
Incorporating Query Difference for Learning Retrieval

Functions in World Wide Web Search

Hongyuan Zha
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

zha@cc.gatech.edu

Zhaohui Zheng, Haoying Fu
Gordon Sun

Yahoo! Inc.
701 First Avenue

Sunnyvale, CA 94089

{zhaohui, haoying,
gzsun}@yahoo-inc.com

ABSTRACT
We discuss information retrieval methods that aim at serv-
ing a diverse stream of user queries such as those submitted
to commercial search engines. We propose methods that
emphasize the importance of taking into consideration of
query difference in learning effective retrieval functions. We
formulate the problem as a multi-task learning problem us-
ing a risk minimization framework. In particular, we show
how to calibrate the empirical risk to incorporate query dif-
ference in terms of introducing nuisance parameters in the
statistical models, and we also propose an alternating opti-
mization method to simultaneously learn the retrieval func-
tion and the nuisance parameters. We work out the details
for both L1 and L2 regularization cases, and provide con-
vergence analysis for the alternating optimization method
for the special case when the retrieval functions belong to a
reproducing kernel Hilbert space. We illustrate the effective-
ness of the proposed methods using modeling data extracted
from a commercial search engine. We also point out how the
current framework can be extended in future research.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and
Retrieval—Retrieval functions; H.4.m [Information Sys-
tems]: Miscellaneous—Machine learning

General Terms
Algorithms, Experimentation, Theory

Keywords
relevance, relevance judgment, retrieval function, WWW
search, discounted cumulative gain, machine learning, gra-
dient boosting, risk minimization, query document feature,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop ies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

query dependence, query specific feature, alternating op-
timinization, least-squares regression, quadratic program-
ming, regularization

1. INTRODUCTION
Designing effective and efficient retrieval functions1 is cen-

tral to information retrieval, especially in the context of
serving many user queries submitted to commercial search
engines. Many retrieval models and methods have been
proposed in the past, including vector space models, prob-
abilistic models and the more recently developed language
modeling-based methods, with varying degree of success [28,
29, 27, 1, 24, 25, 31, 16]. In particular, algorithms and tech-
niques from machine learning have been applied to informa-
tion retrieval long before the recent advances of the World
Wide Web [13, 14, 6, 15, 4, 17]. One key issue in designing
retrieval functions is to find efficient and effective representa-
tions of query-document relations. In this regard, Fuhr and
coworkers considered dividing the design space for query-
document representations into query-oriented, document-
oriented and feature-oriented schemes [13, 14, 15]. They ad-
vocated the use of feature-oriented method for probabilistic
indexing and retrieval whereby features (relevance descrip-
tions) of query document pairs such as the number of query
terms, length of the document text, term frequencies for the
terms in the query, etc. are extracted, and (least-squares)
regression methods and decision-trees are used for learning
the retrieval functions based on a set of query-document
pairs represented as feature vectors with relevance assess-
ment [13, 14, 15]. In a related work, Cooper and coworkers
have developed similar approaches and used logistic regres-
sion to build the retrieval functions and experimented with
several retrieval tasks in TREC [6, 17] (see also [16]).

Compared with the query-oriented method and document-
oriented method, the greatest advantage of feature-oriented
method is its capacity at maintaining large effective sam-
ple sizes. This is because the sample space for the feature-
oriented method is the collection of all the feature vectors
and two different query-document pairs can generate the
same or similar feature vectors. The query-oriented method
seems to be quite adequate or even advantageous especially
in traditional information retrieval where retrieval functions

1By retrieval functions we mean functions used to rank doc-
uments in response in user queries.

are usually designed to work for small and/or homogeneous
text corpora. For more diverse corpora such as the World
Wide Web and with the introduction of non-textual features
including the information from hyperlinks such as anchor
texts and user click-through data, it is more likely that sim-
ilar feature vectors corresponding to different queries are
labeled very differently in terms of relevance assessment.
Falling back on the query-oriented method or document-
oriented method is not an option because the labeled data
with relevance assessment will become even more sparse in
the enlarged sample space under those methods, consider-
ing that it is usually very expensive to acquire data with
high-quality relevance assessment [14, 15]. To overcome
this difficulty, we propose to incorporate query difference to
sufficiently disambiguate feature vectors while maintaining
the general framework of the feature-oriented method. The
starting point for our work is the formulation of the infor-
mation retrieval problem as a multi-task learning problem
where the retrieval problem for each query is considered as a
separate classification/ranking problem. The goal is to min-
imize the expected retrieval risk over the whole set of user
queries (Section 2). The retrieval problems for the individ-
ual queries are closely related to each other, and in fact, in
feature-oriented method, the individual retrieval problems
are not sufficiently distinguished from each other at all. In
section 3, we develop some novel schemes that can incor-
porate query difference in the feature-oriented framework.
This is done by introducing query dependent parameters
in the empirical risk which are separated from the retrieval
function. We discuss the details of solving the optimization
problem and issues on regularizations to control the size
of the query dependent parameters. A convergence anal-
ysis is also given for the case when the retrieval functions
are from a reproducing kernel Hilbert space. In section 4,
we present several experimental results using data extracted
from a commercial search engine. In section 5, we provide
some concluding remarks and give pointers to topics for fu-
ture research.

