
A Syntactic Tree Matching Approach to Finding Similar 
Questions in Community-based QA Services 
Kai Wang 

Department of Computer Science 
School of Computing 

National University of Singapore 

kwang@comp.nus.edu.sg 

Zhaoyan Ming 
Department of Computer Science 

School of Computing 
National University of Singapore 

mingzy@comp.nus.edu.sg 

Tat-Seng Chua 
Department of Computer Science 

School of Computing 
National University of Singapore 

chuats@comp.nus.edu.sg 
 
 

ABSTRACT 
While traditional question answering (QA) systems tailored to the 
TREC QA task work relatively well for simple questions, they do 
not suffice to answer real world questions. The community-based 
QA systems offer this service well, as they contain large archives 
of such questions where manually crafted answers are directly 
available. However, finding similar questions in the QA archive is 
not trivial. In this paper, we propose a new retrieval framework 
based on syntactic tree structure to tackle the similar question 
matching problem. We build a ground-truth set from Yahoo! 
Answers, and experimental results show that our method 
outperforms traditional bag-of-word or tree kernel based methods 
by 8.3% in mean average precision. It further achieves up to 50% 
improvement by incorporating semantic features as well as 
matching of potential answers. Our model does not rely on 
training, and it is demonstrated to be robust against grammatical 
errors as well. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval – Retrieval Models; I.2.7 [Artificial Intelligence]: 
Natural Language Processing – Text Analysis 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
Question Answering, Syntactic Structure, Question Matching, 
Yahoo! Answers 

1. INTRODUCTION 
Traditional TREC QA task has made significant progress since 

it was first introduced in 1990s [1]. However, research on TREC 
QA has largely targeted on short, factoid-based, questions, for 
which concise answers are expected. For example, TREC QA 
simply expects the year “1960” for the simple question “In what 

year did Sir Edmund Hillary search for Yeti?”. It was earlier 
claimed that while QA systems tailored to the TREC QA task 
worked relatively well for factoid-type questions, they might not 
be necessarily effective in question answering applications 
outside TREC [7]. In real world, more complex questions are 
usually asked, and users are more willing to obtain a longer and 
more comprehensive answer which contains sufficient context 
information. Traditional QA systems are now facing problems of 
being deployed into real world. 

With the blooming of Web 2.0, social collaborative 
applications such as Wikipedia, YouTube, Facebook etc. begin to 
flourish, and there have been an increasing number of Web 
information services that bring together a network of self-declared 
“experts” to answer questions posted by other people. This is 
referred to as the community-based question answering services 
(cQA). In these communities, anyone can ask and answer 
questions on any topic, and people seeking information are 
connected to those who know the answer. As answers are usually 
explicitly provided by human and are of high quality, they can be 
helpful in answering real world questions. 

Yahoo! Answers, launched on December 13, 2005, is now 
becoming the largest knowledge-sharing online community 
among several popular cQA services. Over times, a tremendous 
number of previous QA pairs have been stored in its database, and 
in most circumstances, users may directly get the answers from 
Yahoo! Answers by searching from this QA archive, rather than 
looking through a list of potentially relevant documents from the 
Web. As such, instead of extracting answers from a certain 
document corpus, the retrieval task in cQA becomes the task of 
finding relevant similar questions with new queries. 

The similar question matching task is, however, not trivial. One 
of the major reasons is that instead of inputting just keywords or 
so, users form questions using natural language, where questions 
are encoded with various lexical, syntactic and semantic features. 
For example, “how can I lose weight in a few month?” and “are 
there any ways of losing pound in a short period?” are two similar 
questions asking for methods of losing weight, but they neither 
share many common words nor follow identical syntactic 
structure. This gap makes the similar question matching task 
difficult. Similarity measure techniques based purely on the bag-
of-word (BoW) approach may perform poorly and become 
ineffective in these circumstances. 

Syntactic or semantic features hence become vital for such 
task. The tree kernel function [5] is one of the most effective ways 
to represent the syntactic structure of a sentence. In general, it 
divides the parsing tree into several sub-trees and computes the 
inner product between two vectors of sub-trees. Although there 
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have been some successful applications using it, like Question 
Classification [3,13,19], the tree kernel-like function has not been 
directly applied to finding similar questions in the QA archive. 
Moreover, its matching scheme is too strict to be directly 
employed to our question matching problem. In this paper, we re-
formulate the tree kernel framework, and introduce a new 
retrieval model to find similar questions. We extensively study 
the structural representations of questions to encode not only 
lexical but also syntactic and semantic features into the matching 
model. Our model does not rely on training, and it is shown to be 
robust against grammatical errors as well. 

