
 
 
 
 
 
 
 

UNIVERSITY OF CALIFORNIA 
 

Irvine 
 
 

Understanding Dependencies: 
A Study of the Coordination Challenges in 

Software Development 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree Doctor of Philosophy  
 

in Information and Computer Science 
 
 

by 
 
 

Rebecca Elizabeth Grinter 
 
 
 
 
 
 

Committee in charge: 
 
 Professor Jonathan Grudin, Chair 
 
 Professor John L. King 
 
 Professor Rob Kling 

 
 

1996



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 1996 
 

Rebecca Elizabeth Grinter 
 

ALL RIGHTS RESERVED



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This dissertation of Rebecca Elizabeth Grinter is approved, 
 

and is acceptable in quality and form for 
 

publication on microfilm: 
 
 

___________________________________ 
 
 

___________________________________ 
 
 

___________________________________ 
 

Committee Chair 
 
 
 

University of California, Irvine 
 

1996



iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedication 
 
 
 

To the British Taxpayer. 
 

Thank you for giving me these opportunities.



iv 

Contents 
 
 
 
 
 
 
 

Acknowledgments v 
 
Curriculum Vitae vi 
 
Abstract  viii 
 
Chapter 1 Introduction 1 
 
Chapter 2 The Software Crisis Becomes a Software 
 Depression 6 
 
Chapter 3 Configuration Management and the Coordination 
 of Software Development 14 
 
Chapter 4 Case 1:  Experts Using Configuration Management 
 Tools Still Need Help 30 
 
Chapter 5 Case 2:  Large Computer Manufacturer Seeks Good 
 CM System 54 
 
Chapter 6 Case 3:  Military Contractor Adapts to Policies 78 
 
Chapter 7 Dependencies in Software Result From: Systems 
 Change, External Influences, Multiple Products 
 and Integration 91 
 
Chapter 8 Conclusions: Contributions, Limitations, and 
 Future Research 103 
 
 
References 107 
 
 



v 

Acknowledgments 
 
 

I want to thank my parents for their support and their courage.  They supported me by 
providing an environment in which anything was possible.  When I chose to pursue higher 
education 5,000 miles from home they had the courage to let me go.  My grandparents and my 
Auntie Dot have also encouraged me in all my endeavors.  I love you. 

 
My thesis is dedicated to the people who made this all possible, the British taxpayer.  At the 

graduate level I was supported by the Engineering and Physical Sciences Research Council 
(EPSRC).  I also thank the Fischer family and Hitachi for their support during my final year. 

 
It was Jonathan who opened my eyes to the world of computer-supported cooperative work.  

His enthusiasm and insights into groupware and work made research come alive for me for the 
first time.  This thesis hopefully reflects the passions I felt then and still feel for understanding 
the relationships between technology and work.  Rob Kling introduced me to the world of social 
analysis when I arrived at UC Irvine.  His insights gave me a new way of thinking about 
computer technology.  John L. King sowed some of the seeds for this research in discussions 
about software project management.  His own enthusiasm for the topic helped me to find 
questions that interested me. 

 
The Ph.D. program is a collaborative endeavor and I owe the Turtle Rock group a huge debt 

for listening to my ideas, focusing my research, offering academic help, friendship, and support.  
JP Allen, Lisa Covi, Paul Forster, Roberta Lamb, Jeanne Pickering, and John Tillquist, I will 
never forget those evenings we spent working together.  Nancy Eickelmann, André van der 
Hoek, David Hilbert, Holly Hildreth, David McDonald, Neno Medvidovic, and Leysia Palen also 
provided support and feedback on numerous occasions. 

 
I owe a huge amount to Lisa Covi, Jim Whitehead, Marty Cagan, and Paul Dourish.  Lisa's 

enthusiasm for research and insights into my work have helped shape this thesis and much more.  
Jim Whitehead not only introduced me to software configuration management but helped me 
find my research topic in that domain.  However, it is his unfailing support of my work, even 
when I didn't believe in it, that I must really thank him for.  I would also like to thank Marty 
Cagan, whose knowledge and insights into software development practice continue to shape and 
refine my ideas.  Paul and I used the Internet to discuss our work, and through these 
conversations I rediscovered the purpose of this research.  He helped me to find my confidence 
again and transform me from student to researcher. 

 
My thesis would have not been possible without the cooperation of the three sites I describe, 

plus several others who did not appear.  I would like to thank everyone for the time they spent 
explaining their software development work to me and their patience with my sometimes stupid 
questions.  This thesis is a product of their collective wisdom. 

  



vi 

Curriculum Vitae 
 
REBECCA E. GRINTER 
Department of Information and Computer Science 
University of California, Irvine 
Irvine, CA 92717  USA 
Internet:  beki@ics.uci.edu   
World Wide Web:  http://www.ics.uci.edu/~beki/ 
Work phone:  (714) 824-5086.  Fax:  (714) 824-4056. 
________________________________________________________________________ 
 
EDUCATION 
 
Ph.D.: University of California, Irvine 
  Information and Computer Science (1996) 
  Committee:   Jonathan Grudin (Chair), John King, Rob Kling 
 
  Thesis Title:  Understanding Dependencies: A Study of the Coordination 
  Challenges in Software Development 
 
M.S.: University of California, Irvine 
  Information and Computer Science (1994) 
 
B.Sc.: University of Leeds, United Kingdom 
  Computer Science (1991) 
   
 
WORK EXPERIENCE 
 
1996  Research Assistant. 
 
1995  Teaching Assistant, undergraduate Computers & Society course (including  
 organizational and ethics issues). 
 
 
SELECTED PUBLICATIONS 
 
Grinter, R. E. (1995) "Using a Configuration Management Tool to Coordinate Software 
Development" In Proceedings of the ACM Conference on Organizational Computing Systems 
(COOCS '95).  San Jose, California: August 13-16. 168-177. 
 
Blevins, J., Dubrow, D., Eickelmann, N., Grinter, R., Medvidovic, N., Reimer, R., Shaw, J., 
Turner, C. and G. Wong (1995) "Report on the Software Project Management Technical 



vii 

Research Review" In D. Richardson and B. Boehm (Eds.).  Proceedings of the California 
Software Symposium.  Irvine, March 30, 1995. 127-145. 
 
Grudin, J. and R. E. Grinter (1995) "Ethnography and Design - A Commentary" CSCW: An 
International Journal, 3: 55-59. 
 
 
 
 
Pickering, J. M. and R. E. Grinter (1995) "Software Engineering and CSCW: A Common 
Research Ground" In Richard N. Taylor and Joelle Coutaz (Eds.) Software Engineering and 
Human Computer Interaction: ICSE ‘94 Workshop on SE-HCI: Joint Research Issues Lecture 
Notes in Computer Science Series Vol. 896. Springer-Verlag. 241-250. 
 
Grinter, R. E. (1994) "Book Review: Review of and Perspective on "The Politics of Projects" 
Robert Block, SIGOIS Bulletin 14(3): 31-32. 
 
Grinter, R. E. (1994) “Book Review: Review of "A Small Matter of Programming: Perspectives 
on End-User Computing" by Bonnie Nardi SIGCHI Bulletin 26(4): 80-81. 
 
Grinter, R. E. and R. N. Taylor (1993) "Improvement of User Interface Development 
Methodologies through Rigorous Analysis" UCI Technical Report 93-36. 
 
 
SPECIAL AWARDS, HONORS, AND OTHER INFORMATION 
 
1996  CHI Doctoral Consortium participant. 
 
1996  Fischer Fellowship recipient. 
 
1992-1995 Engineering and Physical Research Council Studentship. 
 
1994  Participant, Workshop on Software Process and CSCW, CSCW '94. 
 
1991-1992 Selected as Education Abroad Program exchange student by the University  
  of Leeds.  
 



viii 

Abstract of the Dissertation 
 
 
 

Understanding Dependencies: 
A Study of the Coordination Challenges in 

Software Development 
 

by 
 

Rebecca Elizabeth Grinter 
Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1996 
Professor Jonathan Grudin, Chair 

 
 

This research provides a new understanding of the dependencies that exist in software systems, 
and how software developers use practices and technologies to manage them.  All software 
systems have dependencies because software modules interact with each other, with 
documentation, with libraries, and with test suites.  Software engineers recognize that these 
dependencies exist, as technical relationships between the components of the system, and have 
tried to model them as part of their formal methods and process descriptions.  However, no 
studies to date have examined the social aspects of these dependencies, how dependencies within 
the code, create and reflect social dependencies that exist between developers, teams of 
programmers, and software development organizations. 
 
To address this issue I study the role of Software Configuration Management (SCM) practices 
and tools in the development process.  SCM is the discipline of identifying the components of a 
software system and coordinating their development in order to control the evolution of the 
whole software system.  Recently SCM practices have been embodied into tools that aim to 
support the development process itself.  Using three interpretive studies I detail the different 
types of dependencies that exist during software development: why they arise, how they have 
both technical and social implications, and how developers and managers cope with them. 
 
I use the findings from these studies to extend current understanding of how "groupware" 
technologies, like SCM systems, support the management of these software dependencies.  I also 
highlight some of the problems in creating representations of dependencies, and consequently the 
times when SCM systems do not provide the required support to help developers coordinate their 
work.  This understanding of how a technology supports the management of software 
dependencies contributes our knowledge about the role of systems in facilitating social 
processes, as well as opening up new questions about the extent to which that is possible. 



1 

 
Chapter 1 

 
Introduction 

 
 
 

That’s what delivering a software project feels like.  All the cosmic tumblers have 
magically clicked into place cause you really don’t know what’s going to make it 
happen when you’re doing it.  You’re just pushing back on every barrier 
removing any problem you know constraining it to something that’s doable.   
Senior Project Manager, Computer Corp. 
 
All research starts from a research problem. ...  The best sociological research, 
however, starts from problems which are also puzzles.  A puzzle is not just a lack 
of information, but a gap in our understanding.  A large part of the skill of 
producing worthwhile sociological research consists of correctly identifying 
puzzles. ... Puzzle solving research tries to contribute to our understanding of why 
events happen as they do, rather than simply accepting them at their face value.  
(Giddens, 1993; 676, italics in original) 

 
 

1.1  Software Development and Software Failure 
 
Double-click on an application, type in how much money you want at the ATM, or start your 
new car.  Software running on computers, dedicated machines, or embedded into hardware, 
surrounds us.  In the short time that has elapsed since researchers built the very first 
programmable machines software has transformed from specific scientific calculations written in 
arcane languages to generalized applications implemented in graphical development 
environments.  Once a few select individuals wrote software for the machines that they used in 
their work.  Today virtually all organizations buy or develop software to process information 
regardless of their business interests. 
 
The increasing demand for software has created organizations that do nothing but develop 
software, such as Microsoft, Borland, and Netscape, and others that build hardware as well as 
systems, including Apple, Sun, and IBM.  If we measure these companies' achievements by their 
ability to actually produce software, they are all successful.  Despite these successes many 
software projects terminate abruptly, and sometimes in the glare of the media.  These software 
projects fail at the cost of millions of dollars, with many jobs lost, and tragically sometimes with 
the loss of life. 
 
In the 1990's alone several high-profile projects failed and part of the blame was assigned to the 
software: the baggage handling system at Denver International Airport destroyed bags, the 
Therac-25 machine killed people with high doses of radiation, the Airbus 360 fly-by-wire 



2 

airplane couldn't make a certain degree landing, London's automated ambulance transportation 
system left patients waiting for about half an hour, and both the California Department of Motor 
Vehicles and the London Stock Exchange spent money on software that never became 
operational.  These are only some of the failures, those that were expensive or harmed people. 
 
Why does software fail?  This question led a group of researchers to a conference in 1968 where 
they founded a discipline, software engineering, that has worked hard to understand why 
software fails and invent better methods for developing systems.  Like other researchers, I am 
motivated by the same question; however, instead of proposing a new software development 
technique this research focuses on looking at the practices of building systems.  Describing how 
organizations build successful software provides insights into the challenges faced during 
development and strategies for managing those complexities. 
 
Software fails to work for many reasons and this thesis describes just one problem that makes 
developing systems difficult.  This thesis asserts that software development is difficult in part 
due the relationships that exist between software modules.  These technical relationships create 
and reflect social relationships that exist between developers, managers, and organizations.  The 
management of these relationships is critical to producing systems, and when they are ignored or 
misunderstood, the chances of producing working software decline. 
 
 

1.2 Taurus, a Failure to Manage Dependencies? 
 
The Taurus system was sold as a multi-million pound project that would revolutionize the 
London Stock Exchange.  Since the unification of European Community, London — a traditional 
financial center — has found itself increasingly competing with other cities for the high finance 
business.  Today the financial district finds itself competing with more modern exchanges: 
organizations that use technology to help them make swift transactions. 
 
The London Stock Exchange decided to modernize its operations by introducing new 
technologies both within the exchange itself and among the organizations associated with it 
(Green-Armytage, 1993). The project started with all the optimism of any new venture sold as 
revolutionizing an industry.  However, in 1993, after years spent in development the head of the 
London Stock Exchange announced that the Taurus system had failed.  It never reached the 
operational stage; at its demise parts of it had not been implemented. 
 
In the initial days after the announcement people searched for answers: why had Taurus failed?  
A highly regarded firm of computer consultants, Ovum Consultancy, suggested that the failure of 
Taurus was a direct result of poor configuration management practices.  Configuration 
management involves identifying the components of a software system and tracking the changes 
made to them.  It also involves maintaining information about how to assemble the components 
into systems.  In practice developers and organizations find configuration management activities 
very difficult because the software components have technical relationships — called 
dependencies — that must be coordinated by the people working on that code. 
 



3 

Taurus was a highly distributed system; teams of developers worked together on individual parts 
of the projects.  At the same time Taurus required that all the organizations linked to the London 
Stock Exchange build Taurus compliant systems.  In this highly distributed environment the 
different developers and organizations struggled to coordinate their efforts with each other.  
Technically, it was difficult to align the distributed development efforts so that all the systems 
worked together.  Socially, it was hard to maintain communications among the different 
developers and organizations working on the project so that everyone understood what changes 
were taking place and why. 
 
Software engineering researchers know that relationships exist between pieces of code; they call 
them dependencies.  However, little is known about how technical dependencies among modules 
of code create and reflect social dependencies among the developers, teams, and organizations 
working on them.  The story of Taurus clearly illustrates that the problem of trying to coordinate 
these technical dependencies is a managerial problem.  This thesis begins with a puzzle, the 
puzzle of understanding how technical dependencies in software create and reflect social 
relationships among developers, groups, and organizations.  This research explains how 
successful development organizations manage both the technical and social aspects of these 
dependencies in the production of software systems. 
 
 

1.3  Research Question 
 
My research question is: 
 

How do software dependencies affect the development of systems? 
 
The research question is divided into three parts: 
 

• What are software dependencies? 
• Why do they occur? 
• How do developers and organizations cope with these dependencies? 

 
To answer the question of how software dependencies affect the development of systems 
requires that I explain what software dependencies are (relationships among code, people, and 
organizations that have technical and social aspects), when they occur (as a result of external 
influences on the software development process, or because software modules depend on one 
another) and how developers and organizations cope with them (through the implementation of 
configuration management practices and tools). 
 
Software engineering researchers have recognized that dependencies exist, but have focused on 
their technical aspects.  The software project management literature describes the role of 
coordination during development, but has not really asked why developers need to coordinate 
their work.  Researchers interested in software project management have described a variety of 
strategies that suggest that developers do coordinate, that people need to know what others are 
doing, but few studies have looked beyond these observations to understand why this 



4 

collaboration is necessary.  This thesis provides an explanation of one of the reasons why 
developers have to coordinate with each other: to manage dependencies. 
 
Software configuration management concerns itself with the identification and control of 
individual components, their relationships with each other, and the change of the system during 
its evolution.  While configuration management experts have proposed a variety of normative 
procedures for doing it in practice, few researchers have answered the question of why 
configuration management is important critically.  I claim that configuration management — as 
it has been constructed in the textbooks of normative procedures and goals — is the discipline of 
managing the technical aspect of dependencies. 
 
The data presented suggest that configuration management in practice involves the on-going 
management of a myriad of technical dependencies that create and reflect social dependencies 
between individuals, groups, and organizations.  A simple framework for understanding the 
different types of dependencies that occur, among individuals, groups, and organizations is 
described.  It distinguishes these three types of dependencies as the scale of their reach across the 
organization varies.  Finally evidence is introduced suggesting that the size and type of software 
development process in place influences how these dependencies manifest themselves and the 
coping strategies required to manage them. 
 
 

1.4  Software Dependencies 
 
Software engineers know that dependencies exist between modules; after all, these relationships 
are a consequence of modular design.  Modular design has had a profound impact on software 
engineering, and to understand how software engineers understand dependencies, we must begin 
with an examination of this practice.  Modular software development involves breaking down a 
problem into its logical components and constructing a solution for each part. 
 
Although modular design existed in practice, one of the first people to discuss it formally was 
David Parnas.  In 1972 Parnas wrote an influential paper describing the criteria developers 
should use to divide a system into modules.  He provided the foundation for a stream of research 
exploring different ways of deriving modular systems from the overall specification of the 
software.  The fact that software engineers now call units of software code "modules" reflects the 
importance of the idea that systems should and can be broken down into tractable units. 
 
For software engineering researchers a good modular system has certain features, including low 
coupling of modules.  Coupling, 
 

measures the interdependence of two modules (e.g., module A calls a routine 
provided by module B or accesses a variable declared by module B).  If two 
modules depend on each other heavily, they have high coupling.  Ideally we 
would like modules in a system to exhibit low coupling, because if two modules 
are highly coupled, it will be difficult to analyze, understand, modify, test or reuse 
them separately. (Ghezzi, Jazayeri, and Mandrioli,  1991; 51) 



5 

 
This definition of coupling reveals several things.  First, software engineers clearly recognize 
that dependencies exist.  Second, they view them in a purely technical way; for example, 
dependencies exist when variables get passed between two modules, or one module calls 
another.  Third, the difficulties of having dependencies have purely technical impacts, these 
relationships interfere with making changes, software reuse, or testing.  Fourth, an appropriate 
solution for managing dependencies involves designing the system with as few of them as 
possible. 
 
These researchers have identified a critical part of dependency management, the purely technical 
issues, but their account is unsatisfactory for three reasons.  First, they have not identified all the 
sources of dependencies.  Some dependencies come from outside the organizations, because 
code built by an organization relies on code built by other vendors, for example.  Such 
dependencies may have technical impacts on the software development process, but cannot be 
resolved by designing for low coupling.  Second, leading from that point, their solution does not 
consider the fact that the design of software changes throughout development.  In practice 
developers find it extremely hard to design the final product in the initial stages of development.  
As modules are extended and adapted during the development process, initially low coupling 
may change over time.  This problem is much worse when systems development begins with 
existing software — legacy code — and the developers must extend and modify its functionality.  
Finally, and most critically, it takes no account of all the social processes at work that conspire to 
make software dependencies even more complex, which the rest of this thesis argues is critical to 
building working software. 
 
 

1.5  Summary of Thesis 
 
Chapter 2 describes the directions of software engineering research.  It begins with a description 
of the first conference held to establish software engineering as research discipline.  It focuses on 
the evolution of software project management research, and discusses what is known about the 
coordination required to manage the development of software.  Chapter 3 describes the history of 
configuration management as a practice for controlling the evolution of hardware and later 
software.  It also discusses the emergence of configuration management systems; technological 
support to help maintain control over the development of software.  These systems share features 
with other kinds of groupware technologies that are also discussed in this chapter.  It concludes 
with a discussion of the data gathering and analysis methods. 
 
Chapters 4, 5 and 6, introduce the three sites in the study: Tool Corp., Computer Corp., and 
Contract Corp.  Each chapter describes how that organization (at the level of the individual, 
group and organization as a whole) coped with the dependencies that arose in their configuration 
management work.  It shows how the social aspects of dependencies make configuration 
management extremely hard to do in practice.  Chapter 7 synthesizes the observations presented 
in Chapters 4, 5, and 6.  It describes the sources of these dependencies.  Dependencies arise 
because: systems evolve over time, external influences force software to change, there is a 
continual need to reassemble the whole from the parts, and finally because organizations have to 



6 

build multiple products at the same time.  Chapter 8 discusses future work, the limitations of this 
research, and concludes. 



7 

Chapter 2 
 

The Software Crisis Becomes a Software Depression 
 
 
 

The fact that the crisis is still with us, over 20 years later, should tell us two 
things.  First, the software production process is not like traditional engineering.  
Second, the software crisis should rather be termed the software depression, in 
view of its long duration and poor prognosis.  (Schach, 1990; 5) 

 
This chapter sets the background for this thesis work by examining the challenges of software 
development.  It begins by introducing the motivation for establishing a discipline of software 
engineering, and introduces the problems that researchers thought needed solving in 
requirements, design and development, measurement, testing and project management.  The 
chapter focuses on one aspect of software project management: the coordination of software 
developers.  Although software project management research has identified the importance of 
coordinating the development, it has not substantially answered why developers need to work 
with each other.  This chapter reviews research that suggests that dependency management is one 
reason why coordination takes place and reviews observations about dependency management in 
practice. 
 