2. PROBLEM FORMULATION
In this section we present a general formulation of the

information retrieval problem using the risk minimization
framework (a related work using risk minimization but em-
phasizing document generation models and queries from in-
dividual users was presented in [32]). We consider D, the
set of all the documents in consideration, L the set of labels
which can be either a finite or infinite set, and Q the set of
all potential user queries.2 We model each query q ∈ Q as
a probabilistic distribution Pq over D × L,

Pq(d, `), d ∈ D, ` ∈ L

which specifies the probability of document d being labeled
as ` under query q. This probabilistic setting also includes
the case where there is a deterministic function

fq : D 7→ L

which specifies the ”correct” label fq(d) for each document
d ∈ D.

2To be more realistic, the model should also contain a tem-
poral component to account for the time evolution of the
document collection and user query stream.

Remark. With labels associated with documents, we are
using the absolute relevance framework where judgments are
made with respect to the fact that whether a document is or
is not relevant to a query. We mention that there is also the
possibility of using relative relevance judgment framework
where judgments are in the form of whether a document is
more relevant than other documents [20, 21, 22]. In certain
situations, we may encounter judgments of both forms, abso-
lute relevance judgments from human judgment process and
relative relevance judgments extracted from click-through
data.

Now we define a loss function L over the set L × L,

L : L × L 7→ R1
+,

the set of nonnegative real numbers, and we also specify a
class of functions H from which the retrieval function will
be extracted, where for h ∈ H,

h : Q×D 7→ L.

For each query q, we can then specify a learning problem
(classification or regression problem): find h∗q ∈ H such that

h∗q = arg min h∈H EPq L(`, h(q, d)),

where the expectation EPq is with respect to the probability
distribution Pq corresponding to the query q.

The goal of information retrieval, however, is not just to
learn a retrieval function h∗q for some individual query q, but
rather to learn a retrieval function h∗ that will be good for
all the queries q ∈ Q. Therefore, we need to deal with po-
tentially infinite number of related learning problems, each
for one of the query q ∈ Q. To this end, we specify a distri-
bution over Q: PQ(q) can indicate, for example, the prob-
ability that a specific query q is issued to the information
retrieval system which can be approximated, for example,
by its frequency in the query logs of queries submitted to
the information retrieval system in the past. Then the opti-
mization problem we need to solve is for the combined risk,

min
h∈H

EPQEPq L(`, h(q, d)) (1)

In practice, we sample a set of queries {qi}Qi=1 from the
distribution PQ, and for each query q, we also sample a set
of documents from D for labeling to obtain

{dqj , lqj}, q = 1, . . . , Q, j = 1, . . . , nq

where lqj ∈ L are labels obtained from human judges for
example after relevance assessment. Ideally, the sampling
of the queries should be according to PQ and the sampling
of the documents for each query q should be according to
Pq, the former is relatively easy to do while the later is a
much more difficult issue. The optimization problem for the
empirical counterpart of (1) is

min
h∈H

QX
q=1

nqX
j=1

L(`qj , h(q, dqj)).

In general we also add a regularization term to control the
complexity of h with Ω(h) measuring the complexity of h,
and the optimization problem becomes

min
h∈H

QX
q=1

nqX
j=1

L(`qj , h(q, dqj)) + λ Ω(h),

here λ is the regularization parameter that balances the fit of
the model in terms of the empirical risk and the complexity
of the model [9].

An important consequence of the above framework is that
we are simultaneously dealing with multiple learning tasks
each for an individual query, and there are substantial cor-
relations and overlaps among those learning tasks and it is
important to explore the solution of (1) in the context of
multi-task learning. The feature-oriented method where the
feature vector does not contain any query features can be
considered as an extreme form of multi-task learning for (1)
where the individual learning problems loss their identity
and become a single learning problem. The main objective
of this paper is to work within the multi-task learning by
extending the feature-oriented method.

Remark. Many loss functions have been proposed for
both classification and regression problems. For example,
for the binary classification problem, we can use the expo-
nential loss used in Adaboost [10]

L(`, h(q, d)) = exp(−`h(q, d)),

where ` ∈ {−1, 1} denotes the class labels, and for the re-
gression problem, we can use the squared-error loss,

L(`, h(q, d)) = (`− h(q, d))2,

where ` is a real number.
Remark. Instead of considering classification and regres-

sion problems, we can also consider directly the ranking
problem for information retrieval: Each query corresponds
to an ideal ranking function Rq defined on D. Let R be a
class of ranking functions, we define a loss function L that
measures the difference between two ranking functions, then
the optimization we need to solve is

min
R∈R

EPQL(Rq, R).

A recent work along those lines can be found in [3].

3. INCORPORATING QUERY DIFFERENCE
IN THE EMPIRICAL RISK

To discuss the subtle issue of query difference, we first
consider a simple illustrative example. Consider two queries
q1: ”harvard university” and q2: ”college of san mateo”. q1

is more popular than q2 generating about 13 million search
results while results for q2 are two orders of magnitude less.
For simplicity we consider a retrieval function h(x) using a
single feature x which counts the number of inbound links
to a document. Now let us examine the top three results
di1, di2, di3, i = 1, 2, for each of the query. Assume di1 is
ranked perfect, di2 is ranked excellent, and di3 is ranked
good, and we convert the labels to numerical values as fol-
lows,

0⇔ perfect, 1⇔ excellent, 2⇔ good.

Since q1 is very popular, each of the top three results gen-
erate high feature values, say,

x = 100000, 80000, 50000

while for q2 the corresponding feature values are

x = 1000, 800, 500.

Assume x is negatively correlated with the label, i.e., small
x values tend to indicate better relevance, then we will need

to find a monotonically decreasing function h such that for
q1

h(100000) ≈ 0, h(80000) ≈ 1, h(50000) ≈ 2

and for q2,

h(1000) ≈ 0, h(800) ≈ 1, h(500) ≈ 2.