The rest of the paper is organized as follows: Section 2 gives a 
background introduction on the well-known tree kernel concept. 
Section 3 presents the architecture of our syntactical tree 
matching model. Section 4 describes an improved model with 
semantic features incorporated. Section 5 presents our 
experimental results. Section 6 reviews some related works and 
Section 7 concludes our paper with directions for future works. 

2. BACKGROUND ON TREE KERNEL 
Traditional information retrieval tasks adopt the BoW or 

language model etc. to perform retrieval. However, these purely 
lexical based approaches are often inadequate to perform fine-
level textual analysis if the task involves the use of more varying 
syntactic structures or complex semantic meanings.  

In order to utilize more structural or syntactical information 
and capture higher order dependencies between grammar rules, 
Collins tried to consider all tree fragments that occur in a parsing 
tree [5]. He defined the tree fragment to be any sub-tree that 
includes more than one node, with the restriction that the entire 
rule productions must be included. Zhang & Lee [19] inherited it 
by proposing a slightly different definition, in which all terminal 
symbols are included into sub-trees, arguing that the tree kernel 
can back off to the word linear kernel.  

 
Figure 1. (a) The Syntactic Tree of the Question “How to lose 
weight?”. (b) Tree Fragments of the Sub-tree covering "lose 

weight" 

Figure 1 gives an illustration on how the tree decomposition 
works according to Zhang & Lee’s definition. Figure 1(a) shows 
the entire syntactic parsing tree of the question “How to lose 
weight?”, and Figure 1(b) shows all the sub-trees under the node 
of VP covering the phrase “lose weight”. All the tree fragments 
produced contain the entire production rule, i.e., any sub-trees 
containing a part of the production rule such as “VP→VB” for 
“VP→VB·NP” are considered invalid. 

The tree kernel was designed based on the idea of counting the 
number of tree fragments that are common to both parsing trees, 
and it could be defined as:  
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where N1 and N2 are sets of nodes in two syntactic trees T1 and T2, 
and C(n1,n2) equals to the number of common fragments rooted in 
nodes n1 and n2. However, to enumerate all possible tree 
fragments is an intractable problem. The tree fragments are thus 
implicitly represented, and with dynamic programming, the value 
of C(n1,n2) can be efficiently computed as follows: 
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where nc(n) is the total number of children of node n and ch(n,j) 
is the j-th child of node n in the tree. n1=n2 denotes that the labels 
and production rules of node n1 and n2 are the same, and n1≠n2 
denotes the opposite. The parameter λ, a weighing factor, is used 
to resolve the kernel peaking problem. 

3. SYNTACTIC TREE MATCHING 
Although the tree kernel function has been successfully applied 

in some areas like question classification, there is no precedent 
work of using it to help find similar questions. The tree kernel 
metric measures the distance between two sentences, but there are 
two major limitations that prevent it from being employed directly 
in our question matching problem: (a) the tree kernel function 
merely relies on the intuition of counting the common number of 
sub-trees, whereas the number might not be a good indicator of 
the similarity between two questions; and (b) the two evaluated 
sub-trees have to be identical to allow further parent matching, for 
which semantic representations cannot fit in well. To remedy the 
second issue, the Shallow Semantic Tree Kernel (SSTK) was 
proposed in [14], where Predicate Argument Structures (PAS) are 
exploited to take dependencies into account. However, it was 
noted to be computational expensive for real world applications. 

In the remainder of this Section, we introduce a new retrieval 
model, named Syntactic Tree Matching (STM), by reformulating 
the original tree kernel definition. We present a new weighting 
scheme for tree fragments to make the final distance metrics not 
only faithful to the similarity measure but robust enough against 
some grammatical errors. This gives rise in Section 4 to a fuzzy 
matching scheme, which incorporates semantic features and 
elegantly tackles the second limitation.  

3.1 Weighting Scheme of Tree Fragments 
We directly employ the definition of the tree fragment from 

[19], where terminal nodes were included as a part of tree 
fragments. Before introducing the weighting scheme of the tree 
fragment, we first give definition to the node weighing factor: 

Preliminary 1: The weighting factor δi denotes the importance 
of node i in the parsing tree. Its value differs for different types of 
nodes: 
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• δi=1.2, where node i is either the POS tag VB or NN1 
• δi=1.1, where node i is either VP or NP 
• δi=1 for all other types of nodes 

We believe that different parts of the sentence have different 
importance, and the nouns and verbs are considered to be more 
important than other types of terms such as article, adjective or 
adverb. We also boost up the nodes of verb and noun phrases, to 
show their higher priority over other ordinary ones. 

