
A Syntactic Tree Matching Approach to Finding Similar
Questions in Community-based QA Services
Kai Wang

Department of Computer Science
School of Computing

National University of Singapore

kwang@comp.nus.edu.sg

Zhaoyan Ming
Department of Computer Science

School of Computing
National University of Singapore

mingzy@comp.nus.edu.sg

Tat-Seng Chua
Department of Computer Science

School of Computing
National University of Singapore

chuats@comp.nus.edu.sg

ABSTRACT
While traditional question answering (QA) systems tailored to the
TREC QA task work relatively well for simple questions, they do
not suffice to answer real world questions. The community-based
QA systems offer this service well, as they contain large archives
of such questions where manually crafted answers are directly
available. However, finding similar questions in the QA archive is
not trivial. In this paper, we propose a new retrieval framework
based on syntactic tree structure to tackle the similar question
matching problem. We build a ground-truth set from Yahoo!
Answers, and experimental results show that our method
outperforms traditional bag-of-word or tree kernel based methods
by 8.3% in mean average precision. It further achieves up to 50%
improvement by incorporating semantic features as well as
matching of potential answers. Our model does not rely on
training, and it is demonstrated to be robust against grammatical
errors as well.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval – Retrieval Models; I.2.7 [Artificial Intelligence]:
Natural Language Processing – Text Analysis

General Terms
Algorithms, Measurement, Experimentation

Keywords
Question Answering, Syntactic Structure, Question Matching,
Yahoo! Answers

1. INTRODUCTION
Traditional TREC QA task has made significant progress since

it was first introduced in 1990s [1]. However, research on TREC
QA has largely targeted on short, factoid-based, questions, for
which concise answers are expected. For example, TREC QA
simply expects the year “1960” for the simple question “In what

year did Sir Edmund Hillary search for Yeti?”. It was earlier
claimed that while QA systems tailored to the TREC QA task
worked relatively well for factoid-type questions, they might not
be necessarily effective in question answering applications
outside TREC [7]. In real world, more complex questions are
usually asked, and users are more willing to obtain a longer and
more comprehensive answer which contains sufficient context
information. Traditional QA systems are now facing problems of
being deployed into real world.

With the blooming of Web 2.0, social collaborative
applications such as Wikipedia, YouTube, Facebook etc. begin to
flourish, and there have been an increasing number of Web
information services that bring together a network of self-declared
“experts” to answer questions posted by other people. This is
referred to as the community-based question answering services
(cQA). In these communities, anyone can ask and answer
questions on any topic, and people seeking information are
connected to those who know the answer. As answers are usually
explicitly provided by human and are of high quality, they can be
helpful in answering real world questions.

Yahoo! Answers, launched on December 13, 2005, is now
becoming the largest knowledge-sharing online community
among several popular cQA services. Over times, a tremendous
number of previous QA pairs have been stored in its database, and
in most circumstances, users may directly get the answers from
Yahoo! Answers by searching from this QA archive, rather than
looking through a list of potentially relevant documents from the
Web. As such, instead of extracting answers from a certain
document corpus, the retrieval task in cQA becomes the task of
finding relevant similar questions with new queries.

The similar question matching task is, however, not trivial. One
of the major reasons is that instead of inputting just keywords or
so, users form questions using natural language, where questions
are encoded with various lexical, syntactic and semantic features.
For example, “how can I lose weight in a few month?” and “are
there any ways of losing pound in a short period?” are two similar
questions asking for methods of losing weight, but they neither
share many common words nor follow identical syntactic
structure. This gap makes the similar question matching task
difficult. Similarity measure techniques based purely on the bag-
of-word (BoW) approach may perform poorly and become
ineffective in these circumstances.

Syntactic or semantic features hence become vital for such
task. The tree kernel function [5] is one of the most effective ways
to represent the syntactic structure of a sentence. In general, it
divides the parsing tree into several sub-trees and computes the
inner product between two vectors of sub-trees. Although there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07...$5.00.

187

have been some successful applications using it, like Question
Classification [3,13,19], the tree kernel-like function has not been
directly applied to finding similar questions in the QA archive.
Moreover, its matching scheme is too strict to be directly
employed to our question matching problem. In this paper, we re-
formulate the tree kernel framework, and introduce a new
retrieval model to find similar questions. We extensively study
the structural representations of questions to encode not only
lexical but also syntactic and semantic features into the matching
model. Our model does not rely on training, and it is shown to be
robust against grammatical errors as well.

The rest of the paper is organized as follows: Section 2 gives a
background introduction on the well-known tree kernel concept.
Section 3 presents the architecture of our syntactical tree
matching model. Section 4 describes an improved model with
semantic features incorporated. Section 5 presents our
experimental results. Section 6 reviews some related works and
Section 7 concludes our paper with directions for future works.

2. BACKGROUND ON TREE KERNEL
Traditional information retrieval tasks adopt the BoW or

language model etc. to perform retrieval. However, these purely
lexical based approaches are often inadequate to perform fine-
level textual analysis if the task involves the use of more varying
syntactic structures or complex semantic meanings.