 

2.1  Software Engineering and the Software Crisis 
 
In the autumn of 1967 the NATO Science Committee met to discuss computer science.  During 
the discussions they became particularly concerned about problems that NATO members faced 
developing software.  The Science Committee established a Study Group to assess these 
problems and make recommendations about how to continue.  In late 1967 the Study Group 
recommended that there be a working conference to discuss the challenges of software 
development. 
 
On October 7-11, 1968, researchers met in Garmisch, Germany, to discuss software development 
(NATO, 1969; 13).  The participants were carefully selected, from academia and industry, for 
their knowledge and understanding of the software development process.  Their brief was to 
discuss the problems of building software and establish a research discipline that they called 
"software engineering."1  As the report explains, 
 

The phrase 'software engineering' was deliberately chosen as being provocative, 
in implying the need for software manufacture to be based on the types of 

                                                
1   Although the conference was sponsored by NATO the discussions reveal that the mix of industrial and academic 
attendees kept the focus on software broadly, including commercial development, rather than just military concerns. 



8 

theoretical foundations and practical disciplines, that are traditional in the 
established branches of engineering. (NATO, 1969; 13) 

 
Software development began long before the Garmisch conference was convened.  Most of the 
initial systems were military command and control systems; however, companies including IBM 
had also begun developing operating system software.  During the 60's, companies involved in 
developing military and commercial systems started to discover that building software was 
difficult, and that as systems got larger and contained more interactions, the development process 
got more complex.  It was these difficulties that attracted the attention of the NATO Science 
Committee, and led them to organize the conference. 
 
At Garmisch the participants referred to the challenges of developing software as a "software 
crisis."  Software engineering and the software crisis have remained tightly coupled since the 
conference; as the challenges of developing software have persisted so has the idea of the 
software crisis.  The conference itself has become important to the software engineering 
community marking the formation of the discipline. 
 
 

2.2 Initial Explanations of the Software Crisis and Hard Problems 
 
The participants gave four reasons why the crisis had emerged: a lack of experience in 
developing software, economic pressures to build complex systems, the inherent difficulties in 
software production and problems monitoring the development process itself.  Although all of 
the attendees at the conference had developed software, some of them expressed concerns about 
their lack of experience in building systems.  This lack of experience was exacerbated by the 
limited opportunities they had to discuss their difficulties with other software developers and 
project managers. 
 
Some individuals pointed to the economic drivers behind software development as potential 
causes of the crisis.  Organizations had started to want computer-based solutions for their 
problems; for example, as the amount of flights in Europe increased the aviation authorities 
began to investigate the possibilities of automated air-traffic control systems.  At the same time 
the functional complexity of the applications that organizations required increased.  The 
participants argued that these demands for software were forcing development organizations into 
situations that were beyond their current understandings and abilities. 
 
The participants also felt that the production of software required high levels of research and 
innovation.  Hardware and software changed so rapidly that even upgrading existing applications 
often meant building a new product.  Instead of being able to build on previous experience, 
software developers found themselves having to reinvent the system on the new and less well-
understood platforms. 
 
Finally, the participants recognized that they could not easily assess the state of development.  
No-one could accurately predict how long a system would take to build, how complex the 



9 

software was, and what size it would be when completed.  It was hard to tell where in the 
development life cycle they were at any given time. 
 
Having discussed the software crisis and the reasons why it emerged, the participants focused on 
key problem areas that needed addressing.  I have named these areas the "hard problems" of 
software engineering because the participants clearly felt that if they could solve them then the 
software crisis would dissipate.  The hard problems form the backbone of the modern discipline 
of software engineering and include requirements, design and development, measurement, 
testing, and project management. 
 
 

2.3  The "Hard Problems" of Software Engineering 
 
All students learn about the hard problems of software engineering in classes and textbooks (e.g., 
Sommerville, 1989; Schach 1990).  The details of the problems and their partial solutions have 
evolved as the technology and techniques available have matured.  For example in the 1990's 
students learn about the difficulties in designing client/server technologies while back in the 60's 
they would have focused on mainframes.  However, the character of the problems has remained 
the same since the conference.  The hard problems still form the guiding principles for much of 
the research within software engineering. 
 
Requirements 
 
The conference participants discussed the difficulties of eliciting requirements from users and 
customers of the system.  At the same time they recognized the need to involve these groups, and 
felt that current software development remained too isolated from the environment that the 
system was expected to work in.  Finally, they also observed that requirements change during the 
development of the system itself.  Requirements analysis, definition, and elicitation have become 
important research topics since the conference. 
 
Design and Development 
 
Concerns about design and development permeated the conference.2   They focused on defining 
and arranging the steps in the development process.  Various aspects of development were 
discussed in isolation including the following: the merits of top-down versus bottom-up design, 
notion schemes for describing the system structures and states, and criteria for design like 
flexibility, design for change, usability, reliability and completeness. 
 

                                                
2  Researchers use these terms inconsistently.  In my discussion I refer to development as the entire process of 
building software, from the initial inception to the final product.  Design forms one aspect of development, although 
in practice it gets repeated throughout the entire development life cycle.  Design focuses on mapping out the 
product, conceptually -- what it does -- whereas implementation concerns itself with how the product actually 
achieves the goals of the design. 



10 

Design and development issues remain at the center of software engineering research.  Since 
Garmisch the attentions have shifted and extended as software researchers have discovered new 
ideas, and appropriated technologies in pursuit of resolving these goals.  High-level languages, 
Parnas's (1972) work on modularity, object-oriented design (Gamma and others, 1994), 
parallelism, prototyping, Boehm's (1988) spiral model, are a few of the ideas that have 
contributed and extended this research. 
 
Measurement 
 
The inability of managers to measure progress during software development was discussed as a 
contributing factor in the software crisis.  Subsequently, software measurement has become 
another stream of research in the software engineering community.  Researchers have developed 
complex schemes for cost estimation (Boehm, 1981) and software complexity (McCabe, 1976).  
More recently researchers including Basili and Musa (1991) and Potts (1993) have called for the 
development of experience laboratories, where researchers can garner metrics from real-world 
software projects. 
 
Testing 
 
By the time of the conference, complete system testing required more resources than most 
organizations had to spend on the activity.  All the attendees were concerned with testing the 
performance, reliability and accuracy of the software.  At the same time they also discussed the 
importance of testing the system with its associated hardware and documentation.  Testing has 
established itself as a critical part of software engineering research.  Research has focused on 
defining subsets of the software that when tested capture all cases and states that the system can 
get into and explored the role that technological support can play in comprehensive system 
testing. 
 
 

2.4  The Hard Problem of Project Management 
 
The state-of-the-art in requirements, design and development, measurement, and testing has 
advanced since Garmisch.  Although they all present important and exciting research challenges 
these topics are not addressed directly in this thesis.  Instead this work builds on the hard 
problem of software project management.  In this section I review the challenges of software 
project management. 
 
Project Management at Garmisch 
 
The Garmisch participants had plenty to say about project management.  They observed that 
there was a high degree of variation in ability between individual programmers.  However, they 
did not describe the skills that good developers had. 
 



11 

Most of their project management discussions focused on the difficulties of managing large 
software development efforts. 
 

More than twenty programmers working on a project is usually disastrous. ... We 
must learn how to build software systems with hundreds, possibly thousands of 
people.  ... it is quite clear that when one deals with a system beyond a certain 
level of complexity, e.g. IBM's TSS/360, ... the sequence of changes that one 
wishes to make on it can be implemented in any reasonable way only by a large 
body of people. (NATO, 1969; 68) 

 
Specifically they asked "how can we organize people so that they produce software efficiently?"  
Their solutions focused on improving communications among project participants.  They 
believed that good communication was vital to establish and maintain control over the 
development process itself. 
 
One participant suggested hiring friends to work on the same project to guarantee good 
communications among developers.  Another proposed using deep and narrow organizational 
hierarchies for coordination; no individual should have more than five direct reports.  Project 
meetings and code reviews were also suggested as ways of ensuring that large groups maintained 
vital communications while developing software. 
 
Although the strategies for coping with the difficulties of developing software in large groups 
may seem rather simplistic and naïve, the participants of Garmisch identified a critical issue: 
how do we coordinate software development?  At the same time they coupled the problem with a 
solution: use good communications to coordinate software development work. 
 
Project Management since Garmisch 
 
Software engineers and sociologists have been interested in the difficulties of software project 
management since the Garmisch conference.3  They have expanded our understanding of what it 
means to manage a software project.  Others have also proposed methods for managing the 
development process.  In this section I review their research. 
 
Brooks (1987) identifies four inherent properties of software that make it difficult to build: 
complexity, conformity, changeability, and invisibility.  When software modules interact with 
each other they take the system into a different state of operation.  Brooks measures complexity 
by the number of states that software can enter during run-time.  As software gets larger the 
amount of elements increases.  At the same time the amount of potential interactions between the 
elements usually increases exponentially.  Software project managers find it difficult, if not 
impossible, to know all the possible states of a large system, let alone understand how they 
occurred.  This makes it difficult to comprehend the system as a whole and extend it. 
 

                                                
3  A number of sociologists have been especially concerned with requirements elicitation. (See for example, Goguen 
and Jirotka (1994) and Quintas (1993)) 



12 

Software must also conform to a variety of circumstances and needs.  Brooks describes the origin 
of the conformity as, 
 

...forced without rhyme or reason by the many human institutions and systems to 
which his interfaces must conform. (Brooks, 1987; 12) 

 
Software developers must work with an environment that reduces the amount of potential actions 
that they may make. 
 
People can easily change software because software is, 
 

... pure thought-stuff, infinitely malleable. (Brooks, 1987; 12) 
 
Because software is malleable, a developer can easily change it.  Like hardware, software gets 
changed during development; however, software can also be changed once deployed.  Also 
development does not often proceed from scratch; instead developers usually start with existing 
systems and adapt them to the new environmental circumstances such as a change in hardware, 
organizational policies, market conditions, or laws.4 
 
Software is hard to visualize which makes it difficult to work with.  Although developers can 
describe the flow of control or data in a system, no single visualization captures all the aspects of 
what the software does.  Describing one piece of software using multiple visualizations can be 
confusing.  Brooks claims that this creates problems for individuals trying to understand and 
develop software and talk about their work with others. 
 
Brooks is most famous for describing the woes of software project management in his book The 
Mythical Man-Month (1975, 1995).  In the book he describes his experiences of managing the 
development of IBM's OS/360.  He also tackles the same question raised at Garmisch, how do 
you organize people in large software development projects, and what role does communication 
play? 
 
He called the book The Mythical Man-Month to highlight a key management problem.  He 
criticized a popular metric for measuring the effort required to build software, the man-month.  
The man-month is the sum of work one person can achieve in a month.  For example, an 
eighteen man-month project could be built in the following ways: by one person in eighteen 
months, by six people in three months, or by nine people in two months.  However, as Brooks 
succinctly points out, 
 

Men and months are interchangeable commodities only when a task can be 
partitioned among many workers with no communication among them.  This is 
true of reaping wheat or picking cotton; it is not even remotely true of systems 
programming. (Brooks, 1995; 16) 

 

                                                
4  When development starts from an existing system, the old software is called legacy code. 



13 

Brooks statement about the communication required to build software has been confirmed by 
another group of researchers who studied software development in a large organization: 
 

Software development is not an isolated activity.  Over half our subjects' time was 
spent in interactive activities other than coding, and a significant part of their day 
was spent interacting in various ways with coworkers. (Perry, Staudenmayer, and 
Votta, 1994; 45) 

 
Software engineering researchers have developed "standards" around which various participants 
can organize and coordinate their work to try to reduce the problems created by communication 
(Pickering and Grinter, 1995).  Some of these standards are not project specific such as, formal 
specification languages, software development life cycles, and formal process descriptions.  
Others must be engineered for the project at hand including, requirements documents, project 
plans, and testing plans.  These standards have a technical purpose; to specify parts of the 
system, to guide the phases of development, and so forth.  At the same time they provide shared 
definitions to all the project members reducing the need for communication. 
 
Parnas and Clements (1986) recognized the dual purpose of these standard setting devices.  They 
claim that even with the best intentions a rational design process will breakdown at times due to 
ambiguous and unknown requirements, changes during design, and human error among other 
reasons.5  However, Parnas and Clements also cite reasons for acting as if the design process was 
followed and documenting all the steps, 
 

When an organization undertakes many software projects, there are advantages to 
having a standard procedure.  It makes it easier to have good design reviews, to 
transfer people, ideas and software from one project to another. (Parnas and 
Clements, 1986; 252) 

 
However, in a study of 17 different software development projects, Curtis, Krasner, and Iscoe 
(1986) found that these documentation strategies did not eliminate the need for communication.  
They observed that at the beginning of projects developers spent considerable time defining 
common terminology and creating informal channels for communicating project information. 
 
Curtis, Krasner, and Iscoe also observed that knowledge about the application domain was thinly 
spread among the developers working on a project.  Developers spent considerable time 
establishing a common understanding of the application domain and how the system should 
work.  They discovered, like the participants at Garmisch, that requirements remain unstable 
throughout development.  The requirements documentation often changed as a result of conflicts 
between different parties on the project. 
 
Recently, software process research has attempted to reduce the amount of communication 
necessary by formalizing the process of software development and embedding that in systems 
(Curtis, 1995; Dowson, 1993).  Software process researchers believe that the emphasis on 
                                                
5  Button and Sharrock (1994) verify and update this observation.  In their study of a software engineering project, 
they noticed that the developers often used a CASE tool to document the process as it should have occurred, rather 
than use it to actually do the work. 



14 

documentation draws attention away from the real problem, developing software.  The approach 
involves modeling the software development process and then building systems that implement 
these models.  Some research systems have been built, but few have been integrated into 
software development practice yet. 
 
 

2.5  A New Look at the Hard Problem 
 
Software project management researchers have observed and noted the importance of 
communication and coordination in software development, but few have asked why it occurs.  At 
one level the answer is obvious: developers need to synchronize their work with others and so 
must find out what their colleagues are working on.  However, we can ask at a deeper level, why 
are communication and coordination necessary? 
 
In this thesis I claim that dependencies between the different code modules create and reflect 
social dependencies between developers, managers, and software development organizations.  
Further, I will claim that developers must communicate and coordinate with each other to 
manage these dependencies.  This thesis extends our understanding of project management, by 
providing an explanation of why developers, managers and organizations must coordinate to 
build software.  This assertion is not completely new, and in this section I review observations 
other researchers have made about dependencies.  My thesis will then provide a detailed 
explanation of how these dependencies manifest themselves, how developers and managers cope 
with them, and a framework by which to understand them. 
 
At Garmisch the participants referred to dependencies obliquely in their discussions about 
software development.  They recognized two different kinds of dependencies: those among code 
modules and those between software and all the other items that comprise a system.  They 
observed that it was difficult to assemble the whole system from its parts because different code 
modules depended on each other and needed to be ordered to reflect that dependency.  They felt 
that keeping different parts of the system synchronized — making sure that software worked 
with the hardware, and that the documentation matched the software — should be considered 
part of the development process.  The participants treated these relationships as technical, links 
between artifacts that needed identifying and addressing.  They appeared to assume that once 
recognized the problems created by dependencies would be easily resolved.  This research 
demonstrates that even when recognized dependencies remain hard to manage. 
 
Since Garmisch other researchers have commented on both the technical and social aspects of 
dependencies.  Brooks describes dependencies in his discussions of the problems of software 
development.  In his discussions of conformity he points out that software must align with the 
needs of institutions and other systems.  He elaborates on this in his description of changeability: 
 

In short, the software product is embedded in a cultural matrix of applications, 
users, laws, and machine vehicles.  These all change continually, and their 
changes inexorably force change upon the software product. (Brooks, 1987; 12) 

 



15 

Sociologists like Woolgar (1994) and Whittaker and Schwartz (1995) also comment on the social 
aspects of dependencies that they found in software development.  Woolgar says, 
 

From a sociologist's point of view, the requirements process will always involve 
the creation and maintenance of (often new) social relationships across social 
organisational (and sometimes institutional) boundaries. (Woolgar, 1994; 204) 

 
Whittaker and Schwartz also note the role of dependencies, 
 

There are multiple dependencies within and between projects, necessitating 
careful sequencing of tasks, and frequent communication about progress. 
(Whittaker and Schwartz, 1995; 497) 

 
While these authors have all observed dependencies, to date they have not been studied 
systematically.  For example, Brooks mixes institutional levels of dependencies, such as those 
created by legal authorities, with those generated within a specific organization, like user 
demands.  Whittaker and Schwartz, also capture organizational level requirements;  however, 
they also point to another type of dependency, those that occur within a specific project, between 
developers working on the same software.  The framework that I will propose categorizes these 
different kinds of dependency into clearer analytical units. 
 
Finally, Scacchi (1984) identifies two sources of dependencies in his analysis of the social 
aspects of software project management.  At the inter-organizational level, he situates software 
development in a context of legal and market forces that influence the systems built.  He 
separates these from organizational dependencies, those factors that shape the development of 
software that come from inside the organization.  I consider another level of dependencies, those 
that occur between two developers, the individual level. 
 
 

2.6 Summary 
 
Software engineering as a domain of research has been active for a short time, since 1967.  In 
that time advances have been made, but many questions remain.  This thesis aims to contribute to 
the collective understanding of one of those questions: how do we manage software effectively?  
That question being far too broad to be answered in one thesis, I have picked one aspect: how do 
developers manage dependencies? 



16 

Chapter 3 
 

Configuration Management and the Coordination of 
Software Development 

 
 
 

Much of CM [configuration management] is concerned with controlling change: 
assessing the impact of a change before it is made, identifying and managing the 
multiple versions of items which a change generates, rebuilding derived elements 
after source elements are changed and keeping track of all the changes that are 
made to a system.  Change is hard to manage because items depend upon each 
other.  An apparently minor change to one element may propagate to items which 
depend upon it, directly or indirectly, so that consequential changes are needed 
throughout the system. (Whitgift, 1991; 24) 
 

 
Software configuration management is the discipline of identifying components of a software 
system, putting those components together in the correct order, and controlling changes to the 
software during development.  Although configuration management sounds  simple, in practice 
people find it difficult.  It is hard because identifying components of a software system, putting 
them together, and controlling change involves dependency management.  For this thesis, 
configuration management is the part of software development to discover what dependencies 
exist, and how developers, managers and organizations manage them. 
 
This chapter describes the emergence of the discipline of configuration management.  The 
configuration management literature reveals that little is known about how these tools and 
policies support the coordination of software development in practice.  However, research 
studies of other work settings suggest that individuals often need to coordinate their efforts to get 
the work at hand done.  This literature reports mixed findings about the role of technology in 
facilitating the coordination of work.  Finally site selection, methods, and theoretical 
perspectives used to gather and interpret data are described. 
 
 

3.1  What is Software Configuration Management? 
 
Configuration management practices and procedures evolved in military hardware systems 
development.  During and after the second world war the demands for complex weapons grew 
dramatically.  These technologies consisted of many sub-systems, often built by different 
organizations.  For example, companies specialized in engines, guidance systems, fuselage, and 
so forth.  Demands to build systems quickly and distributed development environments meant 
that companies did not keep accurate records of what had been assembled, and rarely did they 



17 

actually know exactly what was inside their technology, how it fitted together, and how it 
worked as a whole. 
 
This came to a head in the late 1950's with what has become a legendary story within the 
configuration management community.  As one configuration management book explains, 
 

This deficiency became apparent in the race for a successful missile launch in the 
1950's.  With time being critical, the promulgation of changes was accelerated to 
resolve incompatibilities among elements supplied by many supporting 
contractors.  When a successful flight was finally made and the buyer, in the 
euphoria of success, said: "Build me another one," industry found themselves in 
the following circumstances: 
 
1. Their prototype was expended (launched into trajectory). 
2. They did not have adequate records of part number identification, chronology 
of changes, nor change accomplishment. (Samaras and Czerwinski, 1971; 15) 

 
Incidents like this made military organizations realize the necessity of implementing two 
configuration management procedures.  First, it was necessary to identify each component and 
the configuration of the components so that people would know what the system comprised, and 
how the developers had arranged those pieces.  Second, it was necessary to track the changes 
made to each component, as well as alterations to the configuration of the system as a whole.  If 
configuration managers did not track these changes, they would lose the ability to identify the 
components and understand the correct system configuration. 
 