With node weighing factor, we define the weighing coefficient 
(θ) of the tree fragment as follows: 

Preliminary 2: The weighting coefficient θk for tree fragment k 
conveys the importance of the tree fragment, whose value is the 
production of all weighing factors of node i that belongs to the 
tree fragment k, i.e., ∏∈

=
kfragmenti ik  
δθ                   (3) 

Intuitively, if a tree fragment contains lots of important nodes, 
its importance would be higher, and vice versa. The weighing 
coefficient can be reformulated into a recursive function 

∏ ∈
=

kfragmentj jkk  
θδθ , in which δk represents the weighing 

factor of the tree fragment root, and θj is the weighting coefficient 
brought from its sub-trees that directly connect to the root. 

We further define the size of the sub-tree (Si) and its weighing 
factor (λ), together with the depth of the sub-tree (Di) and its 
weighing factor (μ) as follows: 

Preliminary 3: The size of the tree fragment Si is defined by the 
number of nodes that it contains. The size of weighing factor λ is a 
tuning parameter indicating the importance of the size factor. 

Preliminary 4: The depth of the tree fragment Di is defined as 
the level of the tree fragment root in the entire syntactic parsing 
tree, with Droot=1. The depth weighing factor μ is a tuning 
parameter indicating the importance of the depth factor. 

The introduction of the size and depth factors of the tree 
fragment is to account for the fact that sub-trees with different 
sizes and at different levels have different impact on the whole 
parsing tree. This impact could be interpreted in two aspects. 
First, a larger tree fragment contains more variety of senses. If a 
large portion of two parsing trees are of the same, their similarity 
would be higher. Second, the tree fragments at the bottom levels 
carry more significant semantic information than those at the 
upper level. This is because nodes at the upper layer usually 
determine the surface structure of a whole sentence, whereas 
nodes at the bottom layer contain information like word sense, 
inner phrase structures, and chunk relations etc., which are a lot 
more crucial.  

The two tuning parameters λ and μ denote the preference 
between size and depth. Higher λ but lower μ means the size 
factor is more favorable than the depth factor, and vice versa. 

Given the parameters listed above, we introduce the weighting 
scheme for the tree fragments: 

Definition 1: The weight of a tree fragment wi is defined as 
θiλSiμDi, where θi is its weighting coefficient, Si is the size of the 
                                                                 
1 Due to stemming, we normalize all POS tags in the way that all 

plural noun POS tags are replaced by their single forms (e.g. 
NNS→NN) and all verb POS tags are replaced by their base 
forms (e.g. VBN→VB). 

sub-tree, λ is the size weighing factor, Di is the depth of the sub-
tree and  μ is the depth weighting factor. 

Different from the tree weighting in [5], which penalized larger 
trees, our weighting scheme favors larger trees. Unlike the 
weighting proposed in [19], which simply considers the size and 
depth of the tree, our weighting scheme additionally takes into 
account the importance of the words or phrases that a tree 
fragment covers. 

3.2 Measuring Node Matching Score 
After introducing the weighting scheme of tree fragments, we 

need to match tree fragments and compute weights of the matched 
trees: 

Preliminary 5: If two tree fragments TF1 and TF2 are identical, 
the weight of their resulting matching tree fragment TF is defined 
to be )()()( 21 TFwTFwTFw = .        (4) 

Recall that the weighting scheme of each tree fragment is 
determined by the formula θiλSiμDi, we may thus write the weight 
of the matched tree fragment as θ1θ2λS1+S2μD1+D2. 

In view of the above, we introduce a new scoring function, 
named node matching score, between two nodes r1 and r2: 

Preliminary 6: The node matching score between two nodes r1 
and r2 is the multiplication of weights of all matched tree 
fragments under the roots of r1 and r2. We use the following 
formula to describe it: 
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where r1 ≠ r2 denotes the fact that either labels or production rules 
for r1 and r2 are different, TFi(r1,r2) is the i-th matching tree 
fragment under r1 and r2, and η is the total number of tree 
fragments. 

We can reformulate the node matching score into following 
recursive version: 
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where nc(n) is the total number of children of the node n, ch(n,j) 
is the j-th child of node n in the tree, and η is the total number of 
matched tree fragments (See Appendix A for proof of correctness 
of the recursive function 6). 

