substantial mass of all transactions.
That is, any density estimator becomes less reliable. We seek
“characterizing” subsets B of the set A of attributes present
in the raw transactions, and project onto these subsets. This
induces an equivalence class structure” on the set S and the
detection problem is subsequently solved solely in terms of
the equivalence classes: transactions = and z' are defined to
be equivalent if 2{B) = 2/[B], that is, if = and z’ agree on
their values of all the attributes in the projection set B.

As we have indicated, we are interested in projecting onto
characterizing subsets B, that is, subsets with respect to which
densities are reliably estimatable, the two processes N and M
distinguishable, and which preserve the probability structure of
the original transaction space in the sense that for all z, z' €S,

r(z) < r(z') & r(z[B]) < r(z'[B]).

In practice, these objectives may not be simultaneously
satisfiable; in this paper, we suggest them only as heuristics.

2with induced probability measures.
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Example 3.3: Consider transactions with two fields (or sets
of fields), J and K. Suppose that process N is such that J
and K are generated independently and that:

K has 2¥ possible values, and the distribution of these
values is uniform.

J has five values vq, - - -, v, v5. J assumes v; with probabil-
ity 1/2¢,4 = 1,2, 3,4, and v5 with probability with probability
1/24,

Notice that the distribution of transactions is such that
n(z) = 1/26+9 if 2[J] = v;, i = 1,2,3,4. Suppose further
that process M is governed by the uniform model.

For k sufficiently large and reasonably-sized samples DB,
these underlying processes exhibit undesirable properties:

a) A high proportion of the space will be unseen in DB.
Notice that for all z ¢ DB, 7(z) = oo.

b) A high proportion of those transactions that are in
DB are likely to be singleton and doubletons. Hence,
we have little separation of the #-values, even for
transactions which we have seen, and therefore little
confidence in the resulting rankings.

Consider now the effect of projecting onto J, that is,
identifying transactions with the same values in the attributes
J, ignoring the K-values. Now even a modest-sized DB
will yield good estimates of the distribution of N relative to
the projection; observe that the projection set preserves the
probability structure in the sense defined above. Hence, we
can better solve the transformed detection problem. |

Of course, we have performed a bit of reverse engineering
by assuming specific N and M models and then identifying
good projection sets under these assumptions; in practice, we
must identify good sets without prior knowledge of N and
M. The point, however, is that for many seemingly natural
processes, attribute projection is of tremendous value. We
shortly shall consider heuristics for selecting projections when
N and M are unknown.

Value Aggregation: Another technique for forming equiva-
lence classes is value aggregation. Value aggregation partitions
the domain of one or more attributes A into collections V; of
values. The limiting case of a single value class for an attribute
is equivalent to projecting on the complement of that attribute,
i.e., projecting so that the attribute is eliminated. Wisdom and
Sense implements value aggregation (see Vaccaro and Liepins
[23] and Section V of the current paper) but only for one
attribute at a time and only for numeric attributes. In contrast,
we consider the fully general case.

Example 3.4: As an example of the utility of value aggrega-
tion, observe that only rarely will two transactions have exactly
the same values for login times monitored by month, day, hour,
minutes, and hundredths-of-a-second. Hence, the distribution
of these transactions is not well estimable. However, login
times monitored by month, day, and hour would probably yield
estimable distributions. Furthermore, it seems reasonable to
conjecture that for any misuse model of interest, the rankings
of r-values is invariant under such aggregation. More gener-
ally, when the result of attribute projection leaves attributes
which assume continuous (e.g., floating point) values, value
aggregation must partition the real number line in a man-

ner that reduces the number of singleton transactions, while
preserving the probability structure of the original transaction
space. a

Heuristics to find Good Equivalence Relations: The deter-
mination of good equivalence relations first requires practical
criteria to evaluate candidate relations, and second, a practical
means to search the space of possible relations for the superior
ones (in terms of the given criteria). We expect that both steps
will depend on heuristics.

One approach to the selection of equivalence relations is to
use different combinations of criteria to generate equivalence
classes which later are analyzed more closely. It is quite
plausible that a useful procedure would be to proceed with
multiple misuse detectors, one for each equivalence class and
misuse model considered, and combine the results through an
adaptively weighted combination.