In order to utilize more structural or syntactical information
and capture higher order dependencies between grammar rules,
Collins tried to consider all tree fragments that occur in a parsing
tree [5]. He defined the tree fragment to be any sub-tree that
includes more than one node, with the restriction that the entire
rule productions must be included. Zhang & Lee [19] inherited it
by proposing a slightly different definition, in which all terminal
symbols are included into sub-trees, arguing that the tree kernel
can back off to the word linear kernel.

Figure 1. (a) The Syntactic Tree of the Question “How to lose
weight?”. (b) Tree Fragments of the Sub-tree covering "lose

weight"

Figure 1 gives an illustration on how the tree decomposition
works according to Zhang & Lee’s definition. Figure 1(a) shows
the entire syntactic parsing tree of the question “How to lose
weight?”, and Figure 1(b) shows all the sub-trees under the node
of VP covering the phrase “lose weight”. All the tree fragments
produced contain the entire production rule, i.e., any sub-trees
containing a part of the production rule such as “VP→VB” for
“VP→VB·NP” are considered invalid.

The tree kernel was designed based on the idea of counting the
number of tree fragments that are common to both parsing trees,
and it could be defined as:

),(),(
11 22

2121 ∑ ∑∈ ∈
=

Nn Nn
nnCTTk , (1)

where N1 and N2 are sets of nodes in two syntactic trees T1 and T2,
and C(n1,n2) equals to the number of common fragments rooted in
nodes n1 and n2. However, to enumerate all possible tree
fragments is an intractable problem. The tree fragments are thus
implicitly represented, and with dynamic programming, the value
of C(n1,n2) can be efficiently computed as follows:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+

=
=
≠

=

∏
=

otherwise ,))],(),,((1[

nodes terminal-pre are they and if ,
nodes terminalare they and if ,1

 if ,0

),(
)(

1
21

21

21

21

21
1nnc

j

jnchjnchC

nn
nn
nn

nnC

λ

λ (2)

where nc(n) is the total number of children of node n and ch(n,j)
is the j-th child of node n in the tree. n1=n2 denotes that the labels
and production rules of node n1 and n2 are the same, and n1≠n2
denotes the opposite. The parameter λ, a weighing factor, is used
to resolve the kernel peaking problem.

3. SYNTACTIC TREE MATCHING
Although the tree kernel function has been successfully applied

in some areas like question classification, there is no precedent
work of using it to help find similar questions. The tree kernel
metric measures the distance between two sentences, but there are
two major limitations that prevent it from being employed directly
in our question matching problem: (a) the tree kernel function
merely relies on the intuition of counting the common number of
sub-trees, whereas the number might not be a good indicator of
the similarity between two questions; and (b) the two evaluated
sub-trees have to be identical to allow further parent matching, for
which semantic representations cannot fit in well. To remedy the
second issue, the Shallow Semantic Tree Kernel (SSTK) was
proposed in [14], where Predicate Argument Structures (PAS) are
exploited to take dependencies into account. However, it was
noted to be computational expensive for real world applications.

In the remainder of this Section, we introduce a new retrieval
model, named Syntactic Tree Matching (STM), by reformulating
the original tree kernel definition. We present a new weighting
scheme for tree fragments to make the final distance metrics not
only faithful to the similarity measure but robust enough against
some grammatical errors. This gives rise in Section 4 to a fuzzy
matching scheme, which incorporates semantic features and
elegantly tackles the second limitation.

3.1 Weighting Scheme of Tree Fragments
We directly employ the definition of the tree fragment from

[19], where terminal nodes were included as a part of tree
fragments. Before introducing the weighting scheme of the tree
fragment, we first give definition to the node weighing factor:

Preliminary 1: The weighting factor δi denotes the importance
of node i in the parsing tree. Its value differs for different types of
nodes:

NP

(b) VP
VB NP

NN
weight lose

VP
VB NP

NN
lose

VP
VB NP

lose

VP
VB NP

NN
weight

VP
VB NP

NN

VP
VB NP

VB
lose

NP

NN

NN

weight
NN

weight

NP

weight

lose

to

how

S WHADVP

WRB

how

VP

TO VP

to

VB

NN
weight lose

(a)
SBAR

188

• δi=1.2, where node i is either the POS tag VB or NN1
• δi=1.1, where node i is either VP or NP
• δi=1 for all other types of nodes

We believe that different parts of the sentence have different
importance, and the nouns and verbs are considered to be more
important than other types of terms such as article, adjective or
adverb. We also boost up the nodes of verb and noun phrases, to
show their higher priority over other ordinary ones.

With node weighing factor, we define the weighing coefficient
(θ) of the tree fragment as follows:

Preliminary 2: The weighting coefficient θk for tree fragment k
conveys the importance of the tree fragment, whose value is the
production of all weighing factors of node i that belongs to the
tree fragment k, i.e., ∏∈

=
kfragmenti ik
δθ (3)

Intuitively, if a tree fragment contains lots of important nodes,
its importance would be higher, and vice versa. The weighing
coefficient can be reformulated into a recursive function

∏ ∈
=

kfragmentj jkk
θδθ , in which δk represents the weighing

factor of the tree fragment root, and θj is the weighting coefficient
brought from its sub-trees that directly connect to the root.