According to the comprehensive definition of weighting 
scheme for the tree fragments, two nodes with many tree 
fragments of higher weights are likely to produce higher node 
matching scores. This indicates that these node pairs may have 
covered very similar phrases. Therefore, we argue that the node 
matching score provides a good measure of the similarity between 
the sub-trees rooted under nodes r1 and r2.  

3.3 Similarity Metrics 
In order to find the similarity score between two syntactic 

parsing trees T1 and T2, we traverse them in post-order, and 
calculate the pair-wise node matching scores between the nodes 
in these two trees. This results in a |T1|x|T2| 

matrix of M(r1,r2). We 
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use the summation of all scores in the matrix to represent the 
similarity score between two parsing trees: 

Definition 2: The similarity score or the distance metrics 
between two parsing trees is defined as 

  ∑ ∑∈ ∈
=

Tr Tr
rrMTTsim

1 2
),(),( 2121        (7) 

However, as the score is very sensitive to the size of trees T1 
and T2, we normalize it into the following:  

),(),(/),(),(2 22112121 TTsimTTsimTTsimTTsim =        (8) 

By making use of the recursive definition of the node matching 
score, one can calculate the final similarity score between two 
parsing trees in polynomial time with dynamic programming. 

3.4 Robustness 
In real world, however, grammatical and spelling errors made 

by people are not uncommon, and these errors may have various 
influences on the resulting parsing tree. We observe that some of 
them such as article errors, tense errors, plurality errors etc. only 
affect a small portion of the parsing tree at the deep level. For 
instance, the parsing trees for the sentences “I want doctor.” and 
“I want a doctor.” differ only by one leaf node and one POS tag 
(DT). We name these errors with only minor effects on the 
parsing result at the deep level as interior errors. Our matching 
model is obviously safe for them. 

However, there are some other grammatical errors which may 
greatly alter the appearance of the parsing tree. We name them as 
exterior errors, due to the fact that they may change the shallow 
structure of the parsing tree. The preposition error, for example, is 
a kind of exterior errors. Figure 2 shows two parsing trees for two 
questions, in which 2(b) uses the preposition “to” instead of “for”. 

 
Figure 2. Example on Robustness by Weighting Scheme 

As has been spotted by the dashed rectangles in Figure 2, the 
surface structures of these two parsing trees appear to be very 
different due to the preposition misuse. However, it is also 
observed that, the structures of the chunks or phrases at the lower 
level are well preserved (as highlighted by the solid rectangles). 
This is common, as our large numbers of investigations show that 
the tree fragments at the lower level can be immune from exterior 
errors. In respect that tree fragments at the lower level are not 
affected by the exterior errors and the weight of the tree fragments 

at the lower level is relatively higher than those at the upper level, 
the matching score between two parsing trees will not be 
degraded much in case of errors. We therefore claim that our 
weighting scheme is robust to exterior grammatical errors. 

4. SEMANTIC-SMOOTHED MATCHING 
In the STM model above, if two parsing trees employ different 

leaf wordings or slightly transformed production rules, the tree 
fragments can hardly be matched. This becomes an evident 
drawback from the semantic point of view, and it motivates a 
modification to our original matching model. In order to capture 
more semantic meanings, we: (a) allow partial contribution from 
terminal words if they are shown to be closely related; (b) relax 
the production rules to allow for partial matching; and (c) use 
answer matching  to bring in more semantically related questions. 

Firstly, we use WordNet, a freely available semantic network, 
to help measure the semantic similarity between two words. We 
employ Leacock’s measure [12], which uses the distance of the 
shortest path between two synsets to represent the semantic 
distance between two words, where the value is scaled by the 
overall depth of the taxonomy. In order to fit our matching model, 
in which the semantic score needs to be scaled between 0 and 1, 
we modify the Leacock’s measure into the following: 

Sem(w1,w2) = 1- distance(w1,w2)/2D        (9) 

where distance(w1,w2) is the length of the shortest path between 
two synsets of w1 and w2, and D is the maximum depth of the 
taxonomy. In particular, we define the path length between two 
identical words to be 0, i.e., distance(w,w)=0, or Sem(w,w)=1.  

Secondly, we allow partial matching of production rules in the 
way that two nodes with sufficiently similar production rules can 
be matched. This sufficiency includes omission or reversion of 
the modifiers, preposition phrases, conjunctions and so on. For 
instance, “NP→DT·JJ·NN” is considered to be similar to 
“NP→DT·NN”, and can be matched. The complete matching rules 
are not listed here due to space. 