For projections, reasonable criteria might include some of
those previously suggested: a) distinguishability between the
induced measures n and m; b) good spread of the r-values;
¢) preservation of the probability structure; d) small estimated
mass of unseen transactions.

Even given clear, unambiguous criteria, the problem of
finding the best equivalence relations is far from trivial. For
example, below we define a singleton reduction problem which
requires the construction of a set of attributes with respect
to which projection most effectively reduces the number of
singleton transactions. We demonstrate that singleton reduction
is NP-complete, implying that its solution, and therefore the
optimization of criteria which depend on singleton reduction
(e.g., reducing the mass of unseen transactions as estimated by
the techniques of Good and Robbins [8], [19]), almost certainly
will be limited to heuristic approximation.

Theorem 3: The Singleton Reduction Problem (SRP) de-
fined as follows is NP-complete.

INSTANCE: Database DB of D transactions, each consisting
of L attributes, and positive integers K < L, s < D.

QUESTION: Ts there a subset A consisting of K or more
attributes such that the number of singleton transactions, when
DB is projected onto A, is s or fewer?

Proof: To see that SRP is in NP, observe that in time
polynomial in the length of the problem instance we can guess
a size-K collection A of attributes and count the number of
singletons with respect to the projection onto A. To establish
that SRP is NP-complete, we reduce to it Balanced Complete
Bipartite Subgraph (BCBS) [6;GT24]. BCBS is defined as
follows.

INSTANCE: Bipartite graph G = (V, E), positive integer
K < V|

QUESTION: Are there two disjoint subsets V1,Vo C V
such that |V;| = |V2| = K and such that w € V; and v € V3
implies that uw,v € E?

Transform an arbitrary instance of BCBS to the following
instance of SRP. (Without loss of generality, assume that
K > 1; if K = 1, simply transform to any “YES” instance of
SRP if E # O and to any “NO” instance if F = <.)

DB consists of |V transactions, each over |V| attributes,
i, D = L = |V|. We denote the transactions by ¢1,---,tp
and the attributes by A;,---, Ap.
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For 1 < i,j < D and i # j, t;[A;] = 1 iff {v;,v;} is an
edge in E. For each other 1 < i,j < D (including whenever
i = j), assign t;[A;] a value that appears nowhere else in DB.

K has the same value as in the BCBS instance.

sis D — K.

Intuitively, DB is obtained from the D x D adjacency matrix
M of G, once M is modified so that each entry of M which is
zero, and each entry on the diagonal, is changed to an integer
value appearing nowhere else in M. The resulting matrix M’
corresponds directly to DB: each row ¢; is a transaction with
ti[A;] = m/;5. s is chosen so that the given instance of BCBS
is a “YES” instance iff M’ contains a K x K submatrix that
is all 1’s iff the target instance of SRP is a “YES” instance.
The argument below establishes formally this correspondence.

First we show that the given instance of BCBS is a “YES”
instance implies that the target instance of SRP is a “YES”
instance. Let V; and V, be the required size K subsets of
vertices. Construct the projection set A by placing A; in A iff
v; € V1. Claim that for each A; € A, t;{4;] = 1 whenever
v; € Vu. To see this, observe that {v;,v;} is an edge in E
(since V; and V; are as required by the instance of BCBS) and
recall the construction of the transactions. Therefore, these K
transactions are not singletons under the projection onto A,
and thus at most s = D — K transactions can be singletons.

We now show that the target instance of SRP is a “YES”
instance implies the given instance of BCBS is a “YES”
instance. Let A be the required set of attributes and, without
loss of generality, assume that A contains exactly K attributes.
(If A contains more than K attributes, any size K subset of A
has the required property.) Observe that, by the construction
of DB in the target instance, ¢; not a singleton implies that
t;[A;] = 1 for every A; € A. Let T be any collection of K
transactions that are not singletons under the projection onto
A, ie., T is any size K collection of ¢ such that t{4;] = 1
for A; € A. Such a collection is guaranteed to exist, since A
satisfies the conditions for the SRP instance and K = D—s, by
the instance’s construction. Observe that, by the construction
of DB, if A; € A, it cannot be the case that t; € T (recall
t;[A4;] # 1). Construct the subsets V; and V> of V by placing
v; in Vi whenever A; € A and placing v; in V2 whenever
t; € T. The previous observation ensures that V; and V3 are
disjoint. Finally, observe that v; € V7 and v; € Vo implies
v;,v; € E, since t;[A;] = 1. O