We further define the size of the sub-tree (Si) and its weighing
factor (λ), together with the depth of the sub-tree (Di) and its
weighing factor (μ) as follows:

Preliminary 3: The size of the tree fragment Si is defined by the
number of nodes that it contains. The size of weighing factor λ is a
tuning parameter indicating the importance of the size factor.

Preliminary 4: The depth of the tree fragment Di is defined as
the level of the tree fragment root in the entire syntactic parsing
tree, with Droot=1. The depth weighing factor μ is a tuning
parameter indicating the importance of the depth factor.

The introduction of the size and depth factors of the tree
fragment is to account for the fact that sub-trees with different
sizes and at different levels have different impact on the whole
parsing tree. This impact could be interpreted in two aspects.
First, a larger tree fragment contains more variety of senses. If a
large portion of two parsing trees are of the same, their similarity
would be higher. Second, the tree fragments at the bottom levels
carry more significant semantic information than those at the
upper level. This is because nodes at the upper layer usually
determine the surface structure of a whole sentence, whereas
nodes at the bottom layer contain information like word sense,
inner phrase structures, and chunk relations etc., which are a lot
more crucial.

The two tuning parameters λ and μ denote the preference
between size and depth. Higher λ but lower μ means the size
factor is more favorable than the depth factor, and vice versa.

Given the parameters listed above, we introduce the weighting
scheme for the tree fragments:

Definition 1: The weight of a tree fragment wi is defined as
θiλSiμDi, where θi is its weighting coefficient, Si is the size of the

1 Due to stemming, we normalize all POS tags in the way that all

plural noun POS tags are replaced by their single forms (e.g.
NNS→NN) and all verb POS tags are replaced by their base
forms (e.g. VBN→VB).

sub-tree, λ is the size weighing factor, Di is the depth of the sub-
tree and μ is the depth weighting factor.

Different from the tree weighting in [5], which penalized larger
trees, our weighting scheme favors larger trees. Unlike the
weighting proposed in [19], which simply considers the size and
depth of the tree, our weighting scheme additionally takes into
account the importance of the words or phrases that a tree
fragment covers.

3.2 Measuring Node Matching Score
After introducing the weighting scheme of tree fragments, we

need to match tree fragments and compute weights of the matched
trees:

Preliminary 5: If two tree fragments TF1 and TF2 are identical,
the weight of their resulting matching tree fragment TF is defined
to be)()()(21 TFwTFwTFw = . (4)

Recall that the weighting scheme of each tree fragment is
determined by the formula θiλSiμDi, we may thus write the weight
of the matched tree fragment as θ1θ2λS1+S2μD1+D2.

In view of the above, we introduce a new scoring function,
named node matching score, between two nodes r1 and r2:

Preliminary 6: The node matching score between two nodes r1
and r2 is the multiplication of weights of all matched tree
fragments under the roots of r1 and r2. We use the following
formula to describe it:

⎪⎩

⎪
⎨
⎧ ≠

= ∏ =
otherwiserrTFw

rrif
rrM

i i
η

1 21

21
21)),((

 0
),((5)

where r1 ≠ r2 denotes the fact that either labels or production rules
for r1 and r2 are different, TFi(r1,r2) is the i-th matching tree
fragment under r1 and r2, and η is the total number of tree
fragments.

We can reformulate the node matching score into following
recursive version:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

×

=

∏ =

++−

++

)(

1 21

)]))(1(1(2[2
21

2121

21

1

21

2121

otherwise)),,(),,((

 terminalsare r ,r if ,

),(

rnc

j

DDrnc
rr

DDSS
rr

jnchjnchM

rrM rrηηηη μλδδ

μλδδ

 (6)

where nc(n) is the total number of children of the node n, ch(n,j)
is the j-th child of node n in the tree, and η is the total number of
matched tree fragments (See Appendix A for proof of correctness
of the recursive function 6).

According to the comprehensive definition of weighting
scheme for the tree fragments, two nodes with many tree
fragments of higher weights are likely to produce higher node
matching scores. This indicates that these node pairs may have
covered very similar phrases. Therefore, we argue that the node
matching score provides a good measure of the similarity between
the sub-trees rooted under nodes r1 and r2.

3.3 Similarity Metrics
In order to find the similarity score between two syntactic

parsing trees T1 and T2, we traverse them in post-order, and
calculate the pair-wise node matching scores between the nodes
in these two trees. This results in a |T1|x|T2|

matrix of M(r1,r2). We

189

use the summation of all scores in the matrix to represent the
similarity score between two parsing trees:

Definition 2: The similarity score or the distance metrics
between two parsing trees is defined as

 ∑ ∑∈ ∈
=

Tr Tr
rrMTTsim

1 2
),(),(2121 (7)

However, as the score is very sensitive to the size of trees T1
and T2, we normalize it into the following:

),(),(/),(),(2 22112121 TTsimTTsimTTsimTTsim = (8)

By making use of the recursive definition of the node matching
score, one can calculate the final similarity score between two
parsing trees in polynomial time with dynamic programming.