This is, however, impossible to do. As we can see the major
issue comes from the difference of popularity of the queries
and we need a framework for designing retrieval functions
that can take this difference into account. The above is a
simple illustrative example and for a single query we can
use simple scaling to achieve the same effects. But in real-
ity, a retrieval function involves several thousands or more
features and simple scaling will not work. To this end, we
discuss the issue in more formal terms.

To be concrete, we consider the risk minimization problem
in the context of regression, i.e., we assume the labels are
real numbers, and to be consistent with convention, we will
use yqj to denote the label `qj . We also use the squared-error
loss function. Since we operate under the feature-oriented
framework, we assume the labeled set is represented as

{xqj , yqj}, q = 1, . . . , Q, j = 1, . . . , nq,

here xqj denote the feature vector for the query-document
pair {q, dqj}. Before we proceed to formally discuss the
problem, we want to address an important and subtle issue.
For a query q, we say a feature is query-dependent if it has
the same value across all the documents d ∈ D. For exam-
ple, the number of terms in q is a query-dependent feature.
Other features are called document-dependent and query-
document-dependent. So we can split the feature vector xqj

into two parts

xqj = [xQ
qj , xD

qj , xQD
qj]

with the first component indicates the set of query-dependent
features (more details on those three types of features can
be found in Section 4.1). One extreme form of a retrieval

function is a function that only depends on xD
qj , x

QD
qj , i.e.,

{h([xD
qj , xQD

qj])}

is used for ranking documents for all the queries. At the
other end of the spectrum is to have one function

h([xD
qj , xQD

qj])

for each query q ∈ Q. On the other hand, to have a single
function

h([xQ
qj , xD

qj , xQD
qj])

for all queries and using xQ
qj to disambiguate the queries

seems to be quite natural. But the problem with this ap-
proach is that it is not known a-priori what set of query-
dependent features are adequate for this purpose; for ex-
ample, just using the number of query terms in a query
is certainly too coarse. Our philosophy instead is to let the
data implicitly capture this set of adequate query-dependent
features and completely bypass its explicit construction. In
particular, we allow the feature vector to contain any num-
ber of query-dependent features or none at all.

To this end, we seek to find a function h ∈ H to minimize
the following empirical risk,

L(h) =

QX
q=1

nqX
j=1

(yqj − h(xqj))
2.

We will deal with regularization issue momentarily. To in-
corporate query-dependent effects, we can consider the fol-
lowing modified empirical risk, and we seek to find h and
gq, q = 1, . . . , Q, to minimize

L(h, g) =

QX
q=1

nqX
j=1

[yqj − gq(h(xqj))]
2, (2)

where gq(·) is a general monotonically increasing function,
and g = [g1, . . . , gQ], i.e., we seek

{h∗, g∗} = argmin{h∈H,g mono increasing} L(h, g).

The intention is that the function gq incorporate the dif-
ference for queries when using h(x) to predict the label y.
From another viewpoint, for suitably chosen gq, we seek to
find h(x) to match g−1

q (y). This has some flavor of response
transformation used in general regression analysis [5]. How-
ever, in our case, the response transformation g−1

q (·) is not
fixed in advance but is learned from the data, and it is also
query dependent.

Now for a new query qn which is not in the given la-
beled set, there is also a corresponding function gqn . How-
ever, the retrieval function is used for ranking the documents
and since gqn is monotonically increasing, rankings based on
gqn(h) and h are exactly the same, and for using the latter,
there is no need to know gqn .

In this work we focus on the simple case where gq(·) is a
linear function,3 i.e.,

gq(x) = βq + αqx, q = 1, . . . , Q

with αq ≥ 0. The query dependent parameters βq and αq

are nuisance parameters because they do not appear in the
retrieval function h. Interestingly, even though we incorpo-
rate query dependent parameters in learning the retrieval
function, to assess the relevance for a document d ∈ D, we
simply look at the learned retrieval function h. For exam-
ple, to rank a list of documents di ∈ D, i = 1, . . . , n, for a
query q, we can simply sort them according to the values
h(xi), i = 1, . . . , n, where xi is the feature vector for the
query document pair {q, di}.

As we mentioned before, to control the size of the param-
eters βq, αq and the complexity of h, we also need to add
regularization terms to the modified empirical risk (2) to
obtain the regularized empirical risk

L(h, β, α) =

QX
q=1

nqX
j=1

[yqj − βq − αqh(xqj)]
2+

+λβ‖β‖pp + λα‖α‖pp + λhΩ(h),

where β = [β1, . . . , βQ] and α = [α1, . . . , αQ], and λβ , λα

and λh are regularization parameters, and ‖ · ‖p is the p
norm of a vector. We will only consider the case for p = 1
or p = 2. In summary, we seek to find

{h∗, β∗, α∗} = argmin h∈H,β,α≥0 L(h, β, α). (3)

In general, we will not impose a parametric form for the
function h, and we will employ the methodology of coor-
dinate descent (alternating optimization) to solve the op-
timization problem (3) [2]. Specifically, we will alternate

3We can use more complicated monotone functions by using
more parameters or even monotone functions in nonpara-
metric form.

between optimizing against h and optimizing against β and
α. The regularization parameter λh will be determined dur-
ing the nonlinear regression process for finding h discussed
below while regularization parameters λβ and λα will be
determined by cross-validation (see section 4.4 for more de-
tails).