Note that the NP-hardness of the optimization version of
the above decision problem (i.e., construct a cardinality K
subset of attributes which induces the smallest possible number
of singleton transactions) follows immediately from Theorem
3. Hence, Theorem 3 and its proof imply that no algorithm
that solves exactly the singleton reduction problem can run in
time bounded by a polynomial in the number L of attributes,
unless P = N P. While a simple exhaustive search of attribute
subsets is feasible for small values of L (e.g., L < 20),
audit trails which we have encountered in practice often
define transaction templates over a large number (e.g., often,
L is near 100) of attributes. On the more positive side, we
have had some experimental success with greedy and branch-
and-bound heuristics that find good, though not necessarily
optimal, solutions to the singleton reduction problem.

IV. NONMODELING APPROACHES

The approaches to misuse detection that we discussed in the
previous sections all required estimation of the likelihood ratio
r and, therefore, estimation of n and m. We call these modeling
approaches. The approaches have distinct advantages and
disadvantage relative to other approaches. On the plus side,
they attack directly the misuse detection problem in terms
of the very parameters in which it is formulated, that is, in
terms of explicit N and M models and the minimization of
well-quantified error measures. On the minus side, modeling
approaches undoubtedly require reduction of the original data
through the formation of equivalence classes and are likely to
be sensitive to the operative misuse models or the surrogates
employed in an attempt to differentiate misuse behavior from
normal behavior. Consequently, each implementation for a
specific application can be expected to require specialized
design.

As an alternative, in this section we discuss nonmodeling
approaches. Nonmodeling approaches do not explicitly esti-
mate n or m. Instead, they use various heuristics, clustering
algorithms, and statistical measures to flag “bad” transactions.
Simonian et al. [21] based their approach on Kohonen self-
organizing nets. Clithrow [2] assigned users to projects and
used backpropogation networks to test for user adherence to
historical usage patterns. Lunt et al.’s. original formulation
[15] used the Mahalanobis distance to detect outliers. Vaccaro
and Liepins [23] generates a heuristic rule forest that specifies
acceptable values in one attribute, conditioned on the values
in other attributes.

Proponents of the nonmodeling approach hope that these
systems will be broadly applicable to a variety of installations
without the detailed analysis and design required by modeling
approaches. They hope to have gained a degree of robustness
by a less direct attack on the misuse problem. Nonetheless,
they cannot avoid totally all the analysis associated with
modeling approaches; nonmodeling approaches too require
attribute projection and value aggregation, and their perfor-
mance with respect to standard measures of error must be
analyzed. We contend that the effectiveness of any detection
system—modeling or nonmodeling—ultimately is tied to the
accuracy with which the system approximates the optimal
detector based on the likelihood ratio .

While systems which adopt a nonmodeling approach are a
diverse lot, the technique of statistical rule generation is central
to many such systems. Section IV-A describes statistical rule
generation and Section IV-B then analyzes the consistency of
such rule-based systems with respect to the optimal detectors
that were studied in Sections Il and III. Finally, Section V
provides limited test results comparing the performance of a
pair of systems, one based on a modeling approach and the
other on a nonmodeling approach.

A. Statically Generated Rule Bases

Systems that employ statistically generated rule bases
process the historical data and generate rules which specify
relationships between the values of groups of attributes. For
example, a rule might state that if user is Smith, then port is
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one of ttyl, tty2, or tty3. Such a rule can be represented by
the implication

(user=Smith) — (port=tty1) or (port=tty2) or (port=tty3).

A rule’s antecedent is called its left hand side (LHS) and
its conclusion is called its right hand side (RHS). In the above
example, the LHS is (user=Smith) and the RHS is (port=tty1)
or (port=tty2) or (port=tty3).

We have the following definitions.

Definition 4: Let Ay,---, A be the the set of attributes
over which transaction templates are defined. A rule is an
implication

R:LHS=>RHS

where each of LHS and RHS is a Boolean formula over
the set Ay, -+, Ay of attributes. A transaction z =< A; =
vy, -+, Ar = vy > matches rule R if each attribute value
A; = v; is consistent with LHS. If z matches R, it also either
passes or fails R; x passes R if each attribute value A; = v;
is consistent with RHS, and otherwise x fails R.