3.4 Robustness
In real world, however, grammatical and spelling errors made

by people are not uncommon, and these errors may have various
influences on the resulting parsing tree. We observe that some of
them such as article errors, tense errors, plurality errors etc. only
affect a small portion of the parsing tree at the deep level. For
instance, the parsing trees for the sentences “I want doctor.” and
“I want a doctor.” differ only by one leaf node and one POS tag
(DT). We name these errors with only minor effects on the
parsing result at the deep level as interior errors. Our matching
model is obviously safe for them.

However, there are some other grammatical errors which may
greatly alter the appearance of the parsing tree. We name them as
exterior errors, due to the fact that they may change the shallow
structure of the parsing tree. The preposition error, for example, is
a kind of exterior errors. Figure 2 shows two parsing trees for two
questions, in which 2(b) uses the preposition “to” instead of “for”.

Figure 2. Example on Robustness by Weighting Scheme

As has been spotted by the dashed rectangles in Figure 2, the
surface structures of these two parsing trees appear to be very
different due to the preposition misuse. However, it is also
observed that, the structures of the chunks or phrases at the lower
level are well preserved (as highlighted by the solid rectangles).
This is common, as our large numbers of investigations show that
the tree fragments at the lower level can be immune from exterior
errors. In respect that tree fragments at the lower level are not
affected by the exterior errors and the weight of the tree fragments

at the lower level is relatively higher than those at the upper level,
the matching score between two parsing trees will not be
degraded much in case of errors. We therefore claim that our
weighting scheme is robust to exterior grammatical errors.

4. SEMANTIC-SMOOTHED MATCHING
In the STM model above, if two parsing trees employ different

leaf wordings or slightly transformed production rules, the tree
fragments can hardly be matched. This becomes an evident
drawback from the semantic point of view, and it motivates a
modification to our original matching model. In order to capture
more semantic meanings, we: (a) allow partial contribution from
terminal words if they are shown to be closely related; (b) relax
the production rules to allow for partial matching; and (c) use
answer matching to bring in more semantically related questions.

Firstly, we use WordNet, a freely available semantic network,
to help measure the semantic similarity between two words. We
employ Leacock’s measure [12], which uses the distance of the
shortest path between two synsets to represent the semantic
distance between two words, where the value is scaled by the
overall depth of the taxonomy. In order to fit our matching model,
in which the semantic score needs to be scaled between 0 and 1,
we modify the Leacock’s measure into the following:

Sem(w1,w2) = 1- distance(w1,w2)/2D (9)

where distance(w1,w2) is the length of the shortest path between
two synsets of w1 and w2, and D is the maximum depth of the
taxonomy. In particular, we define the path length between two
identical words to be 0, i.e., distance(w,w)=0, or Sem(w,w)=1.

Secondly, we allow partial matching of production rules in the
way that two nodes with sufficiently similar production rules can
be matched. This sufficiency includes omission or reversion of
the modifiers, preposition phrases, conjunctions and so on. For
instance, “NP→DT·JJ·NN” is considered to be similar to
“NP→DT·NN”, and can be matched. The complete matching rules
are not listed here due to space.

With the two relaxations defined above, we perform fuzzy
matching between tree fragments. This could be achieved by
modifying the matching scheme as proposed in Preliminary 5:

Preliminary 5’: The weight of the matching tree fragment TF
resulted from matching TF1 and TF2 is defined as:
• 2121

2121),()(DDSSwwSemTFw ++= μλδδ ,
 if TF1 and TF2 are two terminal nodes w1 and w2;

• 2121
21)(DDSSTFw ++= μλθθ ,

if the root of TF1 and TF2 are identical and their
production rules can be partially matched.

The new definition is in line with Preliminary 5, except for the
handling of terminal words and production rules. Two different
terminal words can now be matched into a fuzzy word, and nodes
with similar production rules can be aligned as well. Sem(w1,w2)
is the semantic similarity score as calculated from WordNet.

In order to avoid generating too many improbable tree
fragments and make the matching more accurate, we impose two
restrictions in our design:

1. A confidence level of 0.75 is set on semantic distances
between two words. In other words, only two words with a
sufficiently high semantic score could be matched.

b) Parsing Tree for the sentence
(with grammatical error):
“Good workout plan to losing a
little bit of weight?”

a) Parsing Tree for the sentence
(with no grammatical error):
“Good workout plan for losing a
little bit of weight?”

190

2. Only terminal words with the same POS tag 2 could be
matched. This prevents the matching of the word “book” in
phrases like “reading book” and “book air tickets”, which is
obviously unreasonable.

It is noticed that question matching, even at the semantic level
as described above, do not suffice to capture all similar pairs in
some circumstances. For example, two similar questions “Proper
way to lose weight?” and “I’m too fat, help?” hardly share any
common points. To further overcome this kind of semantic gap,
we introduce additional matching of questions via their answers,
named answer matching. This matching is based on the intuition
that if the answers to two questions are similar, the questions are
considered to be semantically similar even if they are lexically
very different. Therefore, given a query, the answers to top
ranked matching questions could be utilized to fetch more similar
questions via answer matching, where the newly retrieved
questions could have great variations in both lexicon and syntax.