3.1 Nonlinear regression
For fixed β and α, and for simplicity, we assume αq > 0,

define the modified residuals

ŷqj = (yqj − βq)/αq, q = 1, . . . , Q, j = 1, . . . , nq.

Then we seek to find h that solves the following weighted
nonlinear regression problem

QX
q=1

nqX
j=1

α2
q[ŷqj − h(xqj)]

2 + λhΩ(h).

Many nonparametric fitting algorithms can be used to find
h including MARS, the recently proposed boosting meth-
ods, and the general kernel-based methods [10, 11, 12]. For
more detailed discussion in the context of learning retrieval
function see [7, 8]. In section 3.3, we present a detailed
discussion for the kernel-based methods. Here we briefly de-
scribe the general framework of gradient boosting, assuming
we are given a training set {xi, yi}Ni=1 with a loss function
(y − h(x))2 [12]. The gradient boosting algorithm consists
of the following steps.

1. Initialize h0(x) =
PN

i=1 yi/N .
2. For i=1,. . . , M: (number of trees in gradient boosting)

(a) For i=1,. . . , N, compute the negative gradi-
ent

rim = −(yi − fm−1(xi))

(b) Fit a regression tree to {rim}i=1,...,N giving
terminal regions Rjm, j = 1, . . . , Jm.

(c) For j = 1, . . . , Jm, compute

γjm =
X

xi∈Rjm

(yi − fm−1(xi))/|{i : xi ∈ Rjm}|

(d) Update

fm(x) = fm−1(x) + η(

JmX
j=1

γjmI(x ∈ Rjm)),

where η is the shrinkage factor.

There are two parameters M , the number of regression
trees and η, the shrinkage factor that need to be chosen
by the user. We use cross-validation for choosing the two
parameters.

3.2 Computingα and β

Next we consider for fixed h, how to optimize against β
and α. We need to solve the optimization problem

min
β,α

QX
q=1

nqX
j=1

[yqj − βq − αqh(xqj)]
2 + λβ‖β‖pp + λα‖α‖pp.

It is easy to see that we can break the above into Q separate
optimization problems, for q = 1, . . . , Q,

min
βq,αq

nqX
j=1

[yqj − βq − αqh(xqj)]
2 + λβ |βq|p + λα|αq|p.

We distinguish two cases in what follows.

3.2.1 TheL2 case
For p = 2, the component βq and αq of β and α can be

found by solving the following least squares problem,

min
{βq,αq}

nqX
j=1

(yqj − βq − αqh(xqj))
2 + λββ2

q + λα(αq − 1)2,

where to force nonnegativity on αq, we control the size of
α̂q = αq − 1 instead of αq and consequently, αq will be
around 1. Let the data matrix for query q and the response
be

Xq =

26664
1 h(xq1)
1 h(xq2)
...

...
1 h(xq,nq)

37775 ∈ Rnq×2, ŷq =

26664
yq1 − h(xq1)
yq2 − h(xq2)

...
ynq − h(xqn)

37775 .

The optimal βq and αq can be obtained by solving the fol-
lowing normal equation,„

XT
q Xq +

»
λβ 0
0 λα

–« »
βq

α̂q

–
= XT

q ŷq,

here superscript T denotes matrix transpose.

3.2.2 TheL1 case
For p = 1, we need to solve the following optimization

problem,

min
{βq,αq}

nqX
j=1

(yqj −βq −αqh(xqj))
2 +λβ |βq|+λα|αq − 1|. (4)

We can turn the above into a quadratic programming prob-
lem. To this end, we introduce the following notation, for a
real number r, we define

r+ = max{0, r}, r− = max{0,−r}.

Then it is easy to see that r = r+ − r− and |r| = r+ + r−.
Let α̂q = αq − 1, and we rewrite (4) as

min

nqX
j=1

[yqj − (β+
q − β−q)− (α̂+

q − α̂−q + 1)h(xqj)]
2+

+ λβ(β+
q + β−q) + λα(α̂+

q + α̂−q),

subject to the constraints

β+
q ≥ 0, β−q ≥ 0, α̂+

q ≥ 0, α̂−q ≥ 0.

The above optimization problem is in the standard form of
convex quadratic programming and can be solved by the
available methods discussed in [26].

3.3 Convergence and stopping criteria
In this section, we present a convergence analysis of the

above alternating optimization method for optimization prob-
lem (3). We specialize to the case when H the set of func-
tions in (3) is restricted to a reproducing kernel Hilbert space
(RKHS) [30]. We first give a very brief description of RKHS
just to introduce the relevant notations. A RKHS is charac-
terized by a continuous, symmetric, positive definite kernel
function K(·, ·),

K : X × X 7→ R1
+,

where X is the domain of the functions, and K satisfies

K(x, y) = K(y, x),

nX
i,j=1

aiajK(xi, xj) ≥ 0.

For a fixed x ∈ X , K(x, ·) is a function on X . Consider
the linear space H0 spanned by {K(x, ·), x ∈ X}, i.e., H0

consists of finite linear combination of the form f(x) =P
i=1 ciK(xi, ·). For any two functions f and g in H0,

f(x) =
X
i=1

ciK(xi, x), g(x) =
X
i=1

diK(yi, x)

Define an inner-product on H0 by

< f, g >K=

nX
i,j=1

cidjK(xi, yj).

It is easy to see that

< f, K(x, ·) >K= f(x)

and this is where the name reproducing kernel comes from.
Now we can define HK the RKHS uniquely associated with
K as the completion ofH0 under the norm ‖f‖2K =< f, f >K .