With the two relaxations defined above, we perform fuzzy 
matching between tree fragments. This could be achieved by 
modifying the matching scheme as proposed in Preliminary 5: 

Preliminary 5’: The weight of the matching tree fragment TF 
resulted from matching TF1 and TF2 is defined as: 
• 2121

2121 ),()( DDSSwwSemTFw ++= μλδδ , 
  if TF1 and TF2 are two terminal nodes w1 and w2; 

• 2121
21)( DDSSTFw ++= μλθθ , 

if the root of TF1 and TF2 are identical and their 
production rules can be partially matched. 

The new definition is in line with Preliminary 5, except for the 
handling of terminal words and production rules. Two different 
terminal words can now be matched into a fuzzy word, and nodes 
with similar production rules can be aligned as well. Sem(w1,w2) 
is the semantic similarity score as calculated from WordNet. 

In order to avoid generating too many improbable tree 
fragments and make the matching more accurate, we impose two 
restrictions in our design: 

1. A confidence level of 0.75 is set on semantic distances 
between two words. In other words, only two words with a 
sufficiently high semantic score could be matched.  

b)  Parsing Tree for the sentence 
(with grammatical error): 
“Good workout plan to losing a 
little bit of weight?” 

a)  Parsing Tree for the sentence 
(with no grammatical error): 
“Good workout plan for losing a 
little bit of weight?” 
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2. Only terminal words with the same POS tag 2  could be 
matched. This prevents the matching of the word “book” in 
phrases like “reading book” and “book air tickets”, which is 
obviously unreasonable. 

It is noticed that question matching, even at the semantic level 
as described above, do not suffice to capture all similar pairs in 
some circumstances. For example, two similar questions “Proper 
way to lose weight?” and “I’m too fat, help?” hardly share any 
common points. To further overcome this kind of semantic gap, 
we introduce additional matching of questions via their answers, 
named answer matching. This matching is based on the intuition 
that if the answers to two questions are similar, the questions are 
considered to be semantically similar even if they are lexically 
very different. Therefore, given a query, the answers to top 
ranked matching questions could be utilized to fetch more similar 
questions via answer matching, where the newly retrieved 
questions could have great variations in both lexicon and syntax. 

5. EXPERIMENTS 
In this section, we present empirical evaluation results to assess 

the effectiveness of our STM technique for the similar question 
matching problem. In particular, we conduct experiments on the 
Yahoo! Answers QA archive and show that our STM is more 
effective than the original Tree Kernel function. We further show 
that the semantic-smoothed version gives additional boosting on 
matching precision. 

5.1 Dataset 
We issue getByCategory query provided in Yahoo! Answers 

API3 calls to download QA threads from the Yahoo! site. We 
collected a total of around 0.5 million QA pairs from the 
Healthcare domain, over a 10-month period from 15/02/08 to 
20/12/08. It covers areas including diet, fitness, dental, diseases, 
men’s and women’s health, etc. We only focus on all resolved QA 
pairs, meaning questions that already have been given their best 
answers. Based on the hypothesis that the best answer represents 
the most accurate information responding to the question, we can 
use it to directly answer a query should we find a similar question 
to the query.  

As there can be multiple questions asked in a single question 
thread, we segment each question thread into pieces of single-
sentence questions by using question mark and 5W1H words 
heuristic. The reason is two-fold: (a) Different questions may ask 
about different aspects; to separate them is helpful to better match 
questions with user’s query. (b) The parser handles short 
sentences better than longer ones, for which ambiguous syntactic 
structures are likely to occur.  

In order to evaluate our retrieval system, we divide our dataset 
into two parts. The first part (0.3M), covering the initial period of 
3.5 months dated from 15/02/08 to 05/06/08, is used as the 
ground-truth setup; the rest is used as test-bed for evaluation. For 
ground-truth, we asked four annotators to tag similar questions 
from the first part of the dataset. As the number of question 

                                                                 
2 Currently we focus on NN and VB matching, as WordNet only 

provides the hypernymy hierarchical relationship for nouns and 
verbs. For adjectives and adverbs, we may look into their 
synonyms, but it is difficult to give a quantitative similarity 
score between them. 

3 http://developer.yahoo.com/answers/ 

threads is huge, it becomes infeasible for annotators to go through 
all to check their similarities. To ease this, we employ the K-
means text clustering method to first group similar answers. The 
rationale behind this is based on the assumption that two 
questions are considered to be similar if their answers are similar. 
The answer groups thus help to find corresponding similar 
questions 4 . Among these clusters, we diversely choose 20 
representative groups for each sub-category, in order to ensure 
well coverage on topics in each domain. A series of simple BoW-
based retrievals are then performed on each group to get in more 
potentially similar questions. We believe the resulted question 
groups, which have potentially covered both lexical and semantic 
similarity, are the good starting point for the tagging task.  