Configuration management continued to develop inside military environments.  During the 
1950's and 1960's the US. Army, Navy, and Air Force all developed configuration management 
standards.  At first they were particularly concerned with aircraft and missile systems, but it 
slowly spread to other complex systems. 
 
NASA also developed their own configuration management guidelines for space rocket 
development as the race towards manned space flight accelerated.  In the late 1960's, the 
government, through the Department of Defense (DoD) begun to push for a standardization of 
the standards in place.  They felt that different groups were reinventing the same standards.  The 
result was a general standard for controlling systems development, MIL-STD 480.  MIL-STD 
480 was soon augmented by MIL-STD 483 "Configuration Management Practices for Systems, 
Equipment, Munitions, and Computer Programs" (Department of Defense, 1970).6  As yet 
software development had not been separated from hardware. 
 
The DoD finally separated software from hardware when they introduced DOD-STD 2167 
(1985).7  The standard describes procedures for developing software and includes software 
configuration management procedures. Specifically it defines five aspects of configuration 
                                                
6  For a detailed treatment of the governments' efforts to standardize configuration management practices see 
(Samaras and Czerwinski, 1971). 
7  Although software had finally been separated from hardware, the basic principles of software configuration 
management did not vary from the more established hardware traditions. 



18 

management for software development: configuration identification, configuration control, 
configuration status accounting, handling and delivery of project media, and engineering change 
proposals.  Together these characterize the goals of software configuration management, and so I 
will review each of these in turn. 
 
Configuration identification involves identifying all the components in a software system.  The 
components include: software modules, libraries, test suites, user documentation, requirements, 
specifications, and other artifacts generated during the development process.  Not only must each 
component be identified, but each unique configuration of those components in the software 
system must be identified.  Software systems may have more than one configuration; for 
example, different platforms may require slightly different variants of the product. 
 
As the software evolves over time the individual components change.  Configuration 
identification also includes versioning these changing components.  Each time a developer 
changes any software component, a new version is made to record the differences.  The 
composition of the configurations also changes during development as developers add and 
remove components.  Configuration identification also encompasses versioning these different 
software configurations. 
 
Configuration control involves managing the changes to the software.  Changes come about 
because software requirements change, related hardware or software changes and so the system 
needs to be modified, and problems arise that need fixing.  Configuration control involves 
creating a managerial review and approval process that prevents developers from changing the 
software autonomously.  The intent is to maintain control over the evolution of the software so 
that software can be assembled. 
 
Configuration status accounting involves documenting the details about the components, 
configurations, and changes.  The accounting procedures originally consisted of creating and 
maintaining paper trails describing the systems evolution until the development of sophisticated 
configuration management systems in the mid-80's.  
 
Handling and delivery of project media, and engineering change proposals, involve creating the 
appropriate documentation for the government client.  Project media, documentation and code 
must be bundled and delivered in specific formats.   One system may be spread across a number 
of contractors so this information helps the governmental agency assemble the software from the 
different parts.  Engineering change proposals involve complying with certain standards 
determined by the specific governmental agency. 
 
The procedures of configuration identification and control begin to reveal the importance of 
dependencies in development.  Identifying configurations involves not only distinguishing 
different components, but describing how they fit together at compilation and build times.  
Change management activities track dependencies as they evolve during systems development.  
Although configuration management is a recognition of the importance of dependencies, the 
focus is on managing the technical aspects of dependencies. 
 
 



19 

3.2 Software Configuration Management Today 
 
Software configuration management evolved inside the government contracting world.  As a 
paper-based management discipline it was usually met with indifference by the academic 
software engineering community because it did not appear to provide any research opportunities.  
Configuration management issues were largely ignored by researchers interested in software 
project management as they concentrated more on managing the flow of work rather than the 
evolution of the system. 
 
Today there are no configuration management journals or conferences.  Although a number of 
books have been written on the topic, most of them orient themselves towards practitioners 
rather than researchers (for example, Babich, 1986; Compton and Conner, 1994; Whitgift, 1991).  
However, since 1991, there has been a workshop held once every two years, affiliated to the 
International Conference on Software Engineering.  Slowly a group of researchers and 
practitioners have formed a group concerned with configuration management issues. 
 
Configuration management became a research topic because software engineers began to explore 
the possibilities of automated support for software development.  This automated support came 
as Computer Aided Software Engineering (CASE) tools that typically supported one aspect of 
the development process such as structured design, and Integrated Project Support Environments 
(IPSE's), aimed at providing an entire development environment.8  Both streams of research 
presented researchers with opportunities to build configuration management systems.  Some 
researchers built configuration management tools, including Revision Control System (Tichy, 
1985), and more recently the Network Unified Configuration Management system (van der 
Hoek, Heimbigner and Wolf, 1996).  Others worked on environments that placed configuration 
management at the center of software development work such as the Domain Software 
Engineering Environment (Lubkin, 1991). 
 
At the same time researchers begun to building research systems, commercial vendors saw 
opportunities to develop and sell products.  Today, the most technically comprehensive products 
come from vendor organizations, rather than from academic research environments.9  Two forces 
have conspired to make configuration management a viable market.10  First, the need to comply 
with standards has pushed commercial organizations to buy configuration management products.  
Second, the demand to create "open systems" has dramatically increased the complexity of 
software development. 
 
Two new standards have recently begun to influence the way that commercial companies build 
their software.  In 1987 the International Organization of Standards released their own quality 

                                                
8  IPSE's are also known as Software Development Environments.  More recently there has been a blurring of the 
traditional distinctions between CASE and IPSE's with the introduction of integrated CASE (I-CASE).  I-CASE 
provides a collection of individual CASE tools that together aim to support the entire development process.  
9  This is recognized by academics as well as commercial organizations.  Academics build configuration 
management systems to answer focused questions about the role of technological support in software development. 
10  Some configuration management vendors have been around for some time.  They sold their software to military 
organizations who needed help meeting their contractual obligations, or they sold rudimentary configuration 
management systems as part of an overall suite of development tools. 



20 

standards for products the ISO 9000 series.  These series of quality assurance standards contain a 
configuration management standard.   Today, many European companies, governments, and 
European subsidiaries of American owned companies, must buy software from companies 
certified as ISO 9000 compliant. 
 
In the United States another standard, primarily aimed at the military contracting world, has 
gained importance.  The Capability Maturity Model (CMM) developed by the Software 
Engineering Institute (SEI) is a standard for measuring how well a company builds software.  
The CMM consists of five levels.  At level 1, a company develops software chaotically, they 
have little control over how the process occurs, and cannot repeat it.  At level 5, the organization 
has an optimized, repeatable process, and when they occasionally make a mistake they can 
retreat back to a working product quickly and learn from the errors to avoid repeating them.  
They can also accurately estimate the time needed to build any software. 
 
To date two companies have reached level 5 and most organizations operate at level 1 (Gibbs, 
1994).  To reach level 2 the CMM mandates that the organization has a configuration 
management process, among other things.  The model has become important because the U.S. 
Air Force has mandated that by 1998 all companies competing for contracts must be at level 3 or 
above (Gibbs, 1994). 
 
At the same time open systems have created a demand for configuration management tools.  
Software product development has transformed from a proprietary to an open systems industry in 
the last ten years.  Once, many software companies developed applications that ran on their own 
hardware and networks.  Today those organizations must provide applications that work with a 
variety of operating systems and hardware built by other manufacturers.  For example, an 
application could be expected to run on six different platforms and be compatible with three 
commercially available databases.  Thus the development organization may need to maintain up 
to eighteen different variants of a single application.  Most software product organizations find it 
hard to keep their development environment ordered. Questions about the products being built 
often come up: which piece of functionality belongs to what release, which platform requires a 
certain piece of code, what part of the documentation needs altering to make it compatible with 
this release, and how can the variants be tracked. 
 
The trend towards open systems has created a demand for configuration management systems 
because the identification and change aspects of configuration management have outgrown the 
paper-based methods of accounting.  Identification now involves tracking many variants of the 
application.  Making changes has also become more complex.  Some changes need to be 
implemented across all platforms and substrates; for example, a new application functionality.  
Other changes may be localized to a specific platform or substrate; for example, arising as a 
result of a change in the underlying technologies. 
 
 

3.3  Configuration Management Systems 
 



21 

Configuration management systems aim to provide automated support for configuration 
management work.  First generation configuration management tools used a library metaphor of 
"checked-out" and "checked-in" states to control changes to software.  To make any 
modifications to a software module, developers had to check out the code.  When a developer 
checked a module out, the tool made a new version of the code and prevented others from 
checking out the same software.  When changes had been completed, the developer checked in 
the code.  A checked-in module was stable and usually working.  Other developers could read 
and execute it with their own modules.  By checking-out and checking-in code, developers 
created successive versions of the module that the system stored.  Code versioning created 
stability during development by facilitating backtracking to older versions if necessary and 
preventing developers from overwriting the work of others. 
 
However, first generation configuration management tools had two disadvantages.  First, they 
only worked for code.  However, software systems also contain libraries, test suites, makefiles, 
and documents that change during development.  Modern configuration management systems 
use a database to store all the artifacts that make up a software product.  Second, the checked-out 
state turned out to be very limiting because it prevented others from changing the same module 
at the same time, which slowed down developers' ability to get their work done.  Modern 
systems solve this problem by allowing two or more developers to work on the same module at 
the same time and then merge their changes together. 
 
Modern configuration management tools support three layers of functionality on top of the 
versioning facility (Caballero, 1994).  The configuration control layer maintains information 
about the artifacts that form a software product.  It knows which versions comprise a specific 
system and how they relate to each other.  This layer allows developers to pull together all the 
software artifacts that comprise a specific variant of the software using a make-like utility.  It 
also lets developers recreate both previous and current releases of any software stored inside the 
configuration management data repository. 
 
The process management layer provides a "life cycle" for each type of artifact stored in the 
system.  A life cycle consists of a number of states.  For example a typical life cycle for a 
software module consists of the checked-out, checked-in, quality-tested, and released states.  
While the developers are most concerned with the checked-out and checked-in states, testers of 
the software use the quality-tested state to signal that a particular version of a software module 
has passed rigorous system testing. 
 
Finally, the problem reporting layer supports bug and enhancement tracking.  Modifications to 
the artifacts in the system occur as a result of problems with the functioning of the system or 
enhancements requested for future products.  The problem reporting layer provides a way of 
linking the bug reports or enhancement descriptions to the changes themselves.  Modern 
configuration management tools either have built in process management and problem reporting, 
or provide the necessary connections to allow users to build it themselves or buy another off-the-
shelf system and integrate it into the configuration management tool. 
 
 



22 

3.4  Explanations of how Configuration Management Works in Practice 
 
Little has been written about configuration management generally, and even less has been said 
about how configuration management happens in practice.  The literature can be divided into 
three categories: prescriptive visions of how to implement configuration management 
procedures, technical literature about the role of configuration management systems, and a few 
articles that suggest what realities of practice might be. 
 
Most books about configuration management explain how to implement policies and procedures, 
and occasionally tools, for practitioners (see Compton and Conner, 1994; Whitgift, 1991).  The 
authors describe the difficulties of software development: challenges of communicating change, 
of organizing multiple people to build a single software system, and knowing what any system 
contains at any given time.  Having discussed the problems they suggest how configuration 
management reduces or eliminates them.  As Bersoff, Henderson, and Siegel (1980) say, 
 

SCM [Software Configuration Management] … is defined as the discipline of 
identifying the configuration of a system at discrete points in time for purposes of 
systematically controlling changes to this configuration and maintaining the 
integrity and traceability of this configuration throughout the system life cycle.  
(Bersoff, Henderson, and Siegel, 1980; 20) 

 
The authors describe the main functions: identification, status accounting, and change 
management; however, they rarely mention the environment in which their configuration 
management practices and policies will function.  They concentrate on defining those practices 
instead. 
 
When these authors attempt to deal with potential difficulties in the environment, they focus on 
specific personality types.  Several of the books have attempted to classify the different types of 
problem people; for example, Babich identifies the renegade programmer as: 
 

They know that the configuration management procedures (the "bureaucracies") 
are a waste of time, not to mention an affront to their individuality, creativity, and 
constitutional rights.  They are going to do what they believe is best regardless of 
what you tell them.  (Babich, 1986; 94) 

 
He ends up cautioning potential configuration managers to act diplomatically with "difficult" 
developers. 
 
Compton and Conner (1994) take these characterizations further as they describe the guru, 
 

Gurus must have things done their way to remain Gurus; compromise is not in the 
creed.  In their formulation of the universe, Gurus sit next to (and advise) the god 
of software, and all access is through them.  This mindset is rarely suitable as the 
basis of a global SCM policy. (Compton and Conner, 1994; 101) 

 



23 

Their characterizations continue, the cowboy, essentially a nice programmer who leads the 
crowd and often ends up disobeying software configuration management procedures and the 
loner unused to working in teams.  Their solution is to discipline the offending members of the 
team.  Explanations that identify obstinate programmers have some foundation in real situations; 
however, they do not account for the times when developers find it difficult or impossible to 
implement configuration management procedures in practice.11 
 
Recently, a number of technical publications have noticed the trend in automated configuration 
management systems.  Instead of describing configuration management practices they 
concentrate on the kinds of system functionality available, the uses of those features, and the 
merits and disadvantages of specific systems (see Caballero, 1994; Fromme, 1994; LeBlang, 
1994).  Again these articles rarely provide any information about the difficulties of implementing 
systems in specific software development contexts.  In fact they usually like to report on 
unproblematic cases, organizations that embraced configuration management systems, and found 
nothing but benefits. 
 
However a few authors have commented on the challenges of implementing and using 
configuration management systems.  Susan Dart (1992) observes that managerial and political 
issues play a critical role in the adoption of tools and practices.  Dart believes that upper levels of 
management must be ready to manage technology transition by persuading people to use 
configuration management systems, customizing the tool to fit into the existing work practices, 
and recognizing that changes arise from the adoption of any new technology.  Management must 
also make choices about whether they should buy tools of the shelf, or build and maintain their 
own.  The political issues involve the mandated use of configuration management by the Federal 
government through standards like the CMM. 
 
Dart's work emphasizes the adoption of configuration management systems, and their associated 
practices, by an organization.  However, she also makes an important observation that 
configuration management systems do not simply affect the work of individual developers in an 
isolated way, but impact the entire organization.  Babich (1986) also identifies this, 
 

On any team project, a certain amount of confusion is inevitable.  The goal is to 
minimize the confusion so that more work can get done.  The art of coordinating 
software development to minimize this particular type of confusion is called 
configuration management.  Configuration management is the art of identifying, 
organizing, and controlling modifications to the software being built by a 
programming team. (Babich, 1986; 8, bold in original) 

 
Configuration management systems are a form of groupware technology, and as well as affecting 
individuals they require organizational commitments to adopt and use.  Recently, Nix (1994) 

                                                
11  Although we can excuse their limited solutions as a lack of understanding of the complexities of software 
development, these suggestions also ignore something that they should be more familiar with.  Given the history of 
configuration management as a paper-based accounting discipline, configuration managers often have a weak 
position within their organization.  As well as representing tedious paperwork, their career trajectories remain more 
uncertain that those of developers.  These books often assume that the configuration manager has some authority 
over the developers, but in reality this may not be the case. 



24 

drew a parallel between configuration management and groupware, by claiming that tools acted 
as a communications hub for developers working on common software.  However as Grudin 
(1994) observes of groupware systems generally they receive less attention and visibility than 
systems used by everyone in the organization, but they still need support of management during 
the adoption phase if they are to succeed.  It is these concerns that Dart tries to address in her 
work through raising the consciousness of management to these issues. 
 
Davies and Neilsen (1992) have examined configuration management in one setting.12  They 
conducted their study at the Information Technology Centre (ITC) of a university in Queensland, 
Australia, using qualitative methods to gather and analyze data.  They found that the model of 
rational actions assumed by configuration management policies, and reflected in the 
documentation that ITC generated, did not accurately reflect their everyday practices.  Although 
their informants completed the required documentation it did not necessarily imply that they had 
resolved their configuration management difficulties.  Instead they hid their configuration 
management difficulties behind the completed documentation. 
 
Rather than starting with normative vision of how configuration management should occur, this 
research describes the configuration management practices used by developers and 
organizations.  It shows how these practices have technical underpinnings, in the dependency 
relationships between pieces of code.  At the same time it focuses on the social practices and 
conventions that help to manage those dependencies, and the role of configuration management 
systems in supporting dependency management. 
 
 

3.5  Computer Support for Groups 
 
Although the configuration management literature contains few reports of practice, another body 
of research provides important background for this work.  Researchers who participate primarily 
in the Human Computer Interaction (HCI) and more recently, Computer Supported Cooperative 
Work (CSCW) communities have been interested in how people coordinate activity.  Much of 
the sociological work has concentrated on looking at collaborative work practices, and the role of 
technology within those practices (for example Heath and Luff, 1991; Suchman, 1992; Rogers, 
1993).  This literature provides a number of insights for this research. 
 
Researchers have noted that the dependencies between different work functions imply 
relationships between people.  For example, individuals make their work visible to others by 
speaking out loud and arranging papers so others can see them (Heath and Luff, 1991).  They 
also monitor the work of their collaborators to learn about events that may have a bearing on 
their own work (Hughes, Randall and Shapiro, 1993).  The arranging of papers and the 
arrangement of people also provide important spatial cues that individuals use to interpret the 
current state of events and align their work (Anderson and Sharrock, 1993).  This research 

                                                
12  They do not state whether the participants were using configuration management for software, hardware, or 
documentation. 



25 

demonstrates that this is also true in software development, where technical dependencies create 
and reflect social relationships among people and organizations. 
 
Ethnomethodological sociologists have described the ways that people work together to establish 
a common understanding, an account, of their work.  The accounts individuals produce often 
help others to know the current state of work (Suchman, 1983; Sharrock and Anderson, 1993; 
Button and Dourish, 1996).  Davies and Neilsen (1992) found accounting activities going on in 
their study of configuration management practices.  This research shows that both practices and 
tools provide accounts of work that developers use to understand what the current state of 
development is. 
 
In practice work often differs from the prescribed plan of action (Suchman, 1987).  This happens 
because work takes place in a dynamic environment, where unpredictable and unplanned events 
occur.  This observation suggests that in practice configuration management work may differ 
from the planned procedures. 
 
More recently, CSCW researchers have begun to explore the problems and issues of groupware 
systems in organizations (Grudin, 1988; Orlikowski, 1992; Bowers, 1994; Ackerman, 1994).  
The systems that they studied include meeting schedulers, Lotus Notes™, a network of CSCW 
applications, and organizational memory.  These researchers have reported on a number of 
general challenges that users of these tools face in trying to make them work.  Among these 
issues are: the relationship between people's understanding of a technology and its use, the mis-
matches between who does the work and who gets the benefit, and clashes between existing 
organizational structures and the use of groupware.  Other researchers (Perin, 1991; Pickering 
and King, 1995) have shown that inter-organizational associations, such as professional 
communities, influence the adoption and use of groupware systems. 
 
Software configuration management systems provide another venue to study these issues in rich 
detail.  The developers of software configuration management systems have been relatively 
isolated from the groupware community;  as a consequence, the tools differ from more 
"traditional" groupware systems.  Many traditional groupware systems, like electronic mail, 
video-conferencing, and media spaces, support collaboration by providing mediums for 
communication.  Configuration management systems try to support collaboration by providing 
information about the current work-in-progress and what other developers are doing, as well as 
providing models of how software development proceeds.  Configuration management systems 
are similar to workflow systems because they structure software development activities.  
Workflow systems have been a topic for debate in the CSCW community, but few people have 
examined their use in organizations (Suchman, 1994; Winograd, 1994).  An empirical study of a 
technology that supports collaboration by providing information to help developers coordinate 
with each other may help build a more comprehensive picture of computer-supported work. 
 
 

3.6  Methodology: Qualitative Research and Site Selection 
 



26 

Although previous research in software engineering, software project management, configuration 
management, computer supported cooperative work and human computer interaction provides 
useful pointers, the question of how developers manage software dependencies remains 
unanswered.  In the absence of previous systematic studies of dependency management it was 
impossible to generate testable hypotheses.  Instead a qualitative research strategy was chosen 
because it supports exploratory research (Marshall and Rossman, 1989). 
 
Quantitative sociology remains the dominant methodological approach to understanding human 
society.  However, qualitative sociology, despite being marginalized at times, has a tradition 
beginning with symbolic interactionism in the 1920's.13  Symbolic interactionism placed the 
actor at the center of the phenomena being studied. 
 

We want to know what the actors know, see what they see, understand what they 
understand. (Schwartz and Jacob, 1979; 7) 

 
This study was concerned with how developers and organizations understand and cope with 
dependencies in practice.  Qualitative methods with their focus on the actors and their concerns 
focused this research on the problems of dependency management.  The participants in this 
research found dependency management a difficult and time-consuming task. 
 