For a fixed kernel function K, we replace H in (3) by the
RKHS HK and the complexity measure Ω(h) by ‖h‖2K . One
advantage of using RKHS is the following representer theo-
rem [30] which we rewrite in the context of the optimization
problem (3).

Theorem 1. The optimal function h∗ for the optimization
problem (3) has the following form,

h∗(x) =

QX
q=1

nqX
j=1

cqjK(xqj , x),

where cqj , q = 1, . . . , Q, j = 1, . . . , nq, are real numbers.
In essence, Theorem 1 reduces the search overHK which is

an infinite dimensional space to the search for cqj belonging
to a finite dimensional Euclidean space, and we can write the
emipirical risk L(h, β, α) ≡ L(c, β, α) with c = [cqj]. With
the above discussion, the alternating optimization algorithm
discussed before can be more concisely described as

Algorithm. (Alternating optimization)

• Start with an initial guess β0 and α0.

• For k = 1, 2, · · · until convergence, compute

ck = argmin c L(c, βk, αk), (5)

{βk+1, αk+1} = argmin β,α≥0 L(ck, β, α). (6)

We now present a convergence result using the general
convergence theorem for block coordinate descent in Section
2.7 of [2].

Theorem 2. Every limit point of {ck, βk, αk}∞k=1 is a
stationary point of L(c, β, α).

Proof. According to proposition 2.7.1 in [2], we need to
check that both the optimization problems (5) and (6) have
unique solutions, and the feasible regions for both are con-
vex. Convexity for the feasible regions for both (5) and (6)
are obvious. For fixed c, it is easy to see that the objective
function

QX
q=1

nqX
j=1

[yqj − βq − αqh(xqj)]
2 + λβ |β|p + λα|α|p

Table 1: Number of queries and query-url pairs on
US and CN datasets

queries # total query-document pairs

Chinese 2649 78188
English 910 70742

is strictly convex for p > 1, hence minimizer is unique. For
fixed β and α, using the representer theorem of Theorem 1,
the objective function for the optimization problem (5) can
be written as

QX
q=1

nqX
j=1

[yqj − βq − αq

QX
p=1

nqX
i=1

cpiK(xpi, xqj)]
2+

+λh

QX
p=1

nqX
i=1

QX
q=1

nqX
j=1

cpicqjK(xpi, xqj)

which is also seen to be strictly convex in c.
Remark. One alternative to the Alternating Optimiza-

tion method for the RKHS case is to directly optimize the
function L(c, β, α).

Stopping criteria. In practice, we iterate the Alternat-
ing Optimization Algorithm until β and α do not change
very much, for example, we specify η > 0, and terminate
the iterations once ‖βk+1 − βk‖+ ‖αk+1 − αk‖ ≤ η.

4. EXPERIMENTAL RESULTS
In this section we report some experimental results on

data generated from a commercial search engine. We fo-
cus on data for two popular languages English and chinese,
respectively.

4.1 Data collection
In our experiments, a set of queries are sampled from

query logs, and a certain number of query-document pairs
are labeled according to their perceived relevance judged by
human editors. The labels are mapped to numerical values
and the goal is to learn a retrieval function that can best
mimic the human judgment process. In Table 1, we list
some basic statistics for the two data sets.

The construction of the English and Chinese training sets
mainly consists of the following steps.

• randomly sample a certainly number of queries from
the query logs.

• for each query, we sample certain number of documents
for judgments.

• human judges assign a 0 − 4 grade to each query-url
pair based on the degree of relevance (perfect match,
excellent match, etc). The grades will be used as target
values for regression.

• each query-url pair is then represented with a feature
vector as we detail below.

For each query-document pair (q, d) with q ∈ Q and d ∈
D, a feature vector x = [xQ, xD, xQD] is generated and the
features generally fall into the following three categories:

• Query-feature vector xQ which comprises features de-
pendent on the query q only and have constant values
across all the documents d ∈ D, for example, the num-
ber of terms in the query, whether or not the query is
a person name, etc.

• Document-feature vector xD which comprises features
dependent on the document d only and have constant
values across all the queries q ∈ Q, for example, the
number of inbound links pointing to the document, the
amount of anchor-texts in bytes for the document, and
the language identity of the document, etc.

• Query-document feature vector xQD which comprises
features dependent on the relation of the query q with
respect to the document d, for example, the number
of times each term in the query q appears in the doc-
ument d, the number of times each term in the query
q appears in the anchor-texts of the document d, etc.

We use two data sets in our experiments, one mainly con-
sists of English queries and the other mainly chinese queries,
and the two sets are labeled as English and Chinese, repec-
tively. In Table 1 we list the number of queries and query-
document pairs for the two data sets. The numbers of fea-
tures for Chinese and US datasets vary from a few hundreds
to more than a thousand. The difference between the num-
bers of features are mainly due to the different maximum
query lengthes for the two datasets.

4.2 Evaluation metrics
Many evaluation metrics have been proposed to assess the

effectiveness of information retrieval systems including the
popular precision-recall method. In this work, we use the
recently popularized Discounted Cumulative Gain (DCG)
methodology which seems to be more appropriate for assess
relevance in the context of search engines [19]. For a ranked
list of N documents(N is set to be 5 in our experiments),
we use the following variation of DCG,

DCGN =

NX
i=1

Gi

log2 (i + 1)
,

where Gi represents the weights assigned to the label of the
document at position i. Higher degree of relevance corre-
sponds to higher value of the weight. We will use the symbol
dcg to indicate the average of this value over a set of queries
in our experiments.

4.3 Experiment methodology
In this section, we provide some more details on the learn-

ing and evaluation methods used in our experiments.