Example 4.1: Suppose transactions are defined over the set
{user, port, command, time_of_day} of attributes, and consider
the rule

R : (user=Smith) and (port=tty4) => (command=edit)

and the transactions

r =< user = Smith, porty = tty2, command = compile,
time.of_day = 06 : 00 >

y =< user = Smith, porty = tty4, command = compile,
time_of _day = 06 : 00 >

2z =< user = Smith, porty = tty4, command = edit,
time_of.day = 06 : 00 > .

Transaction z is inconsistent with the LHS (user=Smith) and
(port=tty4); hence z does not match rule R. Transaction y is
consistent with the LHS (user=Smith) and (port=tty4), but is
inconsistent with the RHS (command=edit); hence y matches
and fails rule R. Transaction z is consistent with the LHS
(user=Smith) and (port=tty4), and is consistent also with the
RHS (command=edit); hence 2z matches and passes rule R.

Notice that since attribute time_of_day does not appear in
rule R, a transaction’s value on this attribute has no effect on
whether it matches, passes, or fails R. Od

A statistical rule-based system uses the database DB to
associate with each rule it generates measures of the rule’s
historical significance. Systems with which we are familiar
measure significance in terms of (1) the rule’s pass/match
ratio, that is, the ratio

(number = € DB which pass the rule)
(number z € DB which match the rule)’

and (2) the number z € DB that match the rule. A
rule’s pass/match ratio can be interpreted as specifying a
empirically observed estimate of the conditional probability
Pr{RHS|LHS}, while the number matched specifies the

sample size used in the approximation of this conditional
probability.

When transaction z is presented for analysis, the detection
system determines which rules = matches and, of these, which
rules x passes and which it fails. The detection system then
employs a scoring function that interprets the evidence yielded
by the rules matched by a transaction to produce a score
characterizing the overall suspicion that is to be attributed
to the transaction. While many specific scoring functions are
possible, the classes defined below appear to be both natural
and general.

A scoring function sf evaluates transaction x against a rule
base and historical database DB by constructing a vector of
information. This vector contains a triple for each of the M
rules in the rule base. Component j of the vector specifies
whether = matches rule R;, and if so whether z passes or
fails the rule, and summarizes R;’s historical significance as
measured in terms of r;, its pass/match ratio in DB, and
m;, the number of transactions in DB which match it. More
formally, we have the following.

Definition 5: A scoring function sf over a rule base of M
rules is a function

sf < {=1,0,1}z[0,1]zN >M— R.

sf’s evaluation of transaction z against the rule base and
database DB of transactions is determined by a vector of M
triples (1,75, m;) ( = 1,2,---, M) derived for = from the
rule base and DB, where

—1 if z fails the rule R;
I; =S 0 if x does not match the rule R;.
1 if z passes the rule R;

r;= the pass/match ratio in DB of R;, where 0/0 is defined
to be 0.

m;= the number of matches in DB of R,

The class of well-behaved scoring functions consists of
those continuous scoring functions satisfying:

9(sf)

Ij * 87‘]'

<0, forl;e{-1,1}

andr; €(0,1),j=1,2,---, M.

The condition on the jth partial derivative characterizes
the manner in which the scoring function interprets changes
in the historical compliance of transactions with R;, while
other historical information is held constant. In particular, the
condition on the jth partial derivative implies:

1) If transaction x fails rule R; (and hence I; = -1),
scoring function sf’s evaluation of z is required to be
monotonically increasing in suspicion as the number of
historical transactions which pass R; increases, while all
other historical information is held constant. In terms of
the condition on the partial derivatives, if = fails rule
R;, I; is —1, hence requiring 9(sf)/dr; > 0.

2) If transaction z passes rule R; (and hence I; = 1),
scoring function sf’s evaluation of z is required to be
monotonically decreasing in suspicion as the number of
historical transactions which pass R; increases, while all
other historical information is held constant. In terms of
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the condition on the partial derivatives, if = passes rule
R;, I; is 1, hence requiring (s f)/0r; < 0.

Example 4.2: A simple, well-behaved scoring function
evaluates transaction x by adding the historical pass/match
ratios for rules failed by & and subtracting the pass/match
ratios for rules passed by z. It is immediately evident that the
condition on the partial derivatives is satisfied. g

B. A Consistency Result for Rule-Based Systems

In this section, we specify necessary conditions that non-
modeling approaches must satisfy if they are to minimize
prioritization error. Our consistency results apply to all tech-
niques that utilize rules as described in Section IV-A.