This thesis describes dependency management practices at three organizations.  Although I 
visited other sites, I chose these three because they illustrate the main points of this theory of 
dependency management.  I briefly describe the sites and my reasons for selecting them, as well 
as describing the methods used to gather and analyze the data.  Each site is described in detail in 
the chapters that follow. 
 
Tool Corp. is a small development organization, with about 150 employees when I arrived in the 
middle of 1994.  They build a configuration management system that they sell on the open 
market.14  I began my thesis work at Tool Corp., and they provided me with my initial exposure 
to the world of configuration management.  I selected Tool Corp. for three reasons.  First, they 
had configuration management practices in place and used their own system in-house.  Second, 
they managed to release and sell software successfully.  Finally, I gained acceptance into the 
company very easily.  I approached the Vice President responsible for overseeing the 
development of their product.  He welcomed me into the organization by providing an office and 
access to all of the developers.  He also seemed comfortable with the idea of having me stay 
there for an extended period of time. 
 
During the four and a half months that I remained inside the organization, I used a variety of 
methods to gather data: participant and non-participant observation, semi-structured interviews, 
informal interviews, and document analysis (Bernard, 1988; Jorgenson, 1989; Lofland and 
Lofland, 1984).  At the same time I attended meetings in the organization, followed a USENET 
group relating to configuration management, and as I became more familiar with the terminology 
                                                
13  Some techniques of qualitative sociology have roots in anthropology such as ethnography, so the tradition of 
studying individuals in the field dates back even further. 
14  I discuss the problems and benefits of studying a vendor of configuration management tool and their usage of the 
tool that they built in chapter 4. 



27 

of configuration management, conducted broader searches for literature.  I describe these 
methods in the next section. 
 
The data from Tool Corp. grounded this study and provided much of the conceptual framework.  
However, as a configuration management system vendor they emphasized the importance of 
configuration management practices and technologies.  In qualitative research, researchers 
should not necessarily pay attention to the anomalies of their sites, as each site happens to be 
different.  In this case the anomalies were extreme, and Tool Corp. also offered me connections 
into other organizations.  These two factors made further studies desirable and possible, and the 
data that I gathered from those sites radically altered, and improved, my understanding of 
dependency management. 
 
The other two organizations that appear in this research have connections to Tool Corp.  
Computer Corp., is a large computer manufacturer in the Bay Area.  As well as having 
guaranteed access and sharing the use of Tool Corp.'s product, I chose this site for two other 
reasons.  First, the organization builds software in a similar context to Tool Corp.  Essentially 
they make products that they sell on the open market, although for special customers they 
provide customized solutions.  The mix of primarily product development with a little 
contracting provides a balance between Tool Corp. and the third site.  The second reason for 
selecting Computer Corp. was the scale of the operation.  Computer Corp. has approximately 
700 developers working on the same large set of software products, their software solution.  The 
size of the company altered the strategies of coping with dependencies, so this site added some 
key elements to my understandings of dependency management. 
 
Computer Corp. recently adopted Tool Corp.'s product.  In this study I spent three days 
interviewing and observing people in the organization.  The primary data source comes from 
semi-structured interviews that I conducted with a cross-section of the organization.  I also 
gathered background information about the company, using the World-Wide Web.15 
 
The final site proves the most problematic in some ways, and the most interesting in others.  
Contract Corp. is a software development organization that specializes in contract software 
development work.  This creates a contrast among the three sites, Tool Corp., a product 
developer, Computer Corp., primarily builds systems for the open market, but also provides 
some customized solutions for special customers, and Contract Corp. that only engages in 
contract work.  A second reason to visit Contract Corp. was that while the organization as whole 
does contract work for a variety of commercial and governmental operations, the site I visited 
had recently completed a military project.  This provided me with the opportunity to visit a site 
and gather data about dependency management in a military contracting setting. 
 
However, as a foreign national without security clearance, it also meant that my access was 
restricted to a senior project manager and a configuration manager.  While they both talked to me 
for several hours, in semi-structured interviews, they may have been much more guarded about 
                                                
15  As well as visiting the company's World-Wide Web (WWW) site I searched the Internet for references to the 
organization.  I found annual financial reports, news releases concerning the company, and information about the 
company's competitors.  Although the web site of the company tended to emphasize the products that they sold, 
newspaper reports from newspapers on-line provided other information about the organization. 



28 

their opinions than others.  It was also harder to get background information about the company 
itself.  Despite these limitations, Contract Corp. provides an important data point.  I wanted to 
test the emergent theory in another setting, see what carried over, and what needed adjusting to 
accommodate the differences between military and commercial configuration management. 
 
Data gathered at four other sites does not appear in this write up.  Two other sites also worked on 
commercial products, very much in the style of Tool Corp.  The other two worked in military 
and quasi-military contracting settings, like Contract Corp.  These sites, discussions on 
comp.software.config-mgmt, and conversations with my colleagues developing software do not 
appear in this thesis, but the influence of these other data sources remains in the framework.  
These sites, people, and colleagues are the silent partners of Tool Corp., Computer Corp., and 
Contract Corp. 
 
 

3.7  Methodology: Data Gathering and Analysis Using Grounded Theory 
 
At Tool Corp. I conducted a long-term in-depth study of the participants' daily software 
development activities.  I focused on their configuration management practices and the tools they 
used.  In the beginning I used non-participant observation strategies to collect the broadest data 
possible.  This consisted of observing the informants at work, and maintaining a diary of 
happenings, as well as thoughts and feelings about the site (Lofland and Lofland, 1984).  I also 
learned to use their product, which provided a hands on opportunity to explore how developers 
used the tool.  I kept the e-mail that I sent from the site to friends and colleagues, as records of 
my reflections on the study and site.  These non-participant observation strategies sensitized me 
to the environment, and helped me to begin to interpret and make sense of the data. They also 
provided a permanent reminder of my initial reactions to the site, which proved useful when I 
became used to Tool Corp. 
 
At Computer Corp. I conducted some observation of people in the configuration management 
group advising developers about practices and technologies.  I also attended a class along with 
other developers where they learned about the new product, Tool Corp.'s tool, that their group 
would be shortly adopting.  This provided an interesting opportunity to learn about other 
organizations' perceptions of the product.  It re-sensitized me to the difficulties of understanding 
how the tool worked and the way that it organized software development practices. 
 
As I became more familiar with Tool Corp.'s development environment, and the participants 
grew aware of my skills, I was invited to help with the development effort.  I did no coding, but 
conducted usability tests and multiple user testing of the product under development.  I also 
participated in the company's retrospective analysis of the software development life cycle, 
conducted whenever a new product has been shipped. 
 
The participant-observer method has a history in both anthropology and sociology as a 
mechanism to get at the subtleties and sometimes hidden meanings held by the informants 
(Jorgenson, 1989).  However, as the researcher becomes increasingly used to the environment 
they risk a loss of objectivity, often called "going native."  When a researcher goes native they 



29 

lose their ability to interpret the events going on around them, by taking them for granted as the 
participants themselves do.  Strauss and Corbin (1990) provide a number of ways to help the 
researcher maintain a theoretical sensitivity to the environment that I adopted during this study: 
asking myself questions about what was going on around me, withdrawing from the field after 
several months to reflect on my experiences, and building competing interpretations of events. 
 
I used unstructured interviewing strategies to gather data at the first site (Bernard, 1988).  
Unstructured interviews have little if any interview guide, as the purpose of the interview is to 
find out more about the person and their concerns.  The interview is guided by the topics that the 
informant wants to discuss.  I tried not to steer the interview in any direction as I wanted to learn 
about how the informant felt about issues of their choice, and find out how they put events and 
objects together in meaningful ways.  Unstructured interviews allowed me to gather a large 
volume of data about a broad range of topics at the beginning, and during later phases of the 
study, became useful check points for any missing information. 
 
I also conducted semi-structured interviews at all three sites.  These involved an interview 
protocol and were held in a formal setting.  I scheduled the interviews, taped, and transcribed 
them.  I used an interview guide, although I frequently deviated from the guide either willingly 
because the informant raised important and new questions, or reluctantly, as the informant 
moved the conversation away from topics of interest to me.  The interview guide changed over 
time as my understanding of dependency management evolved.  However, the opening question 
always remained the same: 
 

What do you do here at X organization? 
 
I also was sure to ask two other questions: 
 

How do you do configuration management here? 
 
What automated support do you have here for configuration management? 
 

These questions usually led the informants to describe the processes within the organization.  
This helped them to relax into the interview.  During these descriptions I took notes about 
important parts in the process, where they seemed to be describing dependency management, and 
I used probing techniques to gather further data about those specific topics. 
 
To triangulate the data among the three sites I always asked some common questions.  To 
triangulate the data within each site I took themes and concepts that emerged from one interview 
and asked about them in subsequent interviews.  Finally, I used the silent partners to further 
confirm the hypotheses developed from the research. 
 
I used grounded theory, a qualitative data interpretation strategy to analyze the data gathered 
from the sites (Glaser and Strauss, 1967).  Grounded theory offered two advantages.  First, 
several books and papers have been written about grounded theory and they provide rich details 
about how to operationalize the concepts.  Grounded theory was originally proposed by Glaser 
and Strauss in 1967.  Glaser and Strauss have written books explaining how to conduct grounded 



30 

theory studies since then.  I followed guidelines proposed by Strauss (1987) and Strauss and 
Corbin (1990) in this study.  
 
Second, grounded theory suits this study because it meshes perfectly with the theoretical 
perspective of articulation work and social worlds that I used to focus the later stages of data 
collection on coordination issues.  Grounded theory is not entirely inductive and can leverage 
from existing theoretical bases provided that the theory it relies on has also been developed in a 
grounded manner (Strauss, 1987).  Articulation work and social worlds were the two theoretical 
approaches used in this research to organize the dependencies that were discovered in the field.  I 
describe both of these perspectives and their relevance to this work in the following sections. 
 
Grounded theory calls for a continual cycle between data gathering and data analysis.  The 
researcher continually tests their understanding by gathering more data that confirms, 
contradicts, or extends the theory being developed.  Although I describe data collection and 
analysis as sequential stages, they happened in cycles.  Strauss and Corbin call this process of 
testing the developing research "theoretical sampling." 
 
The development of grounded theory consists of three main stages: open coding, axial coding, 
and selective coding.  Open coding consists of reading through data such as interview transcripts, 
observational diaries, and documents.  The aim of open coding is to find categories that explain 
the behavior described in the data.  These categories initially have names, and properties that 
vary on certain dimensions.  The next step, axial coding involves developing these categories, 
finding the conditions that lead to their emergence and the consequences of their occurrence.  
During selective coding a researcher picks one category as the core category, the category that 
forms the center of the theory. 
 
The whole process ends when the researcher reaches a point of theoretical saturation.  
Theoretical saturation occurs when analysts get nothing new from data that they gather.  When 
the theory is complete, data gathered simply fits into the existing theory rather than extending it 
or altering it. 
 

3.9  Theoretical Perspective: Articulation Work 
 
 
Strauss defines articulation work as follows: 
 

First the meshing of the often numerous tasks, clusters of tasks, and segments of 
the total arc.  Second, the meshing of efforts of various unit-workers (individuals, 
departments, etc.)  Third, the meshing of efforts of actors with their various types 
of work and implicated tasks.  (The term "coordination" is sometimes used to 
catch features of this articulation work, but the term has other connotations so it 
will not be used here.) (Strauss, 1985; 8)16 

                                                
16  The total arc Strauss refers to “consists of the totality of tasks arrayed both sequentially and simultaneously along 
the course of the trajectory or project.” (Strauss, 1985; 4) 



31 

 
Two studies added important aspects to Strauss's definition of articulation work.  Gasser (1986) 
describes a setting where the participants used technology in their work.  He described different 
strategies of aligning, fitting and adjusting work that participants engaged in to accommodate the 
computer systems they had to use.  These strategies form a part of the articulation of modern 
work, work that involves computer systems.  Gerson and Star (1986) observed that articulation 
of activities may only resolve things temporarily.  In their study of an insurance organization, 
they note that articulation of work may resolve a coordination problem temporarily, for this 
specific instance, but if the circumstances arise again then the solution may have to be negotiated 
anew.  Gerson and Star emphasized the on-going nature of articulation work. 
 
Strauss expanded the definition of articulation work later, to include what he called the 
articulation process, 
 

The overall process of putting all the work elements together and keeping them 
together represents a more inclusive set of actions than the acts of articulation 
work. (Strauss, 1988; 164, italics in original.) 

 
Articulation work is the coordinating and negotiating necessary to complete the work at hand.  
Software developers primarily work on designing and building software systems.  However, as 
Bendifallah and Scacchi (1987) point out, as software developers design and build software they 
must also engage in forms of articulation work.  Configuration management systems attempt to 
support some of this articulation work electronically. 
 
Schmidt and Bannon (1992) have applied the concept of articulation work to the research 
problems in the computer supported cooperative work (CSCW) community.  They describe how 
individuals engage in articulation work as part of their daily routines.  They say: 
 

However in 'real world' cooperative work settings … the various forms of 
everyday social interaction are quite insufficient.  Hence articulation work 
becomes extremely complex and demanding.  In these settings, people apply 
various mechanisms of interaction so as to reduce the complexity and, hence, the 
overhead cost of articulation work … These protocols, formal structures, plans, 
procedures, and schemes can be conceived of as mechanisms… And they are 
mechanisms of interaction in the sense that they reduce the complexity of 
articulating cooperative work. (Schmidt and Bannon, 1992; 18-19, italics in 
original)17 

 
Examples of these coordination mechanisms include plans and standard operating procedures.  
These mechanisms supplement forms of social interaction like e-mail, video-conferencing, and 
other forms of communication. 
 
From experiences of managing software projects, configuration management specialists 
developed computer systems to support configuration management.  They did not build systems 
                                                
17  Since this paper Schmidt and his colleagues have further defined mechanisms of interaction for articulation work 
as coordination mechanisms (Simone, Divitini, and Schmidt, 1995).  



32 

that would increase the communications bandwidth, such as e-mail, for two reasons.  First, in 
large development teams communication paths cannot support all the articulation work necessary 
to get work done. Second, coming from the software engineering community, configuration 
management specialists are used to, and comfortable with, formal approaches to resolving 
coordination problems (Pickering and Grinter, 1995).  Instead of building systems to increase the 
communications bandwidth they embedded coordination mechanisms into a configuration 
management tool. 
 
Each of the layers of a modern configuration management system attempts to support the 
coordination of software development.  The check-out/check-in layer coordinates the day-to-day 
work of developers as they develop modules.  The configuration control layer allows developers 
and managers to routinely gather the work of the entire development team into one product.  The 
process layer synchronizes the activities of various groups involved in design, such as quality 
assurance and development.  Finally, the problem tracking layer coordinates the definition of 
problems with the actual changes made to the code itself.  
 
Configuration management practices and technologies provide an opportunity to examine the 
articulation of software development work.  Unlike previous work that has connected articulation 
work to computerization, this study makes technology a point of articulation.  This thesis shows 
how these systems shape and reflect software dependencies, and what limitations configuration 
management tools place on the articulation of those dependencies. 
 
Strauss's distinction between articulation work and the articulation process appears in the data 
gathered.  The articulation of work among developers as they work on individual modules was 
separated from the work that teams of developers had to do.  In the three data chapters that 
follow individual dependencies focus on the articulation work that developers do.  Group-level 
dependencies focus on articulation that teams and organizations have to do as a whole, or the 
articulation that goes on between different teams.  Although articulation work focused data 
gathering on dependency management, as a perspective it did not explain one set of 
dependencies that exerted huge influence on software development, so I turned to social worlds. 
 
 

3.10 Theoretical Perspective: Social Worlds 
 
During the course of this research dependencies among different software development 
organizations emerged in the data.  These inter-organizational dependencies impact people's 
lives, changing their priorities and providing them with new working arrangements.  However, 
the theory of articulation work, while capturing the essence of those negotiations within a single 
organization, did not seem to provide an adequate explanation of these inter-organizational 
dependencies.  Social worlds, particularly as described by Howard Becker (1982), offered 
insights into the character of dependencies that sustain software development worlds. 
 
In his book, Becker explains how people often view art as an individual activity.  The artist 
paints, the poet writes, the singer sings, and the pianist plays.  However as Becker explains, art is 
a cooperative activity: 



33 

 
Painters thus depend on manufacturers for canvas, stretchers, paint, and brushes; 
on dealers, collectors, and museum curators for exhibition space and financial 
support; on critics and aestheticians for the rationale for what they do; on the state 
for the patronage or even the advantageous tax laws that persuade collectors to 
buy works and donate them to the public; on members of the public to respond to 
the work emotionally; and on the other painters, contemporary and past, who 
created the tradition that makes the backdrop against which their work makes 
sense. (Becker, 1982; 13) 

 
In the quote Becker explains how artists depend on both consumers and producers to support 
their work.  This research reveals that in software development worlds both production and 
consumption dependencies exist.  This work shows how these inter-organizational dependencies 
impact the organizations in these social worlds. 
 
Becker elaborates on this point in his discussion of conventions.  Conventions are the social 
arrangements necessary for this network of collaborators to work together.  The network has few, 
if any, formal boundaries.  The participants do not work for one single organization.  They may 
only be partially bound by laws and other governmental regulations.  However, because they 
depend on each other, they must establish and maintain conventions that allow them to interact 
with each other to their mutual benefit.   
 
Becker defines these conventions as those mechanisms that allow the participants to interact, but 
hastily points out that they do not constitute immutable laws.  Conventions are agreements 
between people that have come to represent the customary way of acting.  Like Gerson and Star's 
observation about articulation work, these conventions may be re-negotiated every single time, 
or they may gradually change over time, or remain stable and then suddenly shift.  He also notes 
that conventions are interdependent so that if one changes, others must often change as well. 
 
Conventions in software development worlds do not have the same grounding in tradition as 
those in art worlds.  However, conventions shaped by market forces, the government, and other 
communities of practice do influence software development worlds and the people building 
systems.  Social worlds provide an explanation of the dependencies that influence software 
development but do not come from within the organization in which the development is taking 
place. 
 
 

3.11 Summary 
 
The rise of configuration management policies and subsequently configuration management 
systems reflects a growing concern within the software development community about the 
difficulties of managing the relationships between different components of a software system.  
This thesis extends that understanding by emphasizing the importance of both the technical and 
social aspects of those dependencies and providing some insights into how people manage them 
in practice.  Studies of practice especially within the HCI and CSCW communities, suggest that 



34 

work creates social relationships among people, and indicates that technology can play a role in 
supporting that collaboration.  However, little is known about the kinds of relationships that 
developers and organizations create and maintain during the development of software. 
 
This chapter also focused on research methods and perspectives.  Grounded theory is used to 
gather and analyze data.  Articulation work focused on the interactions between individuals in 
the course of their everyday work.  It revealed dependencies that developers must manage to 
build software.  The theory of social worlds captures the situated context of software 
development, the fact that software development organizations depend on other organizations to 
guide and shape their development process.  The next three chapters introduce the sites studied 
and describe the dependencies that developers, managers, and the organization manage as part of 
their routine software development activities. 



35 

Chapter 4 
 

Case 1:  Experts Using Configuration Management Tools 
Still Need Help 

 
 
 

You can never separate the two (design and marketing).  It doesn't matter how 
great the car looks if the engine is broken, and they could be very technically 
advanced engines which break continuously, and this is fundamentally what 
happened. (8: 1592-1594) 
 
Knowing what the rest of the people on your project team are doing, well it helps 
there because you can kind of see at the data side.  Do you know what their 
intentions are, what they going to do, the areas they are going to focus on, no.  
The [configuration management] system doesn't know anything about the future, 
it knows a lot about the past.  And something about the present, but you know it's 
very hard to pick the present from a snapshot. (13: 2259-2262) 

 
This chapter describes the results of the research conducted at Tool Corporation, a small 
development company that builds and sells a configuration management tool on the open market.    
The chapter begins by introducing the company and the software that they build.  The next three 
sections of the chapter describe the three levels of dependencies found during the research study: 
individual, group, and inter-organizational.  The research yielded a number of dependencies at 
each level.  The technical and social aspects of each dependency are described and the strategies 
that developers and Tool Corp. uses to cope with each dependency is discused. 
 
 

4.1  Welcome to Tool Corporation! 
 
Tool Corporation is a small software development company with their headquarters in 
California.  The company has existed since the early 1980's however they only began focusing 
exclusively on developing configuration management systems in 1986.  By 1994 they had 
established a presence in the configuration management systems market with their own tool, and 
had developed several versions of the product. 
 