5. EXPERIMENTS
In this section, we present empirical evaluation results to assess

the effectiveness of our STM technique for the similar question
matching problem. In particular, we conduct experiments on the
Yahoo! Answers QA archive and show that our STM is more
effective than the original Tree Kernel function. We further show
that the semantic-smoothed version gives additional boosting on
matching precision.

5.1 Dataset
We issue getByCategory query provided in Yahoo! Answers

API3 calls to download QA threads from the Yahoo! site. We
collected a total of around 0.5 million QA pairs from the
Healthcare domain, over a 10-month period from 15/02/08 to
20/12/08. It covers areas including diet, fitness, dental, diseases,
men’s and women’s health, etc. We only focus on all resolved QA
pairs, meaning questions that already have been given their best
answers. Based on the hypothesis that the best answer represents
the most accurate information responding to the question, we can
use it to directly answer a query should we find a similar question
to the query.

As there can be multiple questions asked in a single question
thread, we segment each question thread into pieces of single-
sentence questions by using question mark and 5W1H words
heuristic. The reason is two-fold: (a) Different questions may ask
about different aspects; to separate them is helpful to better match
questions with user’s query. (b) The parser handles short
sentences better than longer ones, for which ambiguous syntactic
structures are likely to occur.

In order to evaluate our retrieval system, we divide our dataset
into two parts. The first part (0.3M), covering the initial period of
3.5 months dated from 15/02/08 to 05/06/08, is used as the
ground-truth setup; the rest is used as test-bed for evaluation. For
ground-truth, we asked four annotators to tag similar questions
from the first part of the dataset. As the number of question

2 Currently we focus on NN and VB matching, as WordNet only

provides the hypernymy hierarchical relationship for nouns and
verbs. For adjectives and adverbs, we may look into their
synonyms, but it is difficult to give a quantitative similarity
score between them.

3 http://developer.yahoo.com/answers/

threads is huge, it becomes infeasible for annotators to go through
all to check their similarities. To ease this, we employ the K-
means text clustering method to first group similar answers. The
rationale behind this is based on the assumption that two
questions are considered to be similar if their answers are similar.
The answer groups thus help to find corresponding similar
questions 4 . Among these clusters, we diversely choose 20
representative groups for each sub-category, in order to ensure
well coverage on topics in each domain. A series of simple BoW-
based retrievals are then performed on each group to get in more
potentially similar questions. We believe the resulted question
groups, which have potentially covered both lexical and semantic
similarity, are the good starting point for the tagging task.

The tagging results, together with the dataset statistics, are
shown in Table 1. There is a total of 301,923 question threads
from 6 sub-categories and on average 1.96 questions were asked
per question thread (referred to as “Q Ratio”). Among all,
annotators have tagged 120 (20x6) groups of similar questions,
with a total of 10255 questions serving as the ground-truth for
later evaluation.

Table 1. Statistics of Dataset Collected for the Ground-Truth

Category # of Question
Thread

Est # of
Questions Q Ratio # of Ground

Truth
Dental 28879 59349 2.06 875
Diet&Fitness 105079 202331 1.93 5905
Diseases 31017 59259 1.91 454
General
Healthcare 23004 45067 1.95 1008

Men’s Health 42017 77342 1.84 793
Women’s
Health 71930 149880 2.08 1220

Total 301923 593228 (avg) 1.96 10255

Each annotator was also asked to indicate the topic of each
group of similar questions. We use these topics as a guidance to
choose the testing questions for our evaluation. A total of 120
questions, which are considered to be close enough to its groups
in the ground-truth, are carefully chosen from the testing set for
testing. These questions are of various lengths and in various
forms. Table 2 shows some example queries from this testing set.

Table 2. Example Queries from Testing Set
Query Category Topic
What is the best way to use crest white strips
premium plus?

Dental Whitening
Strips

Tips on losing weight? Diet & Fitness Weight loss
Tingling in legs, sometimes pain, what is it? Diseases Pain in legs
Why is it that at the same time afternoon or
night I always go tired?

General
Healthcare

Feeling
tired

Any advice on a fitness schedule including
weight lifting and diet plan?

Men’s Health Advice on
fitness

5.2 Retrieval Model
We first index all the collected questions and answers from

Yahoo! Answers. By given a user query, an initial BoW retrieval
is carried out on question index, where different retrieval
techniques such as term weighing and relevance feedback are
applied. Top 100 of the initial retrieval results (R_STM) are then
selected, each of which is matched against the user query via the
STM module. A re-ranked matching result is then produced. We

4 In order to generate clusters with higher inner similarity, we set

a very high threshold to filter out irrelevant ones.

191

further perform the answer matching to bring in more similar
questions (R_AM). Two sets of questions are fused with linear
interpolation (AMRSTMR _)1(_ ×−+× αα) to make up the
final similar question searching result. Figure 3 presents an
overview of our retrieval system.