Before deriving our results, we first must state additional
technical definitions and prove some technical propositions.

Definition 6: Let F[] be a functional that relates normal
processes N to misuse processes M by the relation

m(:) = F[n(")]

F[] is piecewise monotonic if, for any pair N1 and N,
of normal processes with associated densities n; and mno,
whenever transaction £ € S is such that

n1(x[A]) < na(x[A])for all subsets Aof attributes

it must follow that

m(z) < ma(x)

where m; is obtained from n; as m{-) = F[n(-)], ¢ = 1,2.
It is easily seen that the independence and uniform models
are piecewise monotonic. Further, we have the following.
Lemma 1: Any monotonic composition of piecewise mono-
tonic functionals is a piecewise monotonic functional. That is,
suppose for 1 < i < km' = F*[n(-)] for piecewise monotonic
F*. If functional F' generates the density

m(:r) = g(ml(z), A} mk(:r))

where g is nondecreasing in each of its arguments, F is
piecewise monotonic.

Proof: Let ni and ny be any pair of densities. For
i = 1,2 let m;(-) be generated from n;(-) by

my(z) = g(m}(z), -, m; (x))

where g is monotonic and each m?(-) is generated from n;(-)
by a piecewise monotonic FI[]. Suppose transaction z is such
that

ni(2[A]) < na(z[A]) for all subsets A of attributes.

Then, since each m? (x) is produced by application to n;(-)
of a piecewise monotonic F7[],

m)(z) < mj(z), for j = 1,2,---, k.

It then follows from the monotonicity of g that

my(z) < ma(x) O

Definition 7: R is a conjunctive rule if it can be represented
as

R: (al € Vl) .. .(ai_l S ‘/;_1) => (a,; € Vl)

where each V; is a set of values.
Definition 8: Conjunctive rule R is nonmaximal if there
exist one or more attributes over which transaction templates
are defined which appear in neither the LHS nor RHS of R.
The main result of this section is to establish that when a
scoring function is well behaved and a piecewise monotonic
F[) relates N and M, nonmaximal rules can lead to transaction
scoring that is inconsistent with the optimal detectors defined
in Sections II and III. Before presenting this result, we require
two additional definitions and a lemma.
Definition 9: Let transactions consist of L attributes. Let z
be an arbitrary but fixed transaction, let 1 < i # j < L be
some fixed pair of attributes, and let v be a value from the
domain of attribute i such that z[i] # v.
1) y is a candidate for a (z,i, j,v) transform if y[i] = =[i]
and y[j] # a[j].

2) If y is a candidate for a (z, i, j, v) transform, y’s (unique)
target under this transform is the transaction z identical
to y on all attributes, except that z[i] = v.

Note that a (x,%,7,v) transform defines a 1-1 correspon-
dence between its candidate and target transactions. Hence,
we may speak of the target [candidate] transaction that is
related by a (z, i, j,v) transform to a given candidate [target]
transaction. When the (z, i, j, v) transform is understood, such
a related pair of transaction will be denoted as an ordered pair
(y, z), where y is the candidate and z is its target.

Definition 10: Let z,i,j, and v be as in the previous
definition. Stochastic process Ns is a (2,4, j,v) perturbation
of stochastic process Nj if:

1) For cach pair (y, z) of candidate and target transactions

related by an (x,%,j,v) transform, there exists 6 > 0
such that na(y) = n1(y) — § and na(z) = n1(2) + 6.

2) ng(w) = n1(w) if w is neither a candidate nor a target

of a (z,4,J,v) transform.

Intuitively, a (z, 1, j, v) perturbation increases the frequency
of some transactions that differ from z on both the attributes
i and j at the expense of the frequency of some transactions
that differ from = on j but agree with = on <.