The tagging results, together with the dataset statistics, are 
shown in Table 1. There is a total of 301,923 question threads 
from 6 sub-categories and on average 1.96 questions were asked 
per question thread (referred to as “Q Ratio”). Among all, 
annotators have tagged 120 (20x6) groups of similar questions, 
with a total of 10255 questions serving as the ground-truth for 
later evaluation. 

Table 1. Statistics of Dataset Collected for the Ground-Truth 

Category  # of Question 
Thread

Est # of 
Questions Q Ratio # of Ground 

Truth
Dental  28879 59349  2.06 875
Diet&Fitness  105079 202331  1.93 5905
Diseases  31017 59259  1.91 454
General 
Healthcare  23004 45067  1.95 1008

Men’s Health  42017 77342  1.84 793
Women’s 
Health  71930 149880  2.08 1220

Total  301923 593228  (avg) 1.96 10255

Each annotator was also asked to indicate the topic of each 
group of similar questions. We use these topics as a guidance to 
choose the testing questions for our evaluation. A total of 120 
questions, which are considered to be close enough to its groups 
in the ground-truth, are carefully chosen from the testing set for 
testing. These questions are of various lengths and in various 
forms. Table 2 shows some example queries from this testing set. 

Table 2. Example Queries from Testing Set 
Query  Category Topic 
What is the best way to use crest white strips 
premium plus? 

Dental Whitening 
Strips 

Tips on losing weight? Diet & Fitness Weight loss 
Tingling in legs, sometimes pain, what is it? Diseases Pain in legs 
Why is it that at the same time afternoon or 
night I always go tired? 

General 
Healthcare 

Feeling 
tired 

Any advice on a fitness schedule including 
weight lifting and diet plan? 

Men’s Health Advice on 
fitness 

5.2 Retrieval Model 
We first index all the collected questions and answers from 

Yahoo! Answers. By given a user query, an initial BoW retrieval 
is carried out on question index, where different retrieval 
techniques such as term weighing and relevance feedback are 
applied. Top 100 of the initial retrieval results (R_STM) are then 
selected, each of which is matched against the user query via the 
STM module. A re-ranked matching result is then produced. We 
                                                                 
4 In order to generate clusters with higher inner similarity, we set 

a very high threshold to filter out irrelevant ones. 
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further perform the answer matching to bring in more similar 
questions (R_AM). Two sets of questions are fused with linear 
interpolation ( AMRSTMR _)1(_ ×−+× αα ) to make up the 
final similar question searching result. Figure 3 presents an 
overview of our retrieval system. 

 
Figure 3. Overview of Question Matching System 

5.3 Performance Evaluation 
To evaluate the performance of our retrieval model, we use five 

different system combinations for comparison: 
1) BoW (baseline1): A Bag-of-Word approach that simply 

matches stemmed words between the query and questions. 
2) BoW+TK (baseline2): BoW integrated with the original tree 

kernel function (sub-tree counting) for question matching. 
3) BoW+STM: BoW approach combined with the Syntactic 

Tree Matching model as introduced in this paper. 
4) BoW+STM+SEM: Matching model 3) with semantic 

features incorporated. 
5) BoW+STM+SEM+AM: Matching model 4) with answer 

matcher module integrated. 
Table 3. MAP Performance on Different System 

Combinations and Precision at Top 1 Retrieval Results 
System 
Combination 

BoW BoW+TK BoW 
+STM 

BoW+STM
+SEM

BoW+STM
+SEM+AM

MAP (%) 79.08 81.61 85.67 86.41 88.56
% improvement of 
MAP over:  

BoW 
BoW+TK 

 
 

N.A. 
N.A. 

 
 

+3.20 
N.A. 

 
 

+8.33 
+4.97 

+9.26
+5.88

+11.99
+8.51

Precision at Top 1 81.67 82.50 81.67 88.33 89.17
We employ two performance metrics: mean average precision 

(MAP10
5 ) and precision at the top one retrieval result. The 

evaluation results are illustrated in Table 3. From the Table, we 
draw the following observations: 

1) BoW model itself achieves very high precision (79.08), and 
BoW+TK slightly improves BoW by 3.20%. We conjecture 
that the high precision obtained by BoW is because of the 
huge size of the Yahoo! Answers archive, where a large 
number of lexically similar question threads have already 
been stored. Users are therefore quite likely to get similar 
questions even using some key words. The combination of 

                                                                 
5 MAP10: The MAP calculated on the returned top 10 questions. 

the TK and BoW gives very limited boosting, leading us to 
be more convinced that TK does not capture the similarity 
between questions well. 