4.3.1 Adaptive target value transformation(aTVT)

In section 3 we mentioned that our proposed methods can
also be considered as an adaptive way to adjust the response
values. The alternating optimization process consists of fit-
ting the α and β values and the fitting of the nonlinear
function h which amounts to solving a weighted nonlinear
least squares problem. For situations where it is not con-
venient to incorporate weights, we can slightly modify the
empirical loss to be (cf. section 3)

min
{αq,βq}

nqX
j=1

(αqyqj + βq − h(xqj))
2 + λα|(αq − 1)|pp + λβ |βq|pp.

For each choice of regularization parameters λα and λβ

we optimize the regression function and the parameters αq

and βq as follows:

1) initialize y0
qj to the assigned numerical values for each

query-document pair (q, d);

2) iterate until the αk
q and βk

q do not change much (cf.
section 3.3) or k, k = 1, 2, ..., reaches the maximum
number of iterations K (K = 10, in this work), do the
following,

a) fit a nonlinear function on {yk−1
qj } using the gen-

eral methodology discussed in [7, 8, 12].

b) obtain optimal values for the αk
q and βk

q as in
section 3.2.1or 3.2.2.

c) yk
qj ← αk

qyk−1
qj + βk

q .

Then αq =
QK

k=1 αk
q , and βq =

PK
k=1(β

k
q

QK
i=k+1 αi

q).
In what follows, we will refer the above algorithm as adap-

tive Target Value Tranformation (aTVT). We will compare
aTVT against a particular system that uses nonlinear regres-
sion to learn a retrieval function based on the gradient boost-
ing methods [7, 8, 12]. It is the same fitting method used
in Step 2/a) in the above. In our experiments, we will refer
the retrieval function of this system as the retrieval function
without aTVT. We should mention that many methods for
nonlinear regression can be used for fitting the h function,
we adopt the methods in [7, 8] so that we can provide a
consistent comparison.

4.3.2 Using cross validation for comparison
The main objective of this work is to demonstrate the po-

tential advantage of incorporating query difference in learn-
ing retrieval functions. In general, the idea can be applied to
many existing information retrieval systems. We will only
focus on the comparison between systems using aTVT and
the same system without using aTVT. A more comprehen-
sive comparison of the existing information retrieval systems
is beyond the scope of this work.

The comparison is carried out in the following way, and
in essence we seek to assess the significance of the observed
difference between systems with aTVT and systems without
aTVT in terms of the difference in the DCG values.

• Randomly split the set of queries in data set into 10
folds and obtain 10 9-vs-1 combinations.

• For each 9-vs-1 combination, do the following:

– learn a retrieval function using the data in the 9
folds as training data with and without aTVT,
respectively.

– test the learned retrieval function on the remain-
ing one fold by computing the DCG values for
the queries in the one fold, and thus obtain two
lists of query-dcg pairs corresponding to retrieval
function with and without aTVT, respectively.

• For each of the two methods, we concatenate the above
lists from the 10 combinations together to obtain a full
list of query-dcg pairs for all the queries in the data
set. Notice that the orders of queries in the two full
lists are the same.

Table 5: dcg gains and percentage of gains for re-
trieval functions with aTVT over without aTVT at
different percentiles on English data for the L2 case
with λα = 10 and λβ = 1

percentile ∆dcg %∆dcg

0% 11.35 1454.84
10% 2.51 29.91
20% 1.44 15.23
30% 0.79 7.88
40% 0.19 1.80
50% 0.00 0.00
60% 0.00 0.00
70% -0.28 -2.84
80% -1.08 -9.48
90% -1.76 -18.02

100% -6.98 -92.54

• Finally, we conduct Wilcoxon signed rank tests on the
two lists and obtain the p-values for the average dcg
gains for systems with aTVT over systems without
aTVT [18].

4.4 Comparison results
Before we present our results we want to emphasize that

the baseline result is based on a state of the art commer-
cial search engine, and for all the top search engines the
difference in dcg values is below 5%.

Table 2 and Table 3 list the dcg for retrieval function with
aTVT as compared to retrieval function without aTVT in
the L2 case (cf. 3.2.1) for the English and Chinese data sets,
respectively. The percentage dcg gains and the p-values from
Wilcoxon signed rank tests are also presented. From the two
tables, we can see aTVT gives statistically significant dcg
gains for both English and Chinese data sets. The optimal
regularization parameter combinations give about 2% dcg
gain for the English data and slightly more than 1% dcg
gain for the Chinese data.

Table 4 also shows the means and variances of the opti-
mal αq and βq values for the queries in English data set. As
is expected, increasing λα and λβ will move α and β closer
toward to 1 and 0, respectively. Retrieval function without
aTVT corresponds to α = 1 and β = 0, where λα → +∞
and λβ → +∞. Our experimental results also indicate that
regularization with respect to α and β is very important
to prevent overfitting. Compared with the dcg values for
retrieval function without aTVT, aTVT without regulariza-
tion on α and β, e.g., λα → 0 and λβ → 0, degrade dcg.

Table 5 shows the absolute and percentage of dcg gains at
different percentiles of queries for the English data form the
L2 case and the fixed regularization parameters: λα = 10
and λβ = 1.

Due to the limit of time, we only tried a few combinations
of regularization parameters on English data for the L1 case.
The dcg for aTVT with one iteration K = 1, λα = 100 and
λβ = 0.2 are 11.45(+1.75%, p−value=0.001). The mean and
variance of αq are 0.92 and 0.014 respectively, and those for
βq are 0.22 and 0.179, respectively.