Example 4.3: Let the attribute set be as in Example 4.1, let

z =<user = Smith, porty = tty2, command = compile,
time_of day = 06 : 00 >,
and consider (z,port,command, tty4) transforms. Transac-
tion
y =<user = Jones, porty = tty2, command = edit,
time_of .day = 06 : 00 >

is a candidate for a (z, port,command, tty4) transform, and
transaction

2 =<user = Jones, porty = ttyd, command = edit,
time_of _day = 06 : 00 >
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is s unique target under this transform. If Ny is any stochastic
process generating transactions, an example of a N> which can
be obtained via (z, port, command, tty4) perturbation of N;
is given by

na(q) = ni(q) — 0.01 na(q") = n1(q’) +0.01,

whenever ¢ is a candidate of the the form < wuser =
Smith,porty = tty2,command = edit,timeof_day =
x > or < user = Jones,porty = tty2,command =
edit, time_of _day = * >, and ¢’ is the corresponding target.
For all other u, na(u) = ny(u). O

The following lemma demonstrates that the optimal detector
interprets any (z.1, j, v) perturbation as making transaction z
no more suspicious (and possibly less suspicious), assuming
a piecewise monotonic F'[] relates the normal and misuse
processes.

Lemma 2: Let Ny be a (x,1,J,v) perturbation of N;. For
d = 1,2, let the densities ng(-) and mq(-) = F[nq4(-)] be
generated from stochastic process Ny, where F[] is piecewise
monotonic. Then

ri(z) 2 ro(x)

Proof: First observe that ni(z) = ng(z), since x is
neither a candidate nor a target of the transform. Let A be any
subset of the attributes. We claim nq(x[A]) > na(x[A]). To
see this, suppose z € x[A] is such that nq(z) < na(z). Then it
must be the case that z is a target of a (z, 1, j,v) transform and
hence that ,j ¢ A. Consequently, the candidate transaction
y which corresponds to z under this transform also is a
member of z[A]. Since n1({y, z}) = n2({y, z}) for each such
(candidate,target) pair (y, z), we have ni(z[A]) > na(z[A]).
It then follows from the fact that F']] is piecewise monotone
that my(z) > mo(z) and hence that 71(z) > r2(x). d

Note that, under the conditions of the previous lemma, if
ni(w) > na(w) for some w € S, w must be a candidate for
a (z,4.7,v) transform and hence wi] = x[i]. Since no u such
that ui] = z[i] is a target, it follows that ny (x[é]) > na(x[i]).
Consequently, if functional F[| generates the independence
model (see Example 3.1) and if nq(w) # na(w) for at least
one w € S, then the strict inequality

ri(z) > ro(x)

obtains.

We now use Lemma 2 to exhibit an inconsistency in the
scoring of transactions yielded by rule bases containing non-
maximal conjunctive rules. In particular, we demonstrate that
if a detection system employs a well-behaved scoring function
as defined in Definition 5 then a nonmaximal conjunctive rule
will exert influence on the scoring function that is contrary to
the result of Lemma 2.

Theorem 4: Let R be any nonmaximal conjunctive rule

R: (al S Vl) . -'((Li_l € Vi—l) => (ai € V1),

and let a; be any attribute not appearing in R. Assume
that a piecewise monotone functional F/[| generates the mis-
use process from the normal process. Then for any normal

processes N; and any transaction « failing R, there exists
a normal process Nj, obtained from N; by a (z,i,5,v)
perturbation (where v is any member of the set of values V;),
such that r () > ro(z) yet R has a lower pass/match ratio in
any sample D B; generated by N and containing at least one
transaction that fails R than in any nonempty DB, generated
by N2.

Proof: By Lemma 2, the condition on the ratios 7¢
holds for any (z,4,4,v) perturbation. Consider in particular
the (z,1,j,v) perturbation that changes the probabilities of
a (candidate, target) pair (y,z) iff y fails R; in this case,
the perturbation is by § = ny(y) and hence na(y) = 0 and
na(z) = n1(2) + n1(y). Consequently, any DBy which Ny
generates contains no transactions which fail R. g

Discussion: The transformation described in Theorem 4
increases the pass/match ratio of rule R, while leaving un-
changed its expected number of matches. Since z fails R, R
exerts on any well-behaved scoring function influence that is
contrary to the result of Lemma 2, when a piecewise monotone
misuse model is assumed. Further, historical databases DB
can be constructed so that the number of transactions matching
R is sufficiently large that R’s pass/match ratio dominates the
transformation’s effect on members of many natural subclasses
of well-behaved scoring functions [9]. This result, combined
with Theorem 4, imply that in the presence of nonmaximal
rules, such functions and the optimal detector diverge as to the
relative suspicion attributed to x in the context of certain DB,
and DB, pairs obtained as in the proof of the theorem. That
is, for such pairs DB; and DB, we have sfi(z) < sfa(z)
yet 7(z) > ro(x).