Figure 3. Overview of Question Matching System

5.3 Performance Evaluation
To evaluate the performance of our retrieval model, we use five

different system combinations for comparison:
1) BoW (baseline1): A Bag-of-Word approach that simply

matches stemmed words between the query and questions.
2) BoW+TK (baseline2): BoW integrated with the original tree

kernel function (sub-tree counting) for question matching.
3) BoW+STM: BoW approach combined with the Syntactic

Tree Matching model as introduced in this paper.
4) BoW+STM+SEM: Matching model 3) with semantic

features incorporated.
5) BoW+STM+SEM+AM: Matching model 4) with answer

matcher module integrated.
Table 3. MAP Performance on Different System

Combinations and Precision at Top 1 Retrieval Results
System
Combination

BoW BoW+TK BoW
+STM

BoW+STM
+SEM

BoW+STM
+SEM+AM

MAP (%) 79.08 81.61 85.67 86.41 88.56
% improvement of
MAP over:

BoW
BoW+TK

N.A.
N.A.

+3.20
N.A.

+8.33
+4.97

+9.26
+5.88

+11.99
+8.51

Precision at Top 1 81.67 82.50 81.67 88.33 89.17
We employ two performance metrics: mean average precision

(MAP10
5) and precision at the top one retrieval result. The

evaluation results are illustrated in Table 3. From the Table, we
draw the following observations:

1) BoW model itself achieves very high precision (79.08), and
BoW+TK slightly improves BoW by 3.20%. We conjecture
that the high precision obtained by BoW is because of the
huge size of the Yahoo! Answers archive, where a large
number of lexically similar question threads have already
been stored. Users are therefore quite likely to get similar
questions even using some key words. The combination of

5 MAP10: The MAP calculated on the returned top 10 questions.

the TK and BoW gives very limited boosting, leading us to
be more convinced that TK does not capture the similarity
between questions well.

2) Applying syntactic tree matching over simple lexical
matching methods boosts system performance a lot. When
applied on top of BoW, both STM and SEM augment the
performance in all metrics statistically significantly as
judged by using paired t-test (p-value<0.01). MAP on
BoW+STM improves by 8.33% and 4.97% respectively over
the results obtained by BoW and BoW+TK; and the MAP is
improved by 9.26% and 5.88% respectively when the
semantic features are incorporated. Semantic-smoothed
syntactic tree matching also yields better precision in the top
one retrieval task, where it retrieves questions correctly at
the first position on 106 questions out of a total of 120. We
believe that the improvement stems from the ability of the
syntactic match weighting scheme to correctly present and
measure the similarity distance between questions. As such,
many false positive questions that would be favored by
normal BoW approaches are subsequently eliminated, as
they often do not contain similar syntactic structure with the
user query.

3) Semantic-smoothed matching performs better than pure
syntactic matching marginally. It gains an improvement of
0.74% in MAP and 6.66% in precision at top one question
result when using STM+SEM over STM itself. We
conjecture that the marginal improvement of semantic
features in terms of MAP is probably because there are too
many lexically similar questions existing in the Yahoo!
Answers archive. In other words, the performance of the
baseline system is so high that little room is left for further
contribution by the use of semantic features. We believe that
the semantic-smoothed matching may give significant
improvement over others in the environment where there is a
large number of semantically similar but lexically different
terms or phrases, as it may accommodate the variation in
natural language texts, for which pure syntactic matching
may fail to capture.

4) Answer matching (AM) brings in significant improvements
over others in all metrics. This is in line with our
expectation. By the hypothesis that similar questions give
similar answers, the AM module is capable of bringing in
more semantically similar questions which bear totally
different words or structures. It is analogous to relevance
feedback module as in traditional IR systems, where new
query can be formed according to the initial retrieval, and
new results can be obtained.

5.4 Performance Variations to Grammatical
Errors

To support our statement in Section 3.4 that the STM is robust
to grammatical errors, we conduct experiments in this Section to
examine the effect of various grammatical errors on MAP.

For meaningful comparison, we mimic a noisy environment by
manually injecting various common errors that the human users
are likely to make into all testing questions. 50% of the testing
questions are randomly inserted with interior errors like article,
tense, plurality errors, while the other 50% are modified to bear
random exterior errors, such as preposition errors, misplaced

0.3

○2

Yahoo! Answers

Questions Answers

Q Index

A Index

Indexer Init Result

Query

Matching
Result

Matching
Questions

BoW

STMAnswer
Matcher

Additional
Questions

Answer To
Query

○1

○3

0.7

192

modifier etc. Along with grammatical errors in our simulation, we
also consider modifying some terms or phrases into non-standard
short forms that have been frequently used on the Web, such as
“4” for “for”, “your” for “you are”, and “Im” for “I am” etc.

We re-run the five systems on the modified testing dataset and
plot the results of performance variations in Figure 4. The top of
bars indicates the original performance without grammatical
errors and the bottom shows the resulting performance.

We can see from Figure 4(a) that the systems with STM
integrated still outperform the BoW and TK systems by a large
margin in terms of MAP even in noisy environment. The top one
precision of STM-embedded systems does not degrade as much in
general as compared to TK as shown in Figure 4(b). In fact, the
BoW+STM system even outperforms the BoW and BoW+TK
systems in noisy environment. This is evidence that the syntactic
tree matching model is sufficiently robust to various forms of
grammatical errors. We expect that in real world situation, a
STM-based system would give very satisfying matching results.