In Table 6, we list percentage dcg gains at different query
percent intervals for the English data. We can see that for
those queries where the dcg does not change much, the av-

Table 2: The dcgs and percentage dcg increases of retrieval function with aTVT over without aTVT on the
English data set, and p values for different regularization parameters: λα and λβ in the L2 case. Notice that
the dcg for retrieval function without aTVT are 11.30.

λβ=1 10 50 100

λα=1 dcg 11.48(+1.55%,p=0.01) 11.49(+1.68%,p=0.006) 11.51(+1.83%,p=0.005) 11.46(+1.43%,p=0.02)
10 dcg 11.53(+1.98%,p=0.002) 11.52(+1.88%,p=0.002) 11.47(+1.44%,p=0.02) 11.47(+1.49%,p=0.02)
50 dcg 11.50(+1.75%,p=0.002) 11.51(+1.79%,p=0.008) 11.45(+1.27%,p=0.03) 11.45(+1.31%,p=0.03)

100 dcg 11.51(+1.83%,p=0.007) 11.49(+1.65%,p=0.003) 11.45(+1.31%,p=0.07) 11.48(+1.52%,p=0.01)

Table 3: Same as table 2, but for the Chinese data set. Notice that the dcg for retrieval function without
aTVT is 7.87.

λβ=1 10 50 100

λα=1 dcg 7.81(-.80%,p=0.02) 7.90(+.36%,p=0.43) 7.89(+.24%,p=0.62) 7.93(+.72%,p=0.03)
10 dcg 7.84(-.36%,p=0.42) 7.87(-.02%,p=0.88) 7.93(+.69%,p=0.03) 7.96(+1.14%,p=0.004)
50 dcg 7.87(+.08%,p=0.80) 7.91(+.45%,p=0.21) 7.94(+.87%,p=0.01) 7.96(+1.12%,p=0.003)

100 dcg 7.89(+.28%,p=0.25) 7.91(+.49%,p=0.07) 7.94(+.86%,p=0.009) 7.96(+1.10%,p=0.01)

Table 6: The average α, β and percentage of gains
for retrieval functions with aTVT at different per-
centage intervals on English data for the L2 case with
λα = 10 and λβ = 1

interval average α average β average %∆dcg

0-10% 0.1436 2.4803 118.56
10-20% 0.1450 2.4385 21.98
20-30% 0.1461 2.4134 11.53
30-40% 0.1571 2.3953 4.41
40-50% 0.1682 2.3033 0.55
50-60% 0.1838 2.2995 0.00
60-70% 0.1539 2.3674 -1.04
70-80% 0.1523 2.3753 -6.54
80-90% 0.1456 2.4196 -13.65

90-100% 0.1425 2.4428 -33.58

erage α tends to be bigger while the average β tends to
be smaller, for those queries where the dcg changes signifi-
cantly, the opposite is true. To gain better insights into the
question—for what kind of queries, aTVT is more effective—
we notice that the average total number of anchor text lines
for the top 10% and bottom 10% queries are about 15.42
and 10.83, respectively which is significantly different from
the average for all queries (22.89). As a comparison, the av-
erage total number of anchor text lines for the queries with
small dcg change is about 24.71 which is very close to the
average for all the queries. Certainly more work needs to be
done to understand the effectiveness of aTVT at the query
level.

A more telling story is what are presented in Table 7. Here
we sort all the 910 English queries according to the corre-
sponding values of δ ≡ |α0.1 − 1.0|+ |β/10| which measures
how far the α and β deviate from their nominal values of one
and zero. Those queries with larger δ have larger adjustment
to compensate query difference, and the corresponding im-
provement in DCG is also larger. The adjustment for query

Table 7: dcg gains and corresponding p-values for
queries sorted according to |α0.1 − 1.0|+ |β/10|

top queries dcg gain of aTVT p-value

200 5.33% 0.002
300 4.21% 0.002
400 4.01% 0.0004
500 3.42% 0.0006
600 2.75% 0.001
700 2.57% 0.0006
800 2.34% 0.0005
910 1.98% 0.002

difference is purely data-driven and it is not easy to attribute
the adjustments to some specific aspects of the query such
as length and language identity etc. One the other hand, it
is also possible to devise more targeted adjustments using
query classes for example. We will mention this issue again
in the conclusion remarks.

5. CONCLUDING REMARKS
We cast the information retrieval problem as a multi-

task learning problem which presents a natural setting for
discussing the important issues of query difference and its
impact in learning effective retrieval functions. There are
many ways to incorporate query difference in learning re-
trieval functions, the approaches of constructing appropri-
ate query features being one of them even though it is usu-
ally not looked at from this viewpoint. In this paper, we
present an approach through modifications of the empirical
risk using nuisance parameters to accommodate the effects
of query difference. The approach can be used even when
there are query features contained in the feature vector of
query-document pairs. In this work we have also developed
numerical algorithms for solving the resulted optimization
problems for minimizing the modified empirical risk. Based
on data sets extracted from a commercial search engine, we

Table 4: The means and variances of α and β for different regularization parameters on English data. where:
Case p = 2, λα = 10 and λβ = 1

λβ=1 10 50 100

λα=1 mean(α),var(α) 0.11, 0.002 0.27, 0.006 0.41, 0.006 0.45, 0.006
mean(β),var(β) 2.5116, 0.031 1.73, 0.061 0.86, 0.048 0.55, 0.029

10 mean(α),var(α) 0.15, 0.003 0.29, 0.006 0.42, 0.006 0.46, 0.006
mean(β),var(β) 2.39, 0.041 1.69, 0.066 0.85, 0.049 0.54, 0.03