In the nineties Tool Corp. has grown substantially in size, their average growth figure varying 
between 100%-200%.  This growth can be attributed to the transformation of Tool Corp. from a 
start-up company to an organization that has an existing customer base, products, and the 
potential to capture and maintain a significant share of the configuration management systems 
market.  As such Tool Corp. was growing marketing, sales, and services operations rapidly, as 
well as expanding into foreign countries. 
 



36 

The CM tool market that Tool Corp. competes in has grown rapidly in the last few years.  
Recently, Ovum, a London-based firm of consultants interested in analyzing the growth of 
various computer-related markets, predicted that the market for configuration management 
technology would be worth $1 billion worldwide by 1998 (Ingram, 1994).  As described in the 
previous chapter, this is being driven by standards like the CMM and ISO 9000 as well as the 
push towards open systems.  In a search for solutions, configuration management systems, offer 
comforting reassurance that ordered software development can be achieved. 
 
Today, the configuration management systems market is dominated by an oligopoly of vendors.  
While there are some companies in this market that have been building systems for many years, 
the majority of the organizations in this oligopoly are young companies, reliant on venture 
capital, seeking to turn initial profits, make initial public offerings and so forth.  The focus of the 
market has shifted rapidly from UNIX oriented tools to a trend towards supported mixed 
development environments, especially a combination of UNIX and PC machines.  Recently 
Microsoft entered the configuration management systems market when it purchased a small 
configuration management system vendor, but it is unclear whether this will have any significant 
affect on the market. 
 
Tool Corp. builds and sells a high-end configuration management system on the open market.  
They use their own configuration management tool internally to help them control the 
development of the next versions of the product.  During my time there, the company was 
preparing to release a new full release of their tool and a new point release for a variety of 
hardware and software platforms.  The development group that studied consisted of 14 people 
when the study began, and 3 testers, as well as the manager.  It grew over the course of my study 
to approximately 18 developers.  After the release of their new products Tool Corp. reorganized 
the development group.  They created a new tier of management and special software 
development roles including architect and build manager. 
 
The shift from building strictly UNIX based configuration management systems to building a PC 
client to their system marked an important time for Tool Corp.  When I arrived at Tool Corp. the 
developers all had UNIX workstations and several of them had two on their desks.  Their last 
public release of their configuration management system ran on a variety of UNIX based 
platforms such as; HP, Sun and DEC.  However, Tool Corp. along with its competitors began to 
shift more seriously towards PC development during my time there.  By the time I left all the 
developers had PC machines on their desks. 
 
The first site in my study was a development division of one CM tool vendor that I call "Tool 
Corporation," that competes in an oligopoly for this market.  Specifically I studied how the 
developers responsible for building the CM tool use their CM tool to manage their work.  The 
group consisted of 14 members, including the manager, and software testing group, who also use 
the tool in their daily work.  Because the developers use the CM tool to build the latest version of 
CM tool itself, they are experts in using it.  
 
Obviously, studying expert users of the CM tool affects the conclusions that I can draw, but it 
also offers several advantages.  By studying a group of experts who have used the technology for 
some time I did not find problems of adoption reported in other studies (for example, Grudin, 



37 

1989; Orlikowski, 1992; Bowers, 1994).  Second, even though the developers know their product 
extremely well they still had to manage the same software dependencies as other development 
groups.  I used participant and non-participant observation techniques.  I also conducted 20 semi-
structured interviews and approximately 80 informal interviews. 
 
 

4.2  Individual Dependencies at Tool Corp. 
 
Life at Tool Corp. revolves around the product that they build and use in their development 
process.  This tool occupies their attention, as a way of organizing the development life cycle, as 
design decisions that they must make, as their livelihoods.  The tool also helps the developers to 
cope with the dependencies that they experience in their work.  In this section I describe the 
dependencies that they encounter and the role of the technology in managing them. 
 
Parallel Development Dependencies 
 
The developers call the times when more than one person has the same module checked out, 
"parallel development."  This happens when different developers have changes that require them 
to work on the same module.  The tool supports this by allowing both the developers to check-
out copies of the module and make their changes.18  The tool also provides a merging facility, 
which lets developers integrate their changes with those made by their colleagues.  Despite the 
automated support that the tool provides the developers still try to avoid parallel development, 
because it creates dependencies between them, that take time and energy to resolve. 
 
Developers often explained that parallel development represented weaknesses in the product: 
 

Well I try to avoid it, I grumble about it, to me it's out there, it happens in our 
company and in others, but it seems to me that if there's better management and 
better decomposition of problems then should be avoided. ... Number 1 solve it by 
keeping things separate as far the units of work, the resolutions of work, which in 
our case is source files, and number 2 when you go about assigning this work you 
could try and assign common problems to the same person so they are not doing 
parallel development. (3: 447-456)19 
 
Anytime I see a parallel occurring at all on the same project to me that's a flag that 
this module is doing too much.  And perhaps the module itself needs to be broken 
up ... usually this set of functionality belongs to me, other people working on the 

                                                
18  Other tools have slightly different merging algorithms.  However, all the tools essentially provide some way of 
comparing the differences between the modules visually. 
19  The reference at the end of each quote is a unique identifier.  The first number was the number of the interview 
participant.  The second numbers refer to the lines in my transcription.  The quote contains verbatim conversation 
from the taped interviews.  Although I did many informal interviews that were not taped, I only use taped notes in 
quote form.  Notes in square brackets represent references to artifacts and processes that might identify the 
organization, so I have replaced them with more generic terms to maintain confidentiality. 



38 

project are working on a different functionality in the same module, therefore the 
modules doing too much. (8: 1492-1495) 

 
Explanations such as these reveal two important issues in the context of parallel development.  
First, the developers at Tool Corp. believe that better problem decomposition would resolve 
some of these parallel development issues.  Second, these explanations of why parallel 
development is bad emphasize the coupling between code and people.  People work on sections 
of code, and even more become associated with that code, experts with that particularly system 
functionality.  When parallel development happens, two developers with different systems 
expertise, have to modify the same module at the same time. 
 
If developers have a choice between work assignments then they often use the configuration 
management tool to find out whether a particular task requires generating a parallel version of 
the code.  They use the evolution view provided by the tool to find out whether someone else is 
working on the module.  The evolution view shows the history of an artifact's development at 
different points in time.  Each time the artifact increments a version, then the tool records: the 
final state of the artifact (working, in-progress, unit tested, system tested or released as part of a 
public released system), the person who worked on that version and the version number.  Over 
time, the evolution view shows the life of a module, from inception through different releases of 
the system, to the current state of development for a particular release. 
 

I'll look and see and if someone has it checked out, the module I want to modify 
and mine's not too difficult.  I did this last night, I sent them mail and asked can 
you do this for me in your version (12: 2029-2031) 

 
Developers use the evolution view of a module to find out whether anyone else is currently 
working on the code they need to alter.  All the developers working on this project can use the 
evolution view.  This allows them to make decisions about whether they want to engage in 
parallel development.  Often if developers see that someone has the latest version checked out, 
they either ask the person working on it to incorporate their changes into that version, or try to 
work on some other task. 
 
However, sometimes the developers can not avoid parallel development.  Their changes may be 
too complex to ask another person to work on, or they may be too critical to postpone until 
parallel development can be avoided, so the developers check out another version of the module.  
At this point, even if they have looked at the view, the system flags them with a message telling 
them that they have made a parallel version. 
 
When the developers have completed their changes they usually have to merge their code with 
the changes made by the other person.20  The person who finished last takes responsibility for 
merging their work with the other person's.  The tool supports merging by providing a facility 
that compares the two files and displays the lines that differ.  The developer responsible for 
merging selects the lines that need to appear in the integrated module. 
 

                                                
20 Sometimes it is not necessary to merge modules at all, for example if the changes are hardware platform specific. 



39 

Merging can be easy when the developers have changed different parts of the module, for 
example if someone has changed the comments and another person has altered the functionality.  
Developers find cases such as these easy because the changes involve distinct parts of the 
module and that show up clearly in the merge display.  In these easy cases the developer simply 
merges the modules without consulting anyone. 
 
However, developers sometimes find that merging does not go smoothly.  As the following 
quotes illustrate, while the developers referred to a single activity of merging, they had 
developed complex understandings of the difficult kinds of merging possibilities: 
 

So you can tell just by looking at the syntax, which is yours and which is theirs, 
and include all of your changes and all of their changes, and usually that's good 
enough.  Err, sometimes when you both change the same lines of code, your 
changes don't include their changes, and their changes don't include your changes, 
is harder.   (2: 310-313) 
 
What has to happen is the last guy who checks something in has to merge these 
two together, and merging to be honest is generally pretty easy, as long as the 
people aren't working on the same checks in the code.  If I'm working at the top of 
the file and somebody else is working on something and the bottom of the file 
then it's fairly easy to merge unless those changes change the overall algorithm, 
then it gets messy. (3: 471-475) 
 
A lot of times, sometimes they'll make changes which are a little bit incompatible, 
and it's a lot harder to merge.  Or sometimes they'll not even realize that they are 
affecting someone else's development and just go on ahead and not really clean up 
or take care of it.  (5: 989-991) 

 
The complexity of merging increases when the developers have simultaneously altered the same 
lines of code or algorithm to address different problems.  When this happens the complexity of 
merging rises because suddenly differences become embedded in the context of how a module 
works, what problems and enhancements the developers were working on, and which solution 
developers chose to implement.  It also becomes embedded in an understanding of the other 
developers' system expertise. 
 
At this point the developer responsible for merging finds the other person who also modified the 
module. 
 

When that happens I usually get together with the other person and they're 
looking over my shoulder and we do it together. (2: 313-314) 
 
So, basically that person will get together with other people and the other person 
will oversee the merge. (4: 794-795) 

 
They discuss what they did, explaining their programming strategies, the problems they solved, 
and the functionality that they believe the module possesses.  They work together to develop a 



40 

shared understanding of both modules, and determine the functionality of the merged module.  
This activity often takes place as a joint merging effort.  The developers sit around one terminal 
and select the lines that should go into the final merged module. 
 
Parallel development involves multiple developers working on the same module at the same 
time.  The developers depend on the same module for the work that they need to get done, and 
they end up depending on each other.  Merging is the resolution of the technical dependencies 
that exist between the versions of the module.  It also involves managing the social dependency 
among the developers working on that module. 
 
Change Dependencies 
 
Parallel development involves two or more developers making different changes to the same 
module at the same time.  Software development is about changing code in one of two ways: 
either fixing a problem or adding an enhancement.  So, in a sense all the dependencies that 
developers manage in their daily routines are change dependencies.  However, I wanted to use 
the term more specifically to capture one kind of dependency that occurs because one logical 
change — one problem to solve, one enhancement to make — often involves multiple activities. 
 
Developers know that changes to the product usually involve multiple alterations throughout the 
system.  This immediately creates a change dependency among the pieces of code, and 
documentation, and test suites involved.  Change dependencies create a relationship between all 
the pieces of the software that require alteration, because all the amendments must be made and 
integrated back into the product simultaneously.  Failure to do so usually results in the system 
crashing, at Tool Corp. that means that the nightly build fails as the following developers 
describe: 
 

This is broken [referring to the automate tool designed to help ensure that all 
changes are checked-in at the same time], so sometimes you'll have maybe five or 
more pieces you have to [check-in] by hand, and there's room for error, and so 
sometimes a complete fix won't get [in] and you'll have a semantic error dealing 
with this say this type was defined in this body, but the type def didn't get 
[checked-in].  Then the nightly builds fail. (4: 894-896) 
 
I don't know that we really had a good solution with them, but we've been 
experimenting with change sets.  That's a matter of grouping a couple of different 
changes together.  Like say I change Module A and Module B, it's a way of 
saying these two things are related and you can't use this change without this 
change. (5: 995-998) 

 
The relationship between pieces of code, is a technical change dependency. 
 
However, change dependencies have social implications for the developers working with them.  
Sometimes developers have the luxury of making all the necessary changes themselves: 
 



41 

There are certain times when in order for you to make a fix it spans several 
different [software components].  OK, and I nearly work in one set of code in 
GUI code but many times I'll make a fix in the GUI code but it also requires a 
corresponding fix in lets say the [language] interpreter, or the engine, and since 
I'm the one making the fix I go ahead and make the fix in both areas. (15: 2820-
2823) 

 
More typically one logical change requires several developers and other personnel on the project 
to make changes on various parts of the system.  As soon as this happens, they become involved 
in the change dependency, dependent on the other developers to make their changes.  In the 
following quote a developer refers to three separate activities, two of which must be carried out 
in parallel and must also be coordinated, so that the product remains synchronized with the 
documentation: 
 

For example this is a problem in a piece of code, and that has three tasks assigned 
to it, fix the code, my task, rewrite the documentation associated with that, 
[document writer]'s task and test it.  (3: 719-720) 

 
Change dependencies create links between developers working on the same change at the same 
time.  The developers depend on each other to fix their code, or documentation, or test-suites, so 
that the final outcome works together and hasn't broken the system. 
 
Demands for changes to the system do not appear from thin air.  Instead the Quality Assurance 
(QA) group, consisting of testing personnel and management, decides whether the change needs 
implementing, the importance of the change and who will work on it (which involves finding out 
who has experience with that sub-system and who has time to make the necessary changes).  
Change dependencies are relationships among code and at the same time relationships among the 
people working on those changes.  Further, developers depend on the QA group who ends up 
selecting the participants involved in this change. 
 
At Tool Corp. the developers use the tool and some managerial techniques to manage their 
change dependencies.  Usually one developer takes responsibility for the overall logical change: 
 

So a problem assigned to you doesn't mean that you are the only person who's 
going to resolve the problem. ...  Now, say I was originally assigned to the 
problem then I have to coordinate when all the tasks have been completed I need 
to say resolve the problem. (7: 1356-1360) 

 
That developer must ensure that all the developers make their changes and they get integrated 
into the new version of the system when they all work so that the product never has half a change 
in it.  
 
The tool also plays a critical role in supporting change dependency management as a number of 
developers explained to me.  One said, 

 



42 

So, I don't really ever have to walk down the hall and talk to somebody unless I 
try to read the code and can't figure out what they were doing.  I could look at my 
[evolution] view and see what, when they derived their change and I could 
probably tell from the comments why they derived their change and I can look at 
the specific change they're making even though it's still in a working state and 
they don't have it ready to give to anyone else yet.  I can look at it as an observer.  
In addition to that, since when we create new versions we usually associate them 
with a task I can look to see what problem they are trying to solve, what 
enhancement they are trying to do, so I guess we have a lot of information about 
what they are doing.  (5: 1008-1014) 

 
The tool provides important contextual information that the developers would otherwise have to 
gather by asking people.  The developer does mention an important part of the tool's role in 
supporting these change dependencies.  Changes enter the tool as problems, a record in the 
problem database, describing the change and all the work that needs to be done on it.  The QA 
group sub-divides this work between various developers, assigning each one of them a task, to 
fix a piece of code, amend the documentation, alter the testing scaffold so that the change can be 
verified as working, and so forth.  The tool maintains all of this information, inside the central 
repository, as a series of hypertext-like links. 
 
As the developer quoted above begins to realize during the description, the tool actually keeps 
considerable information about the current state of development for the project team.  Anyone 
working on the code kept inside that database can see the state of all the other code, the problems 
being resolved, the current state of the work-in-progress, and as well as what happened 
previously.  All this information helps the developers manage their change dependencies.  It 
saves them having to engage in extended conversations, either in person or by electronic mail, 
trying to find out who's working on what fixes, and what state the change is in. 
 
Expertise Dependencies 
 
I define expertise dependencies as relationships between developers based upon their knowledge 
of a section of the product.  Expertise dependencies arose in two ways at Tool Corp.  First, a 
developer would find themselves assigned to work on a part of the product that was unfamiliar to 
them.  Second, a developer works on a section of their code that calls a routine in another part of 
the product that they don't know.  Both situations crop up routinely in software development at 
Tool Corp. 
 
Modifying a piece of code that the developer does not understand very well carries some risks.  
Software modules interact with each other in ways that to a novice remain obscured from the 
source code.  Modifying that code, without understanding those relationships, can easily break 
the system in unexpected ways and are difficult to understand.  The developers at Tool Corp. 
realize this, and understand the significance of being the person that broke the nightly build.21  

                                                
21 Developers at a variety of companies spoke to me of a sense of embarrassment in being the person who broke the 
build.  Cusumano and Selby (1995) describe the shame that developers face at Microsoft when they break the 



43 

So, they depend on people with expertise in that section of the code to help them work out what 
the code does, and how it relates to other pieces of the system: 
 

If I work on other pieces, like when I work on the baseline, because I know that 
this is more [developerA and developerB]'s domain, a lot of times before I make a 
change I'll go and do not really a code review but a design review or a fix review 
with them to make sure I because I don't feel like I understand this module as 
clearly as I do my own, I want to make sure that what I do here isn't going to 
break. (3: 558-561) 

 
At Tool Corp. all of the developers, except for the newest, were considered experts with some 
aspect of the system.  While the older developers may have skills that span several sub-systems, 
newer developers would know about the aspects of the system that they had worked on since 
arriving in the organization.  All developers at Tool Corp. could easily identify the other experts: 
 

I would hope that in the [product] team each person would know what functional 
area each member of the team is working on.  Put it this way, I would be really 
surprised if anyone doesn't know. ...  I could do that, and I'm convinced everyone 
of them could do that.  A new person has to learn that. (13: 2300-2302) 

 
The developers also refer to the information stored within the tool for information about who that 
expert might be: 
 

You can also look, if you're in a particular module and you're confined within that 
module there's a created by for the last person who edited it.  So, if I'm confused 
about an algorithm in a particular .ac and it's created by [DeveloperF] then I know 
to go up and say explain this to me.  Yeah, the last person who modified the 
module may not know about the algorithm but they can usually point me to the 
person who does. (11: 1872-1876) 
 

In this case the developer had not been with organization for long enough to learn who was an 
expert in that particular area.  Instead he relied on the tool to reveal the name of the last person to 
modify the code.  He would then ask that developer whether they were the expert or find out 
from them who was.  Developers depend on the expertise of others to help them manage the 
technical dependencies that exist between code modules. 
 
Finally, expertise also provides a way for the QA group to assign any changes that need making.  
The QA people use information about peoples' areas of knowledge combined with their current 
work loads to make decisions about who fixes a problem.  This reinforces the expertise of the 
developers as well as ensuring that the problems get fixed as quickly as possible.  However, 
recently the manager had begun to move people to different sections of the system as he did not 
want to have to rely on any developer to get a problem resolved. 
 

                                                                                                                                                       
nightly build.  In some groups they must wear silly hats for the next day, and in others they become responsible for 
organizing the build until someone else breaks it. 



44 

Integration Dependencies 
 
Although development takes place at the component level, software developers make changes to 
code modules, technical writers write sections of documentation, testers work on test suites that 
are sections of the testing scaffold, the system has to be pulled together as a whole.  The nightly 
builds at Tool Corp. provide this function.  Each night the tool gathers the latest changes to the 
code and compiles them, and then builds the whole system from its constituent parts. 
 
One developer, known as the release or build manager, takes responsibility for ensuring that the 
tool builds the system, and puts the built version into a series of files that the developers can see 
and use.  When the build fails, an error in one of the software components occurs and the build 
stops, the build manager tracks down the code that caused the problem and either sends or speaks 
to the developer that broke the build.  As the current build manager explained to me, 
 

Oh OK, basically it's a matter of pulling everything together, the exact software 
product we're going to ship and putting it in an area so it can be tested and making 
it available for people so they can run on it and tidy things up on an everyday 
basis and it also results in, the build manager usually ends up tracking down 
integration problems like if two people have made changes which don't quite 
work together, I'm the first person who's going to see that probably.  I look for 
that when the nightly build fails. (5: 953-957) 

 
It was this comment that first led me to thinking about integration dependencies.  For her, 
integration problems occurred when two different logical changes embedded in the code 
interacted in problematic ways.  This makes integration problems different from change 
dependencies, where the fixes in one change must be managed by multiple developers.  
Integration dependencies operate at a higher level of abstraction, between all the development 
work happening on the system at a given time. 
 
The build manager takes responsibility for ensuring that these integration dependencies become 
understood by the developers.  The approach to managing them happens as conflict resolution, 
they may not be known until something happens that breaks the system, and then the build 
manager discovers the technical aspect of the dependency, informs the developers responsible, 
who then must manage the social aspect of that dependency. 
 
The tool makes this kind of conflict resolution managerial approach possible because it reduces 
many of the problems associated with integration dependencies smoothly.  It gathers the latest 
changes of the code from each of the developers, without having to ask them or trouble them to 
look through their directories looking for the newest working versions of the code.  While 
automation is often characterized as deskilling work, in this particular instance, it removes an 
otherwise complex coordination process, as this developer explained to me: 
 

It removes the manual process of the developer saying I've finished with this, you 
can use this now.  That's a pretty big advantage, I was a build manager for a part 
of it, [project name], for a couple of months. (2:406-407) 

 



45 

The tool will only gather files that have been checked-in and therefore tested, so checked-out 
working code, does not get into the nightly build.  The tool helps developers cope with these 
kinds of integration dependency. 
 