Interestingly, the MAP for BoW-only system does not drop
much as compared to the others. We believe this is owing to the
fact that purely lexical based approaches do not take word
relations into consideration, and thus it is less influenced by the
grammatical errors.

68
70
72
74
76
78
80
82
84
86
88
90

1 2 3 4 5

MAP a)

70
72
74
76
78
80
82
84
86
88
90
92

1 2 3 4 5

Top 1
Precision

b)

1:BoW 2:BoW+TK 3:BoW+STM 4:BoW+STM+SEM 5:BoW+STM+SEM+AM

Figure 4. Illustration of Variations on a) MAP b) Top one
Precision to Grammatical Errors.

5.5 Error Analysis
Although we have shown that STM, together with SEM and

AM improves question matching, there is still plenty of room for
improvement. To further characterize the types of questions that
have no impact or are adversely affected by STM, we perform
micro-level error analysis on the testing question set. We find that
STM fails to match the syntactic structures of questions mainly
due to the following three reasons:
1) Mismatch of question topics: In some cases, two questions

asking about different topics but bearing very close sentence
structures are incorrectly matched. For instance, the question
“How do I increase my appetite in a short period?” is highly
ranked by given the query “How can I increase my height in a
few month?”. This becomes severe for short questions asking
about different aspects, as simple sentence structures are
likely to have exactly the same syntactic structure as the
others. To overcome this problem, we need to incorporate
question analysis in our system such that the question target
could be clearly identified and compared when performing the
matching.

2) Flexibility of question representations: In real world, many
semantically similar questions have vast differences in their
expressions. For example, questions like “Best ways and

products to get fresh breath?”, “How do you keep your breath
always smelling fresh and clean?” and “Has anyone tried bad
breath cures?” etc. are tagged to be similar in the ground-truth
with the topic of “bad breath remedies”. However, the query
“Please tell what I can do to make my mouth smell go away?”
in the testing dataset matches none of these. Both lexical
matching and syntactical matching are likely to fail in this
case as we are lack of not only ways of correlating different
human expressions, but also information on the relation
between the term “breath” and the phrase “mouth smell”. This
is a difficult challenge, and we believe that certain domain
ontology could be of help, where at least some semantically
related terms can be linked together.

3) Extremely long queries: There are also some cases that the
query question is too long for STM to give correct similarity
measure. We conjecture that the syntactic structure of a
sentence becomes more complicated when the sentence gets
longer, and this leads to higher flexibility of interchanging
different sentence components, resulting in a large number of
nodes at the upper layers to be mismatched and the failure of
the STM measure. There are some works [6,8] that attempt to
find dependency relations between terms to counterbalance
the word ordering problem. However, their method is also
limited to short queries, as the dependency parser tends to
perform worse for longer sentences.

6. RELATED WORK
The idea of finding similar questions in cQA is to some extent

related to passage retrieval in traditional QA, with the exception
that question-to-question matching is much stricter than question-
to-passage matching. Many techniques have been developed
towards passage retrieval, from the simple BoW-based model,
language model [16], to some state-of-the-art techniques like
dependency relations [6] etc. Most of these techniques can be
employed to match questions, but their precision is not high
because of the high recall requirement. Training is needed in
some works as well.

Likewise, the FAQ retrieval task is also closely related to the
question matching problem. Early work such as the FAQ finder
[4] combined statistical similarity measure with semantic measure
using WordNet to rank FAQs. Some recent works [15,17] used
more advanced translation-based approaches to retrieve FAQ
data. [11] and [10] mined the FAQ data from the Web and
implemented their own retrieval systems.

However, the community-based QA archive is different from
FAQ collections in the sense that the scope of manually created
FAQs is quite limited. Recent research begins to focus on large
scale QA services from the Web. Some works have been
conducted on the characteristic analysis on this type of services
such as [2], but limited effort has been devoted to the question
matching direction. Works proposed in [9] and [18] applied the
translation-based model to find semantically similar questions in
cQA.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel syntactic tree

matching method for the similar questions finding problem. We
assessed the system based on the ground-truth built from Yahoo!
Answers, and the evaluation results showed that our system
produced competitive improvements in matching performance as

193

compared to the traditional BoW or plain tree kernel function: a
5~12% improvement in MAP, and up to 8% in top one precision.
We introduced a comprehensive tree weighting scheme to not
only give a faithful measure on question similarity, but also
handle grammatical errors gracefully. We further improved the
system performance by incorporating semantic features and the
answer matching module. Unlike other systems, our model does
not rely on training, making it easily portable to other similar
retrieval systems.

Our empirical evaluation results and qualitative error analysis
revealed that the syntactic tree matching model could be
improved by integrating question analysis module and domain
ontology. Moreover, most off-the-shelf parsers, including the one
we used in our experiments, are not well-trained to parse
questions. We believe that a more targeted parser which is trained
on question sets may give better accuracy.

The retrieval system in this work only focuses on the single-
sentence question matching problem, and uses the best answers as
it is. In future research, multiple-sentence questions with different
purposes are to be analyzed, and a tailored answer summarization
technique is to be developed as well to produce high quality
answers from different sources.