50 mean(α),var(α) 0.26, 0.006 0.35, 0.007 0.46, 0.007 0.5, 0.006
mean(β),var(β) 2.09, 0.073 1.56, 0.082 0.80, 0.055 0.52, 0.033

100 mean(α),var(α) 0.35, 0.008 0.41, 0.008 0.50, 0.007 0.53, 0.006
mean(β),var(β) 1.86, 0.095 1.43, 0.095 0.76, 0.06 0.49, 0.036

also demonstrate that the proposed method gives good im-
provements in terms of DCG gains. We believe our approach
represents an initial step towards better understanding the
issues of query difference and learning retrieval functions
and there are many topics that deserve further investiga-
tion including 1) explore the relation between construct-
ing retrieval functions using query-dependent features and
the approaches we used in this work, especially elucidate
the concept of adequate query-dependent features; 2) prove
generalization bounds for the multi-task risk minimization
problem; and 3) explore query difference in other informa-
tion retrieval models. In particular, the aTVT framework
can be combined with other prior information, for example,
we can devise a set of class structures for queries and use a
set of α and β for each class of the queries instead of one set
for each query, many sort of variations on this idea can be
further investigated.

6. ACKNOWLEDGMENTS
The work of the first author was supported in part by

Yahoo!.

7. REFERENCES
[1] A. Berger. Statistical machine learning for

information retrieval. Ph.D. Thesis, School of
Computer Science, Carnegie Mellon University, 2001.

[2] D. Bertsekas. Nonlinear programming. Athena
Scientific, second edition, 1999.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M.
Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. Proceedings of
international conference on Machine learning, 89–96,
2005.

[4] H. Chen. Machine Learning for information retrieval:
Neural networks, symbolic learning and genetic
algorithms. JASIS, 46:194-216, 1995.

[5] R. D. Cook and S. Weisberg. Residuals and influence
in regression. Chapman & Hall, 1982.

[6] W. Cooper, F. Gey and A. Chen. Probabilistic
retrieval in the TIPSTER collections: an application
of staged logistic regression. Proceedings of TREC,
73-88, 1992.

[7] D. Cossock. Method and apparatus for machine
learning a document relevance function. US patent
application, 20040215606, 2003.

[8] D. Cossock and T. Zhang. Subset ranking using
regression. Technical Report, Yahoo! Research
Laboratory, 2006.

[9] F. Cucker and S. Smale. On the mathematical
foundations of learning. Bull. Amer. Math. Soc.,
39:1–49, 2002.

[10] Y. Freund and R. Schapire. Experiments with a new
boosting algorithm. Proceedings of the international
conference on Machine learning, 148–156, 1996.

[11] J. Friedman. Multivariate adaptive regression splines
(with discussion). Ann. Statist., 19:1-141, 1991.

[12] J. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist.,
29:1189-1232, 2001.

[13] N. Fuhr. Optimum polynomial retrieval functions
based on probability ranking principle. ACM
Transactions on Information Systems, 7:183-204, 1989.

[14] N. Fuhr and C. Buckley. A probabilistic learning
approach for document indexing. ACM Transactions
on Information Systems, 9:223-248, 1991.

[15] N. Fuhr and U. Pfeifer. Probabilistic information
retrieval as a combination of abstraction, inductive
learning, and probablistic assumptions. ACM
Transactions on Information Systems, 12:92-115, 1994.

[16] J. Gao, H. Qi, X. Xia and J. Nie. Linear discriminant
model for information retrieval. Proceedings of the
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
290–297, 2005.

[17] F. Gey, A. Chen, J. He and J. Meggs. Logistic
regression at TREC4: probabilistic retrieval from full
text document collections. Proceedings of TREC,
65-72, 1995.

[18] M. Hollander and D. A. Wolfe. Nonparametric
statistical methods. Wiley-Interscience, 2nd edition,
1999.

[19] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20:422-446, 2002.

[20] T. Joachims. Optimizing search engines using
clickthrough data. Proceedings of the ACM Conference
on Knowledge Discovery and Data Mining, 2002.

[21] T. Joachims. Evaluating retrieval performance using
clickthrough data. Proceedings of the SIGIR Workshop
on Mathematical/Formal Methods in Information
Retrieval, 2002.

[22] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and
G. Gay. Accurately Interpreting Clickthrough Data as
Implicit Feedback. Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2005.

[23] K. L. Kwok. A neural network for probablistic
information retrieval. In Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 21-30,
1989.

[24] X. Liu and W. B. Croft. Cluster-based retrieval using
language models. Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 186 – 193,
2004.

[25] R. Nallapati. Discriminative models for information
retrieval. Proceedings of the Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, 64– 71, 2004.

[26] J. Nocedal and S. Wright. Numerical Optimization.
Springer, 1999.

[27] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of the ACM
Conference on Research and Development in
Information Retrieval, 1998.

[28] G. Salton. Automatic Text Processing. Addison
Wesley, Reading, MA, 1989.

[29] H. Turtle and W. B. Croft. Inference networks for
document retrieval. In Proceedings of the Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1-24, 1990.

[30] G. Wahba. Spline models for observational data.
SIAM press, 1990.

[31] C. Zhai and J. Lafferty. A study of smoothing methods
for language models applied to information retrieval.
ACM Transactions on Information Systems, 22, 2004.

[32] C. Zhai and J. Lafferty. A risk minimization
framework for information retrieval , Information
Processing and Management, 42:31–55, 2006.