As well as supporting the gathering up of components, the system allows all the developers to 
see and work with the latest stable changes: 
 

Even in your own personal [sub-systems] you can see what the state of the parts 
of the project you are working on are because you get everyone's latest versions 
that others have checked in.  When you reconfigure your [system] you see what 
versions you get, the dates on them, who owned them, who [checked them in], 
what changes they include. (2:408-411) 
 
Sometimes I can tell from just reconfiguring my stuff and I can look and see what, 
who owns all the versions that I just got in.  I can see that certain things have been 
changing.  (12: 2055-2057) 

 
This allows developers to handle some integration dependencies.  When developers begin a new 
assignment, they typically get the latest versions of all the code, by "reconfiguring" the system.  
This gives them a very up-to-date base point to work from as they explained: 
 

If I'm about to modify a section of the project, I make sure it's a current snapshot 
of the project of what my co-workers consider valid work and then do the 
modification from there.  (8: 1534-1536) 
 
I guess one thing would be just the fact that if I come in the morning and I 
reconfigure [the system] I get the latest of everything and I generally don't even 
have to worry about it.  I just know it's going to be there and it's going to work 
fine.  Then I can just go about my business, having gotten everyone else's changes 
automatically. (5: 1021-1024) 

 
Without the tool, finding a latest base point proves very difficult, and developers can be very 
susceptible to many changes that they have not received from other developers working on 
sections of the system that are remote to them. 
 
It also gives the developers a way to realign their work as they get towards the end of the 
assignment.  A common practice among developers was to check-out a piece of code, make the 
necessary changes, and then reconfigure their system to get the latest changes.  Before finally 
checking the code into the system, they would re-test that the code worked with these latest 
changes.  The tool gives the developers numerous opportunities to check whether their code 
works with the other system components, and because they use that, it pushes out the 
management of integration dependencies from the build manager to all the developers. 
 
Historical Dependencies:  An Organizational Memory of Action 
 



46 

Until now, I have only described dependencies that connect developers in the present.  However, 
developers nearly always rework existing code, modifying it to fix repairs and add new 
functionality (Lubars, Potts, and Richter, 1993).  When developers reuse old code they often find 
themselves trying to work with code that someone else wrote.  The job of development then 
becomes the task of aligning your efforts with the work of the previous developer.  The 
complexity of working with other's code increases when the developer who originally wrote the 
code has left the organization or is assigned to a different project (Fischer and others, 1992).  
Often developers rely on decisions taken and changes made in the past; I call these historical 
dependencies. 
 
At Tool Corp. the tool helps the developers manage their historical dependencies and provides an 
opportunity for developers to work in the past readily.  Without the tool, and I saw this in other 
organizations, developers refer to previous versions of the source code, but do not use other 
information that the tool at Tool Corp. provides.  I have already said that the tool relates changes, 
"problems," to specific changes in the code, through hypertext links.  As the manager explained, 
unlike other systems, such as Lotus Notes, which also has an archiving facility, the 
organizational memory at Tool Corp. links the changes made with the actual code, the "data" 
contained in the system.  He compares a previous development project that he led, 
 

All design was done through [Lotus] Notes, we didn't do fancy documents, and 
the great part was we had a history, a chain of events, of why things happened.  
So that was more of a project history, but what's different about Tool Corp. 
experiment really is instead of attaching it to a string, or a question or a topic, that 
data is attached to the data.  That information is attached to the data.  It's attached 
to the subsystem itself rather than the topic, and that's not better or worse as 
much, that wasn't by design that was more a side effect of, we have a CM system, 
our repository's data centered so we attach it to the data. (13: 2214-2220) 

 
The tool manages this using its problem reporting facility.  When developers alter any artifact the 
tool forces them to link the new version of the artifact to one of the changes in the problem 
reporting facility.  The CM tool stores these links, and over time they build into a memory of 
which artifacts changed as a result of a certain problem or enhancement.  In this organization the 
memory has been growing for over 2 years.  These links are augmented by a free form comment 
field where developers can describe their changes.  The CM tool stores the comments so the 
organizational memory contains problems and enhancements, the artifacts changed, and often 
descriptions by developers of how they implemented the solutions. 
 
All of the developers use the organizational memory to go back into the past and learn about the 
work of the predecessors.  The different things that they look for emphasize the variation 
between different types of historical dependencies that exist.  A number of developers described 
their use of the organizational memory to go back to find a single module. 
 

That's I think the main advantage for me is that I can look at a module and say 
OK who wrote that last and then if I have to work on that I can go back and say 
OK so and so worked on this now what did you do here things like that. (17: 
2995-2997) 



47 

 
All the time, it is really useful.  If you're making a change in some code it can be 
hard to remember what someone else did before.  You can look at the comments, 
that tells you who made changes.  You can see the tasks which were assigned to 
the code, and the problems which they were trying to solve.  That way you can 
even see who was working on it. (5: 2435-2438) 

 
As these quotes illustrate, developers at Tool Corp. go back to a single module to try to learn 
about why certain coding decisions were made, or what problems the developers were trying to 
solve, and how they implemented the changes.  The developers search for a context for their own 
work on the module.  The current developers find that the process of upgrading existing code 
does not only involve making the technical changes, but also learning about the social context in 
which that module evolved.  Historical dependencies start with relationships between current and 
previous versions of systems components; however, they also create relationships among the 
developers who worked on those versions. 
 
Developers come and go at Tool Corp. as they do in all software development organizations.  
The tool provides a way for developers who have never met each other, who will probably never 
work together, separated in time, to coordinate their work.  As the manager explained, 
 

There is an activity going on today between [DeveloperC and DeveloperD] that 
they are out there making a fundamental change to the way one of architectural 
mechanisms.  They are working in a piece of the system nobody has an in depth 
knowledge of here, the original developers for that were gone over a year ago.  So 
they are going, the only source for what's and why's of that is through the system, 
thankfully there is this big database very big database that's got this history,  So 
they're out there looking at the history and basically we assemble the history of 
the why's. (13: 2192-2197) 

 
I followed up with the developers themselves who were indeed using the tool to build that 
context about the evolution of the architectural mechanism. 
 
The person in charge of interface development uses the organizational memory for similar 
reasons.  In his case some of the original developers have left the company.  Interface 
development was also distributed across many developers until the management saw a perceived 
need to try to unify the interface to the entire product. 
 

I do that all the time with GUI code because I didn't actually write the code, I 
maintain it, so then I sometimes have to wonder why it's done this way and what 
happened, you know there'll be twenty versions of I'll go back through all twenty 
versions, figure out when did this actual piece of code get in, entered, and see 
what the comments were. (15: 2705-2708)   

 
Because he often found himself editing parts of the interface code that he did not write himself, 
he consulted the organizational memory to see what the developer who wrote the code had said 
about the task at hand.  This provided information about which kind of solution to pick. 



48 

 
Even if the original developers existed, sometimes the original artifacts for a system get 
misplaced within an organization.  The organizational memory keeps them all together within the 
system itself.  This saves everyone some time as the manager explained, 
 

I had to go and figure something out just the other day that was, well it was 
related to one of the original design documents for the system.  I went into the 
database, I searched for this thing, you find this thing, now how did I use to do 
that.  I used to do that, I'd probably go to a person, and if I could find that person, 
but now I'm going to, in effect I use this term favorably, a repository which 
physically and figuratively is a repository.  It's got not only the documents, but the 
history of the documents, the reasons the documents changed. (13: 2202-2207) 

 
I have described the organizational memory as a part of the system, the portion of the tool that 
links problems to artifacts within the system.  Because the tool serves as a repository to store all 
the components, the whole system acts as a memory of specific points in the evolution of the 
system.  Tool Corp. puts all the documentation and test suites into the system, so technical 
writers and testers, can also go into the tool and rediscover the missing context that provides a 
needed explanation.  The senior tester revealed another important use of the organizational 
memory in his work:  
 

I'll see something that's really strange, and I'll think to myself, this is really 
strange, I could talk to a developer but sometimes because there's so many 
interdependent pieces a developer couldn't really tell me if what I saw was really 
expected, but I can go back to a log file, like a year ago, and look up the run, and 
see the complete run.  I can go through and compare, and see if its that 
dramatically different.  Try to understand what sequence events led up to a certain 
happening which I didn't understand. (14: 2596-2600) 

 
In this case the context that he sought, not a development context, but a testing one, could not be 
put together by any single developer.  In this case, the tester clearly felt that he was as reliant on 
the tool as the developers working with the echoes of those who had left the company.  In this 
case though, he was dependent on a context that spanned the expertise of the developers, and that 
they might not be able to piece together for him.  The fact that the developers find it difficult to 
understand the system as whole has more serious ramifications that I discuss in the section on 
group-level dependencies.  
 
The tool also had special uses.  About two thirds of the way through the study the company 
decided to change a naming convention used throughout the system.  The name was embedded in 
the product, appearing on screens and named in commands.  The manager assigned a number of 
developers the task of going through the system and changing all instances of the old name to the 
new name.  Fortunately for the developers this name changing had already happened once 
before, and the code changes were linked to one problem describing the previous name change. 
 
They began with the problem and found all the artifacts that changed: those containing the name.  
This found most of the instances of the name, only excluding modules created after the last name 



49 

change.  The developers also used the free form comments to find out whether the previous 
developers had experienced any difficulties when they did the earlier name change.  As one of 
the developers responsible for the name change describes, this saved the developers a lot time: 

 
We looked at the tasks and the problem, there was one for each database, from the 
last name change.  That gave us the list of things which would probably need 
changing.  It was the basic set of changes.  We actually needed to do less, because 
last time we were smart, and used defines instead of having things everywhere.  
Last time we did the name change we had to grep on all the files, however, some 
information containing names was stored in the database, and we couldn't grep on 
that so we missed it.  The next day when we tried to compile we discovered that 
the system didn't work because we'd missed making the corresponding changes in 
the database code.  We couldn't grep on that code which is why we missed it. (5: 
2425-2431) 

 
nstead having to search the code manually using UNIX tools like grep, they had a head start.  As 
everything gets stored in the repository they can search that, and then can use the organizational 
memory to organize that search. 
 
However, the organizational memory does not operate without creating its own problems.  It is 
worth examining the problems that arise when developers try to use the memory sometimes.  
These problems often arise because the fill-in fields do not contain useful information, as one 
developer noted: 
 

Sometimes, it's helpful, sometimes it doesn't.  It all depends on the input of the 
people. (15: 2708-2709) 

 
Another developer offered an explanation for why this might happen.  She said, 
 

It's a minor point.  I don't fill out all the fields as well as I should, they take a long 
time to fill when you're in a hurry.  It's annoying to me when I try to find out more 
about someone else's work that I try to use the tool and read these fields and 
they're empty or meaningless.  So I know it can be upsetting. (6: 1248-1251) 

 
When development proceeds at a relaxed pace then people usually take the time to explain what 
they did in the comment field.  The pressure of tight project deadlines encourages developers to 
write less in the comment field.  When other developers review these comments they do not 
understand what happened in detail that makes the comments almost meaningless. 
 
When developers do not find the comments useful then they must find other ways to compensate 
for this missing data.  One developer summed up his own strategy, 
 

Well, for one thing when you get assigned a task, you know that task is assigned 
to you, but you still go to [problem reporting system] to find out exactly what this 
task is about.  They only give you a test synopsis, it doesn't really have a 
description of what the problem is, how you go about solving it, so you go to 



50 

[problem reporting system] and find out.  All lot of times, people enter problems 
or assign problems they don't really put in good description about how this 
problem should be fixed or why we need to fix it.  So that's when you need e-mail 
support for further discussion of this problem. (7: 1374-1378) 

 
When developers can not get all the information that they need they rely on other methods of 
finding out about what happened.  They can rely on other developers' expertise of sub-systems, 
or the QA group's knowledge of what change the task was a response too.  I have described these 
as other kinds of relationships, expertise and change dependencies, and they are.  Software 
developers must manage a cadre of dependencies simultaneously if they are to build any working 
systems at all. 
 
A rarer problem that Tool Corp. faces is that some of the configuration management tool was 
built before the problem reporting facility was added.  When developers make changes to these 
parts of the system, they have no information from the organizational memory because it did not 
exist at that time.  Fortunately this does not happen often. 
 
The organizational memory provides new opportunities for the developers to manage the 
historical dependencies that arise when they make changes to code.  Sometimes the tool does not 
provide the developers with the kinds of information that they have become accustomed to 
though.  These disappointments illustrate the increasing tool dependencies that the developers 
have, 
 
Configuration Management Tool and Practice Dependencies 
 
The tool offers the developers some support in managing the dependencies as I have described 
above.  However, their sense of configuration management, and it's importance, as well as the 
instantiation of that in the tool itself, does cause them to become dependent on the tool and their 
practices.  I have already described cases where the developers do rely on the tool, and in this 
section I will detail two other important ways that the tool and practices of configuration 
management shape the way that developers understand the development process at Tool Corp. 
 
One developer explained, he relied on the tool implicitly, 
 

I think it manages the process, a lot of things that you normally do on the fly 
remembering in your head, it manages.  Mainly versions of files, that's the main 
advantage CM gives you.  Sometimes you put a change in, and you go in the 
wrong direction, and you want to go back, and it's nice to have that officially 
somewhere. (2:396-398) 

 
Backtracking is a strategy that most developers follow whether or not they have a tool storing the 
code.  Even without the tool developers working on code keep different versions of the files so 
that if their latest revisions do not work, they have somewhere to go back to and start again from.  
However, because the tool managed the code the developers did not keep versions of the code. 
 



51 

However at Tool Corp. the developers depend on the tool to organize their work using the 
problem reporting facility that I described earlier. 
 

I like to use the tool to organize my work.  I use the [problem reporting] facility.  I 
create tasks for just about everything I do.  For a while I even created them for 
work which didn't necessarily have things in the database which I would have to 
check out and change. (6: 1198-1200) 
 
So it keeps track of all the problems which I have assigned to me and I can put 
priorities on them, so I know which ones I'm going to do first, also it has a field 
for estimated duration, so I can get an idea how long it will take me to do 
everything, and I can budget my time. (2: 326-328) 

 
This works well because the developers control the problem reporting system: 
 

Well, we have complete control actually because we are all have the [problem 
reporting] admin privilege role.  Well, whenever I find a problem in my code, or 
other peoples, but particularly in my code, I make a problem and submit it and I 
automatically assign it to myself.  So that's the first way.  Then we can go back in 
and modify the priorities and length of time so we actually have full control. (6: 
1219-1222) 

 
The control over the problem reporting system was not intentional in the beginning.  As I 
previously explained, the tool relates problems to changes in the actual code itself.  In fact the 
system does not let developers work on a piece of code without having an associated change in 
the problem reporting facility.  This used to prove problematic, as developers ran out of 
problems before the QA group could meet to generate new ones for them.  The project manager 
decided to let the developers all have this privileged role where they could create and assign 
themselves problems, so that they could get on with their work.  Along with creation and 
assignment of problems, the developers can now access and revise their time estimates for fixing 
problems.  Other developers can also look at the problems assigned to a developer and use their 
time estimates to align their work.  For example, if they believe that someone else will soon 
finish their code changes, they can elect not to make a parallel version of the code, and wait 
instead. 
 
However, the tool only provides a starting point for developers to organize their work.  One 
developer summarized how he depended on the problem reporting facility to arrange his own 
work load, but also observed that the initial display of the problems did not convey all the 
information necessary: 
 

It's nice, you come in the morning and get a mail message, these are all the things 
the problems assigned to you, just look at all of them.  No-one actually has to 
come to my office and say this is a bug, it has to be worked on, I just know 
because it's automatically generated and sent to me.  So I look at that to figure out 
all the things I have to do.  Obviously I got to, the listing isn't complete, its kind 
of a synopsis of the problem so then I have to go back into our tool and look it up 



52 

and read the description of the problem and gage whether or not I want to do this 
or not. (15: 2691-2696) 

 
The developer used the tool as a starting point to learn about the problem.  As we have seen in 
earlier examples of the developers work, they often leave the tool, and search for other 
developers in order to conduct their work.  However, the tool plays a useful role up front giving 
them information about what's expected and pointers to other data sources.  Sometimes the 
developers reliance on the tool ends up hurting them though: 
 

In fact I had to, a whole bunch of problems got moved from someone else to me, 
but they never got updated in the database, and so she thought she was working 
on them and I thought I was working on them too.  So I ended up having to go 
and mark them all mine in the database. (12: 2045-2048) 

 
In this case the developer who had the problems originally assigned to him, and the new 
developer had both started fixing the same problem.  Now that the tool holds information about 
work assignments the management group must continually align their decisions with the 
information presented by the tool.  When the two, the tool and the verbal decisions, conflict then 
problems such as these occur. 
 
Another developer described a different kind of tool dependency to me, but an important one: 
 

If you have a lab partner they might have set these things up in a completely 
different way.  In [the tool] the system sets up everything in a standard way.  It's 
easy to find out what is going on.  There's rhyme and reason to it all.  I can 
understand through graphs and views, in regular development it's looking at 
makefiles.  Talking to someone is one better, but you don't have access to the 
person, you can sort of understand. (3:729-734) 

 
This developer knows how the layout of the software artifacts provided by the tool, as all the 
developers at Tool Corp. do.  They rely on the standard presentation of information to make 
decisions about the way that the code works.  They use this to learn about code that they must 
change, and its relations to other parts of the system. 
 
Interface Dependencies 
 
The interface developer must also manage a set of dependencies unique to the interface of the 
system.  As he explains, 
 

Most of the time, especially with the stuff I work on, the interface, people will log 
a lot of bugs against the interface because that's what they see.  So they see the 
interface crashing, so obviously they think it's in the interface, when in fact it 
really turns out to be that other piece of code somewhere else is not working 
correctly. (15: 2743-2745) 

 



53 

The interface depends on the functions of the code that sits beneath it.  The interface often 
simply reflects the underlying behaviors of other sub-systems of the tool, for example, presenting 
the database of code, documents and test-suites to the user, or showing the problems in the 
problem reporting facility.  However, when other developers or customers run across problems 
either they assume that the interface has generated the error, or they do not have the time to 
explore other possibilities, and so problems get assigned to the interface developer that do not 
belong to his section of the code. 
 
All of the developers sometimes get problems that do not belong to them.  However, the 
interface developer gets randomly assigned problems more routinely than the others.  He copes 
with these dependencies by spending considerable time tracking down the sources of the errors.  
It often leads him into sections of the system that he does not understand, and then he relies on 
the tool to help him understand the pieces of the system, or help him locate the experts in that 
area. 
 
 

4.3  Group Level Dependencies 
 
In the previous sections I concentrated on the dependencies that individual developers manage in 
the course of their work.  These dependencies require developers to work together, to engage in 
forms of articulation work, coordinating their efforts.  Group level dependencies differ in one of 
two ways.  First, they involve interactions among groups of people.  Second, these dependencies 
may act within one group, but involve the entire team either acting as a whole, or sharing a 
common understanding. 
 
How those dependencies manifest themselves depends on the organization.  In a small 
development environment individual developers manage these dependencies.  In a larger 
development organization these inter-group dependencies may be managed by formal 
hierarchies, or special groups of individuals, as I shall show in the chapter about Computer Corp. 
 
Life Cycle Dependencies 
 
Tool Corp. engages in a number of forms of parallel development.  I have already described the 
case where two developers work together on the same module.  At the group level two teams of 
developers often work on different platform releases at the same time.  This was the case at Tool 
Corp. 
 

With the [product] release coming out the code on the [platformA] side is very 
chaotic it's changing every day.  They do re-integrations every night, re-
compilations, and I didn't want to thrust a very beginning porting development 
into that environment.  So, I got the latest version, the pre-release was the version 
I chose and I ... pulled it, I wrote a script to pull all the source code out and laid it 
out in a more traditional format.  Then I copied that to the [platformB] and began 
my development effort. ...  If I decided to stay within their paradigm then they 



54 

would see [platformB] defs.  Also changes which I have made, which I didn't 
want to impose during a chaotic development cycle. (11: 1829-1840) 
 

This developer was responsible for the initial developments on the new hardware platform, and 
was soon joined others to work to release a product.  Although for now they have managed to 
isolate their work from the other platforms, they must eventually re-integrate it back into the 
main development database, so that the tool can organize the code as it does all of Tool Corp.'s 
code. 
 