2) Applying syntactic tree matching over simple lexical 
matching methods boosts system performance a lot. When 
applied on top of BoW, both STM and SEM augment the 
performance in all metrics statistically significantly as 
judged by using paired t-test (p-value<0.01). MAP on 
BoW+STM improves by 8.33% and 4.97% respectively over 
the results obtained by BoW and BoW+TK; and the MAP is 
improved by 9.26% and 5.88% respectively when the 
semantic features are incorporated. Semantic-smoothed 
syntactic tree matching also yields better precision in the top 
one retrieval task, where it retrieves questions correctly at 
the first position on 106 questions out of a total of 120. We 
believe that the improvement stems from the ability of the 
syntactic match weighting scheme to correctly present and 
measure the similarity distance between questions. As such, 
many false positive questions that would be favored by 
normal BoW approaches are subsequently eliminated, as 
they often do not contain similar syntactic structure with the 
user query. 

3) Semantic-smoothed matching performs better than pure 
syntactic matching marginally. It gains an improvement of 
0.74% in MAP and 6.66% in precision at top one question 
result when using STM+SEM over STM itself. We 
conjecture that the marginal improvement of semantic 
features in terms of MAP is probably because there are too 
many lexically similar questions existing in the Yahoo! 
Answers archive. In other words, the performance of the 
baseline system is so high that little room is left for further 
contribution by the use of semantic features. We believe that 
the semantic-smoothed matching may give significant 
improvement over others in the environment where there is a 
large number of semantically similar but lexically different 
terms or phrases, as it may accommodate the variation in 
natural language texts, for which pure syntactic matching 
may fail to capture. 

4) Answer matching (AM) brings in significant improvements 
over others in all metrics. This is in line with our 
expectation. By the hypothesis that similar questions give 
similar answers, the AM module is capable of bringing in 
more semantically similar questions which bear totally 
different words or structures. It is analogous to relevance 
feedback module as in traditional IR systems, where new 
query can be formed according to the initial retrieval, and 
new results can be obtained. 

5.4 Performance Variations to Grammatical 
Errors 

To support our statement in Section 3.4 that the STM is robust 
to grammatical errors, we conduct experiments in this Section to 
examine the effect of various grammatical errors on MAP. 

For meaningful comparison, we mimic a noisy environment by 
manually injecting various common errors that the human users 
are likely to make into all testing questions. 50% of the testing 
questions are randomly inserted with interior errors like article, 
tense, plurality errors, while the other 50% are modified to bear 
random exterior errors, such as preposition errors, misplaced 
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modifier etc. Along with grammatical errors in our simulation, we 
also consider modifying some terms or phrases into non-standard 
short forms that have been frequently used on the Web, such as 
“4” for “for”, “your” for “you are”, and “Im” for “I am” etc. 

We re-run the five systems on the modified testing dataset and 
plot the results of performance variations in Figure 4. The top of 
bars indicates the original performance without grammatical 
errors and the bottom shows the resulting performance. 

We can see from Figure 4(a) that the systems with STM 
integrated still outperform the BoW and TK systems by a large 
margin in terms of MAP even in noisy environment. The top one 
precision of STM-embedded systems does not degrade as much in 
general as compared to TK as shown in Figure 4(b). In fact, the 
BoW+STM system even outperforms the BoW and BoW+TK 
systems in noisy environment. This is evidence that the syntactic 
tree matching model is sufficiently robust to various forms of 
grammatical errors. We expect that in real world situation, a 
STM-based system would give very satisfying matching results. 

Interestingly, the MAP for BoW-only system does not drop 
much as compared to the others. We believe this is owing to the 
fact that purely lexical based approaches do not take word 
relations into consideration, and thus it is less influenced by the 
grammatical errors. 
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Figure 4. Illustration of Variations on a) MAP b) Top one 
Precision to Grammatical Errors. 

5.5 Error Analysis 
Although we have shown that STM, together with SEM and 

AM improves question matching, there is still plenty of room for 
improvement. To further characterize the types of questions that 
have no impact or are adversely affected by STM, we perform 
micro-level error analysis on the testing question set. We find that 
STM fails to match the syntactic structures of questions mainly 
due to the following three reasons: 
1) Mismatch of question topics: In some cases, two questions 

asking about different topics but bearing very close sentence 
structures are incorrectly matched. For instance, the question 
“How do I increase my appetite in a short period?” is highly 
ranked by given the query “How can I increase my height in a 
few month?”. This becomes severe for short questions asking 
about different aspects, as simple sentence structures are 
likely to have exactly the same syntactic structure as the 
others. To overcome this problem, we need to incorporate 
question analysis in our system such that the question target 
could be clearly identified and compared when performing the 
matching. 