On the surface, the results appear to suggest that nonmax-
imal rules not be included in rule bases; however, practice
demonstrates that rules which include all attributes are of
little value, because reasonably-sized historical databases will
contain few transactions matching any such rule (see the
discussion in Section III-B on attribute projection). The result
should be viewed in terms of “characterizing” attribute sets,
as described in Section III-B and Example 3.3. If S is a
characterizing attribute set, then a ¢ S for our purposes is
irrelevant and may be (and, as Example 3.3 illustrates, should
be) omitted from consideration. (Note that a; in the process
N, used in the proof of Theorem 4 is not irrelevant in our
sense, since transactions which differ only on this attribute, in
general, could be ranked differently depending on whether a;
is included in the projection set.)

What interpretation should be attached to these results, in
the context of rule base design, where characterizing attribute
sets, at least initially, are not known? We contend that, in
the steady state, a rule base should provide scoring that is
consistent with ratio tests computed with respect to a consistent
collection of hypotheses on the identity of good characterizing
sets of attributes. Given this, the above results imply that, when
the implicit misuse model is piecewise monotone, a rule base
should not contain nested rules, i.e., a pair of rules such that the
set of attributes referenced by one rule is properly contained
in the set of attributes referenced by another rule. If nested
rules are present, than either the smaller rule is nonmaximal
or the larger rule contains irrelevant attributes.
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V. TESTING: WISDOM AND SENSE
VERSUS A FREQUENTIST DETECTOR

In prior sections, we have developed theoretical bounds
for detection effectiveness, a consistency condition for rule-
generation, nonmodeling approaches, and suggestions on how
to group data into equivalence classes when the granularity of
the raw data together with limitations of practical sample sizes
prevent reliable estimates of the density n. In this section, we
suggest the form of a simple, quantitative, and controlled test
designed to determine whether a detection system is operating
properly. In particular, we describe here a test comparing the
performance of Wisdom and Sense and a simple frequentist
detector. The parameters of the test are such (e.g., small
transaction space, known form of misuse model) that the
frequentist detector can be expected to approximate optimal
detection. Hence, the test provides a benchmark against which
the effectiveness of Wisdom and Sense (or any other detection
system) can be measured. Current research is developing more
sophisticated testing procedures, and results will be reported
in a forthcoming paper.

The design of the test is as follows. We randomly split the
historical database in two (not necessarily equal parts) and use
one part for training and the other for testing. We next assume a
particular misuse model M, and allow the frequentist detector
to estimate from the training data and the assumed Af the
ratio 7(z), for any z in the transaction space. The detection
system being benchmarked also trains on the training data and
M —in the case of Wisdom and Sense, a statistical rule base is
generated against the training data. Provided that the training
set is sufficiently large relative to the transaction space, the
frequentist detector will approximate optimal detection, and
hence the quality of the system in question can be assessed.

In tests we performed comparing Wisdom and Sense and the
frequentist detector, we assumed the uniform misuse model
and considered a two attribute transaction template (user and
command), which allows the training set to be large relative
to the transaction space. Note that this choice of misuse model
implies that transactions rare in the test data should be flagged.
Typical frequentist detector results are given in Tables I and
I1. These results were generated from about 30 000 historical
transactions, split into training and testing sets in the ratio 2:1.
The sensitivity table is to be interpreted as follows: the 88 in
the (2,1) position indicates that 88% of the transactions that
appeared less than three times in the test set also appeared
less than twice in the training set. Thus, the (2,1) sensitivity
was 88% and similarly, the (2,2) sensitivity was 96%. The
corresponding interpretation of the false alarm table indicates
that for the (2,1) entry, 4% of the transactions that appeared
more than twice in the test set also appeared less than twice
in the training set. Although not readily apparent from the
small set of test results reproduced here, the level curves for
(fixed) sensitivity are roughly linear as are the level curves for
false alarms. For example, the set of points (x,%) associated
with 95% are roughly co-linear; (3,2), (5,3), and (7,4) lie on
approximately the same line. A further observation is that
the level curves for higher (sensitivity or false alarm) values
have somewhat greater slope than those for lower values.