At the time the developer decided to isolate his code because the pace of development on the two 
different platforms was very different.  Platform A code was approaching the end of the 
development life cycle.  Feature freeze, the point where no new features can be added, had 
occurred.  The system was undergoing extensive testing and modification only.  Platform B was 
in the initial development phases, where the developers did not necessarily want to even conduct 
a nightly build, but work on big sections of the code, rather than tweaking it.  On both sides the 
pace of the cycles would have proved disruptive to the development efforts of the other.  The 
hope was that once Platform B, the new platform, was as well developed as the older platform 
the two would share one common life cycle managed by the tool. 
 
This happens even on the same platform.  When two developers made a significant change to the 
product, they wanted to isolate their work from the rest of the project team so that they could 
develop and test at their own pace before merging back into the faster pace main project 
development.  As one of the developers explained, 
 

Well, [DeveloperG] and I were working on, we were doing a larger project but we 
had quite a bit of overlap in our work.   So we were able to use the tool to isolate 
our work from the rest of the group and share our work with each other.  Well, 
just that it allowed us to isolate the work from everybody else's. We were able to 
create parallel branches from what everyone else was working on, and putting 
special tags on what we created, the rest of the people didn't see, didn't get it 
bound in.  It kept them from using it in their product...  When we were ready to 
merge it in, we had to go back and merge it.  But it maintained the history and the 
relationships. (6: 1189-1194) 

 
In both of these cases the tool helped the developers to reduce their dependencies on the pace of 
development.  It worked both ways too.  The developers working on testing and fixing the main 
development did not have wait for these two developers to finish these complex changes.  The 
others could test, fix, and build the system, without getting extra platform or project code.  Those 
working on the project and the new platform did not have to structure their work so that they 
could test, fix, and build their systems more quickly. 
 
"Big Picture" Dependencies 
 
While the tool provides support for many of the individual dependencies that I have described, it 
did not provide any mechanisms to help the developers visualize the system as a whole.  The fact 



55 

that this "big picture" was missing and that the developers could not easily put it together 
emerged in a number of the interviews.  It also surfaced in their actions. 
 
When development started on the configuration management tool, Tool Corp. assigned a few 
developers to the task.  At this time the development process was managed by a group of friends, 
who talked over the walls of their cubicles and in so doing stayed in touch with all the aspects of 
development, as one of the original developers explained to me: 
 

In our last building, we were in this tiny little office, that really had no separate 
offices, and the cubicles were about this high [she motions about 4 foot] so you 
could see everyone in the whole building and all the developers there were only 
about six of us at the time, in this tiny little area which was just these short 
cubicles, and we talked to each other over the walls all the time and things like 
that.  When we moved into offices when we moved into this building it so hard it 
was really just people in offices along the wall, we were the only people who 
were developers at the time so it was just really hard for us to get use to it, 
basically there [in the old office] you could keep up to date.  People would have 
conversations well how should I implement this you know over the wall and 
everyone got to hear it. (5: 1026-1033) 

 
As the product became successful, the company grew and the development group also got larger.  
The developers began to specialize in their own sub-systems and lost their sense of the whole 
system at the same time.  While the developers understood their own sub-systems well, and 
many had worked on different sub-systems, the developers did not know the conceptual structure 
of the product being developed.  This problem was exacerbated by the changes in design that 
occurred throughout its development that altered the system.  One developer, who had not been 
with the company long described the isolation, and the affects of that as: 
 

there's a lot of different sections, which call routines in other sections, that's sort 
of, you pretty much need to know the big picture of the group, as well as the 
individual part.  I have routines which make calls, type creation calls go to some 
of my routines, hands me information I need. ...  So you pretty much have to 
know what other people are doing, although its kind of scary because we are 
working on our own particular areas and no one really knew what it was going to 
look like when it all came together.  So, we did have a lot of design meetings 
which was really good, that was really important in the beginning to get a good 
picture, but once we got specifications, we started into developing our little 
portions, we had an idea of the other things were, but not of how they were 
developed... (4: 920-928) 

 
His concern was that no-one really understood how the system would look when it was all put 
together.  Although the system pulled together code for the nightly builds the developers couldn't 
visualize that whole.  This has important technical consequences.  Because they could not see 
that whole, they had trouble recognizing how the parts would fit together, what those interactions 
would be.  It also crippled their ability to practice software techniques such as re-use.  Because 



56 

the developers did not know what their colleagues were working on, they couldn't make use of 
anything that anyone else built. 
 
The developers had a number of strategies for trying to cope with the fact that they didn't really 
understand how the system would fit together.  Some of the developers tried to use the tool to 
find out about the system: 
 

What is essential, in a group, is that people need to know what other people are 
working on, sometimes, that's the weakness we have here, sometimes people don't 
know what other people are working on, it [the tool] doesn't tell you that. ... I 
guess you could look at the problems the person has completed and read the 
descriptions and get an idea, but usually there's not enough time, that's pretty time 
consuming, usually, what you want is a one paragraph description which tells you 
what everyone's been doing. (2:413-419) 

 
The problem reporting facility though, tracks the changes in the system at a very low level, the 
modifications to the code.  The developers wanted a more generalized description of what their 
colleagues were doing.  One developer drew up an architectural diagram of the system in his 
spare time.  Architectures, 
 

permit designers to describe complex systems using abstractions that make the 
overall system intelligible.  Moreover, they provide significant semantic content 
that informs others about the kinds of properties that the system will have: the 
expected paths of evolution, its overall computational paradigm, and its 
relationship to similar systems. (Garlan and Perry, 1994; 363) 

 
The architectural diagram consisted of blocks and lines that represented conceptual units of the 
system, and the relationships between those units.  Many of the developers had this architectural 
diagram pinned up on the walls of their offices.  Many of them had annotated the original 
diagram by hand to show new and different connections between the sub-systems.  Another 
developer referred to the importance of communication, especially as individuals specialized: 
 

I like fiefdoms of responsibility.  It lets people work their own style and if, as long 
as they are responsible enough to realize that people are using this.  To share that, 
separation of code I like  because it gives a sense of ownership and responsibility, 
and pride when something works well for a whole lot of people after he spits it 
out.  But to counter that isolation effect you need to be as communicative 
constantly about everything you do, where you can find out what other people are 
doing and if it's useful to you, and if anything you're doing is useful to anyone 
else. (11: 1914-1919) 

 
However the developers had just about exhausted their communications networks.  Most of the 
developers received in excess of two hundred messages daily, because they belonged on many 
different company mailing lists.  They did use e-mail to initiate discussions about the system, but 
these discussions competed with all the other e-mail messages, and were often ignored by other 
developers. 



57 

 
Other developers turned to the documentation, 
 

Most people don't have a clue what anyone else has done, even at the highest 
levels.  Like I know [DeveloperE] wrote Tool Corp. make stuff, but I have no idea 
how he wrote it or what it does.  Besides from reading documentation about it. 
(12: 2078-2080) 

 
However, during initial phases of the development the documentation often does not exist, or 
remains out of synchronization with the development effort.  Also the focus of the 
documentation was on users, so developers got little information about the implementation of the 
features described in the documentation. 
 
Even the manager recognized the problem, 
 

Once you have about ten people in a development organization you rapidly realize 
that you don't know what every body else is doing.  You can't know what 
everybody else is doing, when people come from a big company like me are very 
comfortable with that, well I'll say that we're used to that, not knowing and you 
can deal with your day not knowing, realizing I don't know what everybody else 
is doing, people that haven't been in that scenario, and we have several are not 
used to that concept at all, they feel like there is a major cultural shift which has 
happened which they're right, not good.  The fact that you don't know anymore 
what everyone's up to is not a plus. (13: 2232-2238) 

 
He described it as a shift, and during my time there I saw the organization grow very rapidly.  I 
did not find any empirical evidence to support his claim that developers from bigger 
organizations would feel more comfortable with not knowing what their colleagues were 
working on. 
 
As a group the developers at Tool Corp. simultaneously depend on each other, and their 
managers, for a sense of the whole system.  Furthermore, most of the developers had been at the 
organization when they had some limited sense that they did know what everyone else was 
working on.  As the development group grew in size and specialized, they became more distant 
from other people, and other sub-systems and they lost their ability to put the product together as 
a group, share technical solutions across the boundaries between the different sub-systems.  The 
tool, and forms of communication, that the developers had experimented with to date had not 
helped them re-find the whole, from the parts. 
 
Testing Dependencies 
 
The testing group works closely with the development group.  During the time I spent at Tool 
Corp. this relationship grew steadily closer because the developers went from the middle of a 
development project towards final release.  The closer that they got to final release the faster the 
cycles between testing, fixing, and building the system.  In the last few weeks they tried to build 



58 

the system at least twice a day, and everyday at the weekends.  The developers also expanded 
into testing roles. 
 
However, I have elected to treat the testing group as an essentially separate group from the 
developers.  They perform a different function from the developers.  They are primarily 
responsible for comprehensive system testing, particularly integration tests, that check if 
different sub-systems of the product work together.  However, because they work so closely with 
the developers they depend on the developers, and on the code that they write in their own work. 
 
Testing dependencies arise because test suites, automated programs that run the system through a 
number of scenarios, need to be constantly updated to reflect changes in the product.  The testers 
have responsibility for ensuring that their test suites accurately test the product's functionality, 
but as this evolves throughout development, so they must evolve their own checking programs. 
 

The reason why testing usually fails, automated testing technology usually fails, is 
because of the problems with parallel development.  The test scaffolding which 
we have here is totally dependent on the product, there are pieces of the product 
used in the test.  Some common technology, so in that sense its parallel 
development.  We're going off of that technology, and in fact every, like last week 
there were two changes to pieces of the product in [New Version] that affected the 
test scaffolding. (14: 2479-2484) 
 

 
The situation gets more complicated because Tool Corp. has a variety of stages of testing too.  
System testing needs to be very rigorous, and includes a period of internal use.  The developers 
use a version of the system that has passed the initial unit tests of developers, and a series of test-
suites written by the testers.  While the testers continue to test for more obscure and unusual 
problems, the system also becomes used internally, as one of the testers explained: 
 

We're actually testing on any given day a patch to a particular release, for one 
customer, [newest build] which is our bleeding edge version, [older partially 
tested build] which is kind of beta version of the software we use [in-house], or 
the next release of the software.  Now the interesting thing is that the expected 
behavior or the expected results for any of these is totally different, and not only 
that, the test scaffolding software because it's built on some of this technology is 
also dependent in, and is actually different for each of these. (14: 2577-2581) 

 
In each case the system varies, and the test-suites also vary to compensate for those changes.  
The testers have a number of technical and social strategies for managing their dependencies 
with the developers.  First, technically, they store all their test suites, the test scaffold, inside the 
configuration management tool.  This helps them to keep track of which test scaffold belongs to 
which version of the tool. 
 
At the same time they also need to know how to adapt their test-suites, so they need to know 
what the developers have changed.  They do this in two ways.  First, they use the problem 
reporting facility.  This lets them see what changes have been recently completed.  Second, they 



59 

attend the development group meetings routinely, and communicate with the developers 
frequently.  The testers need to maintain high levels of contact with all of the developers so that 
they can determine exactly what the impact of the developers' changes will be on their test 
scaffold.  In these social ways the testers manage their dependency on the developers. 
 
 

4.4  Inter-organizational Level Dependencies 
 
Inter-organizational level dependencies come from sources outside the software development 
organization itself.  In much software engineering literature the focus of building software stops 
at the organizational level.  The implicit assumption is that software development organizations 
act in a vacuum, entirely on their own, with no context.  This has never been true.  However, 
with the arrival of "open systems" — systems that have a high degree of compatibility with other 
systems available in the marketplace — this has become even less true.  Tool Corp., like all 
software development organizations, needs to maintain strong connections with other 
organizations in their software development world.  In this section I describe two external 
dependencies that influence Tool Corp., relationships with vendors and customers. 
 
Vendor Dependencies 
 
Tool Corp. also depends on the vendors of the products that it uses to run its technology on.  
During the development of the product, a new operating system was released by a large software 
development organization.  The management at Tool Corp. realized that if the product did not 
run on that particular operating system they would miss out on a section of the market for 
configuration management tools, those organizations that would upgrade to the new operating 
system as it became available.  Software development often happens in very technically 
heterogeneous environments.  Developers use a variety of machines and operating systems, so 
that they can test their product out on all these different combinations.  Tool Corp. is no 
exception and their development environment is heterogeneous.  However, when an organization 
builds a tool that is designed to control the development process, then it must run on as many of 
those platforms as possible to achieve a high degree of penetration into other software 
development organizations. 
 
At the point when the new operating system became available, the management of Tool Corp. 
had little choice but to begin developing a version of their product that would work for that 
technology.  This contrasts with the traditional view of software development, where authors of 
professional and academic software engineering literature assume that organizations have 
absolute control over their development schedule.  At Tool Corp. other vendors played an 
important role in determining when Tool Corp. began developing another version of their 
system. 
 
As well as influencing when Tool Corp. begins development on a version, other vendors shape 
what exactly is development.  If substrate technologies, like hardware platforms, and operating 
systems, do not contain certain functions, then Tool Corp. can not provide features that rely on 
those functions.  All configuration management vendors wish to develop ways to support 



60 

geographically distributed developers.  (Since the time of this study several companies claim to 
have resolved this particular problem.)  However, to provide distribution, configuration 
management tool vendors like Tool Corp., depend on these substrate technologies to offer fast 
and reliable ways of passing information between databases.  Some senior management felt that 
current commercially available technologies did not do a very good job of this. 
 
Customer Dependencies 
 
Tool Corp. and the potential and existing customers depend on each other.  Tool Corp. depends 
on its customers somewhat to define the requirements for the product that they build.  The 
customers depend on Tool Corp. to provide a product that they can use, and what is more 
important, one that continues to receive support and enhancements over time. 
 

Requirements 
Indirectly customers, and potential customers, influence the direction that the product takes by 
buying other systems.  All "open" systems, like Tool Corp.'s product, need to support a variety of 
integrations between the core product and other systems.  A configuration management tool 
should supply connections to other development tools, debuggers, testing tools, and software 
development environments.  The market determines the systems that should have integrations as 
this developer explained: 
 

Well I'm involved in the integrations team.  So that involves basically taking our 
tool and taking whatever other product tool that our customers want to use and 
integrating it with the product. (17: 2981-2982) 

 
He was not referring to specific customers in this instance, but the pool of potential tool buyers 
out there.  However, specific customers do influence some of the development, because they can 
submit problems and enhancements into the problem reporting facility.  Although the customers 
have the option to send the problems electronically, often they call their concerns into the 
support group who then enter the problem into the problem reporting system. 
 

So once its entered it comes into, from a customer outside, in to the support 
group,  They look at it and enter it into the correct database, then I'll look at the 
problem, I'll try to duplicate it, unless its obvious and then I'll put it in review.  
From in review it goes to either assign or deferred, if it's a problem that we decide 
we can not fix or decide that it doesn't make that much difference.  Otherwise 
we'll assign it to the right developer. (10: 1723-1726) 

 
Tool Corp. depends on its customers to help them shape the direction of their system.  This 
happens indirectly, through the market, as well as directly, from change requests arriving to the 
developers from existing customers.  Tool Corp. has further recognized this dependency, as have 
other organizations, by having a series of yearly "directions" meetings with their customers.  At 
these meetings that typically last a few days, they invite customers to share their experiences of 
using the tool in their own development environments.  They also share some of their ideas for 
future development to try to gain some initial feedback on the worthiness of the proposals. 
 



61 

Support 
I attended one of these directions meetings and it helped to alert me to the fact that the customers 
also depended on Tool Corp.  During the meeting that I attended it was clear that Tool Corp. 
executives wished to solicit ideas about what future directions would sell and increase their 
market share.  At the same time the customers bought their own, more specific, agendas to the 
table, consisting of enhancements and changes that they would like for their own development 
environment problems. 
 
Customers depend on the fact the future evolution of the product will, at least for a time, remain 
compatible with the versions that they have.  Tool Corp. recognized this.  During my time at the 
Tool Corp. the developers were simultaneously developing two versions of the newest product.  
New Product was a completely new product trying to capture a new section of the configuration 
management market, while New Version of Old Product was designed to provide existing 
customers with extended features. 
 
Even within a single release, once the developers enter the final stages of development, some 
customers already have beta-versions for testing, they recognize that customers depend on what 
they do: 
 

Currently any enhancement must be scrutinized so we have meetings on that on 
any enhancement, at this point. Earlier on I had total control, but at this point, 
documentation has been written and the product is in customers' hands and we 
can't go adding all kinds of new features which documentation doesn't know 
about, marketing doesn't know about (8: 1571-1574) 

 
Tool Corp. and its customers and potential customers depend on each other, for requirements, 
future directions, and support.  The organization handles these dependencies in two ways: the 
marketing department analyses the state of the current marketplace and makes recommendations 
about possible future directions and the managers get together with customers and discuss their 
needs as well as revealing some of their plans for future versions of the tools.  As these 
requirements become more specific the developers get to work on them, implementing them as 
changes to the existing system.  At the same time the customers depend on Tool Corp. to make 
alterations and provide support for the product that they use. 
 
 

4.5  Summary 
 
In this chapter I have described three levels of dependency relationships, individual, group, and 
inter-organizational.  Particularly I have spent some considerable time devoted to elaborating the 
kinds of dependencies that individuals manage at Tool Corp.  This is a function of the time and 
access that I had to the developers.  During my time at Tool Corp. I interacted daily with the 
developers, and like them, had to schedule specially arranged times to discuss my work with the 
managers of the organization. 
 



62 

I also described three vital components of the dependency relationships.  I characterized both the 
technical and social components of the dependencies.  I found that it was impossible to separate 
the technical elements from the social ones, the developers never did, and I believe that this fake 
separation contributes to the fact that dependencies remain ill-understood in academic circles.  I 
also documented the methods that the developers used to manage these dependencies, to resolve 
them, at least temporarily, so that they could carry on developing software. 
 
Dependency management forms a critical part of software development work at Tool Corp.  
Because the tool supports some of this vital coordination work, I did not discover the importance 
of managing these dependencies until I visited Computer Corporation that I discuss in the next 
chapter. 



63 

Chapter 5 
 

Case 2:  Large Computer Manufacturer Seeks Good CM 
System 

 
 
 

What you really have is um complex dependencies so it's a layered dependency 
problem so it's not like every dependency is exposed in the first order to every 
other space it might be second or third order dependencies out there.  So in that 
sense it has this dimensionality to it that makes it feel parallel but it really isn’t 
parallel it's just a dependency tree that’s really um weird, really hard to even 
visualize what it might look like or even, we’re thinking of starting an initiative 
that would be a whole task force or specially chartered group to examine 
dependencies.  Just because you know that is such a hard problem for people 
because it bites, its enterprise wide dependencies, right so how do you manage 
them, well right now we don’t manage it, we stumble over it, and try to solve it 
every dependency one at a time (5: 1388-1396) 

 
Tool Corp. provided insights about software dependency management.  The developers and 
managers find themselves in a web of these dependencies; to build software they must resolve 
them, at least temporarily.  This chapter describes dependency management at Computer Corp. 
and extends the analysis of dependencies by providing supporting evidence for their existence 
and the forms that they take. 
 
Also Computer Corp. illustrates some of the challenges of managing dependencies in a larger 
development effort.  As has been observed, the complexity of development rises sharply, 
exponentially, when more people work on building the software.  The study of Computer Corp. 
confirms this assertion and shows that the complexity of dependency management rises as well. 
 
 

5.1  Welcome to Computer Corporation! 
 
Computer Corporation is a large computer company  that has its headquarters in Silicon Valley, 
California.  Computer Corp. began as a spin-off from another large computer company in the 
1970's.  Initially they concentrated on building real-time systems that had a high degree of fault 
tolerance.  They marketed hardware and software that processed data quickly even when parts of 
the system failed. 
 
Today Computer Corp. is a Fortune 500 company.  It has operations in over 40 countries and 
profits in excess of over US $2 billion annually.  The company has enjoyed a period of financial 
growth in the nineties, with profits steadily increasing.  Currently the company employs around 
8,000 employees in over 150 locations.  Computer Corp. sells its products and services to a 



64 

variety of industries including: telecommunication companies, manufacturers, health care and 
insurance industries, and banks.  The products and services that they sell are high performance 
real-time systems.  They emphasis the kinds of activities in these market sectors that require real-
time data processing. 
 
Software development has a different character at Computer Corp. than it does at Tool Corp.  
The company has many locations, and even though much of the software development takes 
place in Silicon Valley, as the company has grown the development has become geographically 
dispersed.  The company has approximately 700 developers working on the main product suite, 
mainly located in Silicon Valley, but with some geographically remote development efforts. 
 