2) Flexibility of question representations: In real world, many 
semantically similar questions have vast differences in their 
expressions. For example, questions like “Best ways and 

products to get fresh breath?”, “How do you keep your breath 
always smelling fresh and clean?” and “Has anyone tried bad 
breath cures?” etc. are tagged to be similar in the ground-truth 
with the topic of “bad breath remedies”. However, the query 
“Please tell what I can do to make my mouth smell go away?” 
in the testing dataset matches none of these. Both lexical 
matching and syntactical matching are likely to fail in this 
case as we are lack of not only ways of correlating different 
human expressions, but also information on the relation 
between the term “breath” and the phrase “mouth smell”. This 
is a difficult challenge, and we believe that certain domain 
ontology could be of help, where at least some semantically 
related terms can be linked together. 

3) Extremely long queries: There are also some cases that the 
query question is too long for STM to give correct similarity 
measure. We conjecture that the syntactic structure of a 
sentence becomes more complicated when the sentence gets 
longer, and this leads to higher flexibility of interchanging 
different sentence components, resulting in a large number of 
nodes at the upper layers to be mismatched and the failure of 
the STM measure. There are some works [6,8] that attempt to 
find dependency relations between terms to counterbalance 
the word ordering problem. However, their method is also 
limited to short queries, as the dependency parser tends to 
perform worse for longer sentences. 

6. RELATED WORK 
The idea of finding similar questions in cQA is to some extent 

related to passage retrieval in traditional QA, with the exception 
that question-to-question matching is much stricter than question-
to-passage matching. Many techniques have been developed 
towards passage retrieval, from the simple BoW-based model, 
language model [16], to some state-of-the-art techniques like 
dependency relations [6] etc. Most of these techniques can be 
employed to match questions, but their precision is not high 
because of the high recall requirement. Training is needed in 
some works as well. 

Likewise, the FAQ retrieval task is also closely related to the 
question matching problem. Early work such as the FAQ finder 
[4] combined statistical similarity measure with semantic measure 
using WordNet to rank FAQs. Some recent works [15,17] used 
more advanced translation-based approaches to retrieve FAQ 
data. [11] and [10] mined the FAQ data from the Web and 
implemented their own retrieval systems. 

However, the community-based QA archive is different from 
FAQ collections in the sense that the scope of manually created 
FAQs is quite limited. Recent research begins to focus on large 
scale QA services from the Web. Some works have been 
conducted on the characteristic analysis on this type of services 
such as [2], but limited effort has been devoted to the question 
matching direction. Works proposed in [9] and [18] applied the 
translation-based model to find semantically similar questions in 
cQA. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a novel syntactic tree 

matching method for the similar questions finding problem. We 
assessed the system based on the ground-truth built from Yahoo! 
Answers, and the evaluation results showed that our system 
produced competitive improvements in matching performance as 

193



compared to the traditional BoW or plain tree kernel function: a 
5~12% improvement in MAP, and up to 8% in top one precision. 
We introduced a comprehensive tree weighting scheme to not 
only give a faithful measure on question similarity, but also 
handle grammatical errors gracefully. We further improved the 
system performance by incorporating semantic features and the 
answer matching module. Unlike other systems, our model does 
not rely on training, making it easily portable to other similar 
retrieval systems.  

Our empirical evaluation results and qualitative error analysis 
revealed that the syntactic tree matching model could be 
improved by integrating question analysis module and domain 
ontology. Moreover, most off-the-shelf parsers, including the one 
we used in our experiments, are not well-trained to parse 
questions. We believe that a more targeted parser which is trained 
on question sets may give better accuracy. 

The retrieval system in this work only focuses on the single-
sentence question matching problem, and uses the best answers as 
it is. In future research, multiple-sentence questions with different 
purposes are to be analyzed, and a tailored answer summarization 
technique is to be developed as well to produce high quality 
answers from different sources. 
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Appendix: Proof of Recursive Function M(r1,r2) 
By the definition of the node matching score, we have: 
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As the weighting coefficient θ has the recursive definition of 
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tree fragment is just one level above its children’s, which gives Dr 
= Dk  - 1, we may finally get the following: 
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