TABLE I
SELECTION OF SENSITIVITY RESULTS FOR
NAIVE DETECTOR WITH 2/3 TRAINING SAMPLE

Train
S 1100100100 99 99
4 : 99100100 98 96
3 : 99 98 98 97 S$S
2 : 97 96 95 92 83
1 : 92 88 84 80 77
0 E 74 65 59 55 50

1 2 3 4 5

Test

TABLE 11
SELECTION OF FALSE ALARM RESULTS FOR
NAIVE DETECTOR WITH 2/3 TRAINING SAMPLE

Train
|

St 1312 11 10 10
|

41 1110 9 9 8
I

31 8 7 71 6 5
|

2] 6 6 5 4 3
|

17 5 ¢4 3 3 2
|

6oy 2 2 2 1 1
!
1 2 3 4 5

Test

Nonetheless, the relationship between sensitivity and false
alarms remains relatively constant. A false alarm rate of about
10% corresponds to a sensitivity of about 99%, 5% false alarm
to 93-95% sensitivity, and 1% false alarm to 45%—-60%
sensitivity.

Tables III and IV present counterpart results for Wisdom
and Sense (W&S) expressed in terms of its scoring function,
labeled FOM (Figure of Merit); the larger the FOM, the
more suspicious the transaction. We note that Wisdom and
Sense’s FOM is a well-behaved scoring function as defined
in Definition 5. As can be seen, the Wisdom and Sense
granularity for the two field case is much larger than for
the frequentist detector. Also, the interpretation is somewhat
different. The (1,0) entry of 84 in Table III means that 84% of
the transactions that appeared less than twice in the test set had
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TABLE 111
SELECTION OF SENSITIVITY RESULTS FOR W&S WITH 1/2 TRAINING SAMPLE

FOM

716758575149 &4 4t
6 ) 8375 71 62 58 53 50
S !84 76716359 5451
4} 84 76 71 63 59 54 S1
318476 71 63 59 54 51
2] 8 76 71 63 59 5S¢ 51
1) 8476 71 63 59 54 51
0] 8 76 71 63 59 S4 51

123 45 67

Test

FOM’s greater than O (and greater than 5). Similarly, the (1,4)
entry of 5 in Table IV means that 5% of the transactions that
appeared more than once had FOM’s greater than 4. Because
of the granularity, one has a choice in how to report the
results. For the 1:1 and 2:1 training set-test set splits, a 4—5%
false alarm rate corresponds to about 84% sensitivity (in the
best case), and a 1% false alarm rate corresponds to 54—66%
sensitivity.

Since the frequentist detector in these experiments can be
expected to approximate optimal detection, we conclude that
for at least the experiments undertaken, Wisdom and Sense is
performing well.

VI. CONCLUSION

We have specified misuse detection objectives in terms of a
probability model. Given this model we defined performance
measures and established theoretical performance bounds in
terms of the disparity of the underlying distributions of nor-
mal and misuse transactions. We further demonstrated that
consistency with likelihood ratio estimation is a prerequisite
for minimizing prioritization error, an error that measures the
amount of misdirection a SSO can expect from a misuse detec-
tor. We further established that sampling error can be a major
cause of poor detector performance, and suggested attribute
projection and value aggregation as solutions. We presented
several criteria for determining good attribute projections and
value aggregations and proved that exactly optimizing even the
simplest of these criteria is NP-hard. We demonstrated that
rule-building, nonmodeling approaches that use nonmaximal
conjunctive rules run the risk of being inconsistent with
likelihood ratio estimation. Finally, we presented limited test
results comparing Wisdom and Sense and the frequentist
detector.

TABLE IV
SELECTION OF FALSE ALARM RESULTS FOR W&S WITH 1/2 TRAINING SAMPLE

FOM

St s &322 11
&1 s &3 221
315432211
2} s 432211
1} s 432211
0} 5 432211

Test

Current research is extending this work both theoretically
and practically. Theoretically, we wish to relax several of the
simplifying modeling assumptions. This includes a refinement
of the binary partition of activities so that subcategories of
normal and misuse activities can be defined and analyzed.
We wish to relax also the assumption that the processes are
stationary, thereby supporting the analysis of transaction se-
quences. Practically, we are developing heuristics for attribute
projection and value aggregation, and assessing their effec-
tiveness on simulated detection problems. Additionally, we
are studying, both theoretically and experimentally, properties
of misuse surrogate models in order to discover how they can
best be utilized in detection.
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