8. REFERENCES
[1] Trec proceedings.

http://trec.nist.gov/proceedings/proceedings.html.
[2] J. Bian, Y. Liu, E. Agichtein, and H. Zha. Finding the right

facts in the crowd: factoid question answering over social
media. In WWW ’08, pages 467–476. ACM, 2008.

[3] S. Bloehdorn and A. Moschitti. Structure and semantics for
expressive text kernels. In CIKM ’07, pages 861–864. ACM,
2007.

[4] R. D. Burke, K. J. Hammond, V. A. Kulyukin, S. L. Lytinen,
N. Tomuro, and S. Schoenberg. Question answering from
frequently asked question files: Experiences with the faq
finder system. AI Magazine, 18(2):57–66, 1997.

[5] M. Collins and N. Duffy. Convolution kernels for natural
language. In Advances in Neural Information Processing
Systems 14, pages 625–632. MIT Press, 2001.

[6] H. Cui, R. Sun, K. Li, M.-Y. Kan, and T.-S. Chua. Question
answering passage retrieval using dependency relations. In
SIGIR ’05, pages 400–407. ACM, 2005.

[7] A. Diekema, X. Liu, J. Chen, H.Wang, N. Mccracken, O.
Yilmazel, and E. D. Liddy. Question answering: Cnlp at the
trec-9 question answering track. In Proceedings of the Ninth
Text REtrieval Conference (TREC-9), pages 501–510.
Department of Commerce, National Institute of Standards
and Technology, 2000.

[8] J. Gao, J.-Y. Nie, G. Wu, and G. Cao. Dependence language
model for information retrieval. In SIGIR ’04, pages 170–
177. ACM, 2004.

[9] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar questions
in large question and answer archives. In CIKM ’05, pages
84–90. ACM, 2005.

[10] V. Jijkoun and M. de Rijke. Retrieving answers from
frequently asked questions pages on the web. In CIKM ’05,
pages 76–83. ACM, 2005.

[11] Y.S. Lai, K.A. Fung, and C.-H. Wu. Faq mining via list
detection. In COLING-02, pages 1–7. Association for
Computational Linguistics, 2002.

[12] C. Leacock and M. Chodrow. Combining local context and
WordNet similarity for word sense identification. In
WordNet: An Electronic Lexical Database. MIT Press, 1998.

[13] A. Moschitti. Efficient convolution kernels for dependency
and constituent syntactic trees. In ECML, pages 318–329.
Springer, 2006.

[14] A. Moschitti, S. Quarteroni, R. Basili, and S. Manandhar.
Exploiting syntactic and shallow semantic kernels for
question answer classification. In ACL. The Association for
Computer Linguistics, 2007.

[15] S. Riezler, A. Vasserman, I. Tsochantaridis, V. O. Mittal,
and Y. Liu. Statistical machine translation for query
expansion in answer retrieval. In ACL. The Association for
Computer Linguistics, 2007.

[16] F. Song and W. B. Croft. A general language model for
information retrieval. In CIKM ’99, pages 316–321. ACM,
1999.

[17] R. Soricut and E. Brill. Automatic question answering:
Beyond the factoid. In HLT-NAACL, pages 57–64, 2004.

[18] X. Xue, J. Jeon, and W. B. Croft. Retrieval models for
question and answer archives. In SIGIR ’08, pages 475–482.
ACM, 2008.

[19] D. Zhang and W. S. Lee. Question classification using
support vector machines. In SIGIR ’03, pages 26–32. ACM,
2003.

Appendix: Proof of Recursive Function M(r1,r2)
By the definition of the node matching score, we have:

∏
=

++−=
)(

1
21

)]))(1(1(2[2
21

1

21
21

)),(),,((),(
rnc

j

DDrnc jnchjnchMrrM rr
rr

ηηηη μλδδ

= ∏∏
= =

++−
)(

1

'

1
21

)]))(1(1(2[2
1

21
21

))),(),,(((
rnc

j i
i

DDrnc jnchjnchTFwrr
rr

η
ηηηη μλδδ

= ∏∏
= =

++++−
)(

1

'

1
21

)]))(1(1(2[2
1

212121
21

rnc

j i

DDSS
ii

DDrnc iiiirr
rr

η
ηηηη μλθθμλδδ

=∏ ∏
= =

++++−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡η

μλθθμλδδ
1

)(

1
21

)))(1(1(22
1

212121
21

k

rnc

j

DDSS
kk

DDrnc
rr

kkkkrr

=∏ ∏∏
=

++++−

++

==

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ∑∑
η

μ

λλθδθδ

1))(1()))(1(1(2

11)(

1
2

)(

1
1

2121

211

2

1

1

k DDrncDDrnc

SSrnc

j
jr

rnc

j
jr

kkrr

k
k

k
k

As the weighting coefficient θ has the recursive definition of

∏ =
=

)(

1

rnc

j jrr θδθ , the size of the new tree fragment has the

relations of ∑ ∈
+=

)(
1

rChildrenk kr SS , and the depth of the new

tree fragment is just one level above its children’s, which gives Dr
= Dk - 1, we may finally get the following:

() ∏∏
==

==
ηη

μμλλθθ
1

21
1

21)),((),(2121
21

k
k

k

DDSS
rr rrTFwrrM rrrr QED.

194