Recently Computer Corp. has expanded its operations to take account of the changing nature of 
the marketplace in which it competes.  Initially, the company they sold their own proprietary 
hardware and software.  They still continue to build both hardware and software, but now can not 
expect potential clients to have computer systems of theirs in place.  As a reaction to this 
phenomenon Computer Corp. has moved towards open systems and now provides integrations 
between its own hardware and software and other commercially available systems.  Like Tool 
Corp., Computer Corp. sells its products on the open market; however unlike Tool Corp., they 
also offer customized versions for special customers who can afford them. 
 
The impact of open systems has also changed the character of software development inside the 
organization.  One obvious affect is that the developers have begun to use commercially 
available platforms for development instead of the proprietary ones.  Suddenly the development 
environment has become more heterogeneous, and consequently requires new methods of 
management.  One significant change was that the company needed to revise its configuration 
management strategy. 
 
Configuration management used to be handled by an internally built system that worked for the 
local environment.  The system was relatively sophisticated tracking the development of 
different versions of the product including customer-specific changes.  However, priorities 
changed within the company and instead of maintaining the internally built system the company 
decided to buy a commercial tool.  This has the advantage of then freeing Computer Corp. from 
the obligation of maintaining it and updating it, and hopefully brings the added advantage that 
the configuration management vendor will keep up with the latest advances in configuration 
management technology. 
 
The configuration management group reviewed about 12 systems before deciding to buy Tool 
Corp.'s system.  During my time there Computer Corp. had already begun the process of 
converting people from the internal system to the new commercial one.  As well as interviewing 
a variety of developers, project leads, architects and senior managers, I was able to attend a class 
where developers received their initial exposure to Tool Corp.'s product. 
 
This study consisted of a series of semi-structured interviews with managers, configuration 
managers, and developers.  All the developers interviewed had used the new tool, and many of 
them had used the old tool prior to that, or some other CM system.  The semi-structured 
interviews ensured some overlap with the dependency management problems discovered at Tool 



65 

Corp., and provided opportunities to revise and extend understandings of how dependencies 
affect software development.  The interviews themselves lasted from 30 minutes to an hour.  
Over the course of two days I conducted a total of 13 interviews, and attended a class designed to 
introduce developers to the new system.  I also gathered public documents about the company. 
 
 

5.2  Individual Level Dependencies 
 
Parallel Development Dependencies 
 
The developers at Computer Corp. like those at Tool Corp. engage in parallel development.  
Also, I found the same concerns about the practice as I had at Tool Corp.  While the developers 
at Computer Corp. might have been experiencing adoption problems with this particular merge 
tool, those at Tool Corp. were familiar with the technology.  However, because the developers at 
Computer Corp. were new to the merge facility they revealed important aspects of parallel 
development dependencies. 
 
As the following quotes demonstrate the developers at Computer Corp. had very similar 
concerns about merging and parallel development as their counterparts at Tool Corp.  The 
relationships between the parallel pieces of code often required deep levels of understanding 
about the behavior, purpose and implementation of the modules: 
 

But the problem is if you don't really understand the code very well if you don't 
understand that module very well you don't know if you're having conflicts that 
have to do with design unless you really understand the module well so that's why 
it's bad (1: 328-331) 

 
The scale of operations at Computer Corp. means the developers often find themselves in 
parallel development situations either with several other developers all working on the same file 
or even working on multiple sets of changes on the same file themselves.  As one developer 
explained, 
 

Oh yeah, um, it has to do if there are more than two versions out there that are in 
parallel we have to make sure that what you're actually merging is right one.  And 
if you have a three-way merge then you have to merge the two and then the result 
of that with the other one.  So it's a three way merge.  It some way it will if it's 
tagged it will be easy or sometimes you make comparison between the two, you 
do compare, diff between the two files.  And then if you know that the line of 
code very well you would say, oh these are the changes that appeared, especially 
if it is um you know correctly labeled I shouldn't say that um commented inside 
the source then yes.  It's all the process is still a big pain because see putting that 
comment inside the source is still a process you have to make sure you say these 
are the changes I did for this functionality and then I will say this is the change 
that I did for functionality number two so that you can actually merge the two 
together. (6: 1534-1543) 



66 

 
Tagging the software so that he can merge it together in the right order turns out to be a 
complicated part of merging.  Even when he made both sets of changes himself the context 
involved in understanding both modifications often got complex enough to be confusing and 
disorienting during the merge. 
 
One of the developers also described the ramifications of getting the merge wrong on the entire 
life cycle of the product.  As she described it, 
 

It's too easy to make mistakes, it's easy to introduce errors and that's so late in the 
process you don't really don't want to introduce errors that late.  Cause its' you 
know it's right before you're going to code freeze or start testing or something like 
that and well and one of the problems with merge is you have to really understand 
both parts of what it is that you're doing so you have to understand all the stuff 
that you're merging and naturally if its a merge its one person or another person 
wrote it, so either you both have to do the merge together which happens 
sometimes or um or one person has to merge but they may not actually understand 
all the code changes that happened before them to understand the ramifications of 
what they're doing so that's my feeling on it.  That's why I'd rather avoid them. (1: 
318-326) 

 
Code freeze refers to a point in the life cycle when no more changes can be made to the software.  
This precedes a period of intense testing, where bugs and errors surface.  The code may then be 
altered, and re-frozen, and re-tested.  Often this cycle occurs a number of times in the hope that 
the product will emerge with fewer bugs and be stable enough to release to the public for sale. 
 
When any developers reach code freeze and testing, they become much more concerned about 
the changes that they make to software.  I witnessed this at both Tool Corp. and Computer Corp.  
The test and fix cycle creates a great deal of pressure on the developers, usually they have a 
major product deadline coming up, like product release, and the first cycle often reveals many 
bugs.  They work long hard hours trying to integrate and re-test the code.  At this point, parallel 
development creates even more stress, because it requires that developers realign their efforts 
with each other, and cuts into very tight schedules. 
 
The developers at Computer Corp. have a number of strategies for coping with their parallel 
development situations.  The developers at Tool Corp. often discussed the poor division of labor 
that they believed created the parallel development problems.  At Computer Corp. the 
development teams felt that they and their managers tried hard to divide the work up so that the 
product had conceptually distinct areas: 
 

I guess there are at various times 2 to 4 people working on the model at the same 
time and we attempt to separate it so that we don't step on each other's toes too 
much I mean that's makes it easiest if we just parcel up the work in such a way 
that we aren't using the same bits of code  (1: 272-274) 

 



67 

Unlike the developers Tool Corp. the developers at Computer Corp. realized the limits of a good 
architecture.  Software that gets divided into conceptually distinct sub-systems may still have a 
sub-system that ends up being more central than the rest of parts.  This piece of the system, the 
kernel, often ends up having many dependencies between it and the other sub-systems, which 
means that people working on kernel software must maintain more relationships with other 
groups than any of the other groups.  As one senior manager explained, this creates an added 
complexity for kernel software development: 
 

We’ll there’s the [kernel] people which we which don’t use right now they have 
as many as 30 people in one file at one time.  They’ll have might have their whole 
project team in one file.  Well, it's historical there files are fairly large and 
because its a, because kernel has to manage so many resources ... no matter if you 
think even if conceptually the problem looks separate its it all has fingers back in 
this one central kernel process its and so many times you have multiple people 
working on one file and that’s an extreme case and definitely out there to some of 
problem but it is a problem we have encountered. (5: 1236-1242) 

 
A good software system may have a central kernel that orchestrates the functioning of the entire 
product.  Dividing the labor into the different sub-systems works well for the people who work 
on peripheral sub-systems, that may be less connected to other sub-systems or only to the central 
kernel.  It does, however, mean that developers working on the kernel need to manage the 
possibilities that many other people have the very same file checked out for different changes at 
the same time. 
 
Developers use code reviews to find out whether the work of others may impact their own: 
 

Oh yeah, that's always hard um the way we do it here is we share technology by 
doing mostly for example you actually join the design process from there you 
know what should be incorporated in the source and um other one is also to um to 
code review when we code review that's when we actually know the insides the 
internals of what a person has done and from there we actually manage to learn 
more yes that helps. (6: 1546-1551) 

 
Team meetings of any sort, for example: to discuss design issues or analyze fragments of code 
have critical social implications for the management of dependencies.  While developers 
recognized this for parallel development — they saw these as opportunities to find out what 
modifications other people were making to various modules — these meetings help to manage 
other dependencies. 
 
The developers at Computer Corp. use a variety of tools to help them in their configuration 
management functions.  The corporate policy sets out a trajectory to move all the developers to 
Tool Corp.'s product, but during my visit the developers also used Revision Control System 
(RCS) a UNIX version control product, and a more complex home grown tool that I call 
"Alpha."  I will discuss the conversion trajectory later on in this section, and where necessary I 
will make a distinction between the different tools used. 
 



68 

The developers used these tools to support them in their parallel development work.  Those who 
used RCS had to perform manual merges using editors like vi and emacs, and the UNIX "diff" 
facility as RCS does not provide a merging facility.  However, like the developers at Tool Corp., 
and perhaps heightened when using RCS doing manual merges, the developers viewed merging 
as a difficult and time consuming situation to be avoided.  One developer described his need to 
rush to finish his work: 
 

Because I think even in there's no easy way to merge if somebody changes some 
code will detect it but you still have to go look at how your code is going to effect 
the changes that were there and how it integrates in there.  So really everybody 
wants to be the first one to have the code and then everyone else can merge laugh 
I means that's the but I don't see any way around that. (6: 1958-1961) 

 
However, for some developers this rushing to finish first and avoid the merge presented a new 
dilemma to them regarding the quality of their work: 
 

We're at odds we're in one of these catch 22's again.  It slows down our basic 
premise is check-in fast so you don't have to merge cause this is not what the 
model is trying to encourage us to do?  That's why I don't like it (because it 
encourages that) I don't like this encouragement to check in first I mean granted 
OK it will only complicate and OK hey I race through the code get your changes 
done but then you go to the other model that says you need to take your time and 
do a downtown job we need to take these steps to ensure that your code is 
maintainable, la la la, code reviews all these source inspection things, so I'm not 
sure that I like a computer system that rewards short cuts to the standard models 
of software engineering practices. (7: 2223-2230) 

 
In this particular interview the developer had hoped that the new tool would reaffirm his own 
priorities of how good development takes place, by code reviews, adequate testing and planning 
for maintainability.  However Tool Corp.'s product does not give any priority to merging and in 
the absence of that, typically the merge gets left to the last developer to finish to do. 
 
Another problem that the developers had with the new tool was that it did not appear to 
accommodate their current working practices.  The fact that new tools require adaptation, and 
that they involve changing work practices, is not a new discovery.  During a my visit to 
Computer Corp. I attended a class for developers new to the tool.  The intent of the class was to 
explain how Tool Corp.'s product worked and how they could use it in their own software 
development work. 
 
When the developers discovered that the tool did not let them save a semi-merged module they 
got quite concerned.  Alpha, the in-house product that they had been using, offered a different 
paradigm for merging.  Typically with Alpha the developers checked out all the code, the entire 
sub-system, and then merged the entire sub-system back into the main line of development.  
Rather than merging specific code modules, the developers merged large sections of the product 
together.  Under this paradigm of thinking about merging, a semi-merged state seems obviously 
necessary.  They applied the Alpha merge model to the new tool seamlessly and it was up to the 



69 

class teacher to explain how Tool Corp.'s product required a different merging strategy based on 
a lower level of granularity.  The teacher's paradigm was "merge little and merge often." 
 
At Computer Corp. parallel development, and merging, happen in different ways according to 
the tools used.  These tools influence developers thinking about how merging should be done, 
how often, at what level of granularity (a module or an entire sub-system) and consequently 
influences their strategies for coping with the merge itself.  When the tool changes the 
dependencies that created the merging situation in the first place need to be dealt with in a 
different way.  Developers can not use the same strategies for merging an entire sub-system as 
they would for merging a module, and so the change to a new tool means revisions in the ways 
that they cope with parallel development dependencies. 
 
 
Change Dependencies 
 
The developers at Computer Corp. must also manage change dependencies.  Despite the 
differences between the methods of assigning changes to developers — Computer Corp. did not 
use the same problem reporting facility as Tool Corp., and appeared to have a traditional manual 
procedure in place — the developers still end up depending on getting all the parts of a logical 
change together. 
 
The size of the product being built at Computer Corp. implies that technical change 
dependencies may diffuse across the product, and as a consequence across the organization.  As 
one project manager put it, 
 

Um, well in particular since much of the kind of software I work on um and the 
people are associated with me work on, is um, infrastructure software and has lots 
of dependencies on lots of other bits and pieces of infrastructure um and bits and 
pieces of operating system um because of that there are lots of issues on trying to 
keep data structures in synch trying to keep changes in synchronization um as 
well as the general issue of supporting multiple threads you know because we um 
because of the customer driven requirements of being able to support multiple 
releases we wind up with multiple threads going on in parallel and you want to 
make sure you get all of your fixes um coordinated across all of those threads. (9: 
2705-2712) 

 
At Tool Corp. the developers usually talked about these changes in both technical and social 
ways, describing changes in other sections of the code and who was working on them.  At 
Computer Corp. the developers relied on the other sections of the code being accurate, and the 
function of ensuring that all the changes worked together was handled by the build manager 
typically.  Change dependencies thus were managed like integration dependencies at Tool Corp. 
at the point when the product was assembled. 
 
The build managers that I spoke to recognized the importance of managing change dependencies.  
One build manager described her role as build manager as: 
 



70 

It's my role to make sure that everything gets into that's supposed to and nothing 
gets in that not supposed to do.  Notifying everybody when I update it and that 
sort of thing (1: 472-474) 

 
Another person responsible for the build management function in his group described the 
inability of the tool he was using RCS to track these changes.  To get round the short comings of 
the tool he maintained a manual system: 
 

and unless you have um a system for doing that which people have done in a 
manual way like writing down on bits of paper talking to 18 different developers 
... (9: 2720-2723) 

 
The developers at Computer Corp. face additional problems to trying to make changes to the 
code due to the size of the development effort, 
 

I suppose our most recent one last summer um I probably spent two weeks um 
just trying to reproduce an environment um and make a one line change.  That’s 
correct.  And that’s, and that is a perfect example and it's something that I see 
time and time again happen. (9: 2697-2699) 

 
Even though the developer wanted to make a one-line change he needed to ensure that it worked 
with all the code that interacted with the revised module.  At Tool Corp. the tool provided the 
developers with a stable base from which they could all begin working on the related changes.  
Developers at Computer Corp. did not have this luxury, and so they reveal another aspect of 
change dependencies, that before any changes begin the developer or developers have to find a 
working version of the product, a baseline from which to start making their changes.  As well as 
being dependent on other developers working on other parts of the logical change and those who 
assigned the change, they also depend on those responsible for all the parts of the code necessary 
to form a stable baseline from which the changes can be made. 
 
As well as finding a stable baseline from which to start making changes, developers must 
synchronize their changes: 
 

then there’s areas where the developer doesn't really know who the other 
developers are very widely separated by organization and yet they work on co-
dependent code and so that communication happens through um what they call 
[steering committees]... and there’s two or three different kinds and there 
organized around a release ... so if a change gets made in a lower level routine it 
could impact a lot of people and so there’s formal notification techniques ... we 
use e-mail and some more informal things where you just know because you’ve 
been around a long time.  You tell everyone that you know who would be 
impacted that there getting impacted. (5: 1263-1276) 

 
The developers at Tool Corp. relied heavily on the tool to help them synchronize their changes.  
As a small group using the tool they were easily able to work together, and even find the other 
developers (located in the same building often a few feet away from each other) working on 



71 

those changes if necessary.  As the developer quoted above describes, the situation is vastly 
different at Computer Corp.  When the developers work on changes that span different sub-
systems, they find themselves working on modifications that cross different organizational 
boundaries.  This is reflected in the need to create committees to guide the changes, and 
communicate the dependencies between the groups.  However, at the same time, the developers 
use electronic mail, and other more informal communications, such as finding the old-timers, to 
help them negotiate and coordinate the changes they make with other distant developers. 
 
Change dependencies, like parallel development dependencies, were also in the midst of 
transforming with the adoption of Tool Corp.'s product.  An Alpha user described his concerns 
about how change dependencies would be managed by the new tool: 
 

Um.. if its um you have a pool of versions to choose from and you have one user 
down here and another user over here and they’re in the same project, the same 
set of things, um, lets say this guy over here makes a change to a change C1 and 
he has a new module which means he had to change the makefile... and over here 
this guy is just about done with all the stuff most everything um its almost five 
o’clock and this guy is just about done and he says OK I [check this in] and make 
it available the makefile this I think is OK.  Um meantime [the first guy says] OK 
I’m ready I want to get the latest and greatest of everything OK um again because 
we’re in a pool of available versions here and it's not project oriented he gets this 
and his build that night fails.  Cause he doesn’t have the complete set, he doesn’t 
have a valid configuration. (4: 941-952) 

 
Alpha used a project — a collection of modules — as its unit of operation.  Tool Corp.'s tool, 
like most modern commercial configuration management systems, emphasizes the module as a 
unit of operation.  At the project level Alpha users thought in terms of receiving sets of related 
software all at once, and the new paradigm, required selecting these sets module by module.  As 
the developers shift from Alpha to the new tool they will have to rethink some of their strategies 
for managing change dependencies; in this case, they may have to be more alert to the 
possibilities of related changes instead of depending on Alpha or the build manager to take care 
of that. 
 
Expertise Dependencies 
 
The developers at Computer Corp. relied on the expertise of their colleagues to assign work and 
to help with their software development efforts.  When developers work on sections of the 
system that they do not understand they often rely on their colleagues' knowledge of that code, as 
this developer told me: 
 

we pretty much design not on our own and with bug problems if it involves more 
than one sometimes bugs right now since we're doing a lot of bug fixing um a lot 
of them you know immediately or you can fix them immediately but then the ones 
that involve multiple parts of the system then that takes two or three people to 
figure it out sometimes.  (1: 537-540) 

 



72 

Expertise itself often ends up being the way to determine who does what work.  Instead of the 
relationship between different sections of the system defining the social relationships based on 
expertise, developers' knowledge means that they end up working together: 
 

Any time we do something that's design sometimes it's all of us and sometimes it's 
just two of us but it's almost always not just one person and then we come up with 
a list of tasks and then depending on what our expertise is each of us gets assigned 
different tasks some of us are experts in similar areas so one or two people could 
be assigned depending on what our work load is  (1: 287-291) 

 
In this group two developers may get assigned to the same task because they both have the 
required expertise.  This takes them into a situation of having to work together very closely as 
the work of one will certainly impact the work of the other. 
 
Integration Dependencies 
 
At Computer Corp. each team builds their own sub-system routinely.  One developer usually 
assumes the role of the build manager, as I have already discussed, and takes responsibility for 
doing the build.  These developers spend some considerable time and effort coping with 
integration dependencies, in the absence of having automated mechanisms of pulling together the 
latest changes from all the developers.  Unlike the build manager at Tool Corp. the build 
managers at Computer Corp. used manual strategies for gathering latest changes: 
 

So it's not everyday it's on an as needed basis and I make them tell me stuff like 
what's object in my sources to grab and what's the version number of them what 
bug are you fixing and how am I supposed to know once I install it if that bug got 
fixed or not.  What's the behavior I'm supposed to see and then when it's 
necessary I do the reconfigure and install and send out mail.  I get developers to 
tell me that my mail or in person it depends on whether it's a big one or little one.  
Usually if it's more than just one or two minor things they send me e-mail but if 
it's one or two minor things then they just tell me and I write it down.  I keep a 
track of it.  And how I track is that every time I do an install I send everybody e-
mail saying this is what I installed this what is was supposed to fix and it's ready 
for you to use now or whatever and so that part of it I have to keep track of. (1: 
486-495) 

 
However, as the build manager went on to explain, these manual strategies have weaknesses: 
 

The dependencies are basically held in the knowledge of those who are 
developing the software... really there's really no good way to record it anywhere 
... the only place where you can really find it is in the build instructions of the 
makefiles you can see some of it but it's not clear there what all the dependencies 
are ... a lot of it is manually specified so if they're wrong they're wrong. (2: 600-
604) 

 



73 

Although she can track some of the technical aspects of integration dependencies, using build 
instructions and makefiles, she still relies on the manual specification of these relationships.  
When developers get that wrong, then she has to take the time to find out where the problem is 
and fix it.  This involves communicating with the developers and finding out what they know, 
and then building the whole from the parts that each developer understands.  As one developer 
put it, 
 

Um actually a build manager is a big role, it's one that knows mostly the structure 
of the system especially with I would say because um you really have to know 
like in our practice here once I have checked in ... a version ... to a higher level of 
visibility something that the build manager can see ... she still has to ask me what 
those versions I have checked-in so that she's sure that it is really picked in the 
configuration that she has so that's the kind of role our build manager plays right 
now.  The build manager really has to know the structure of the system and what 
changed what needs to be there what is really missing if in case there are any. (6: 
1631-1638) 

 
At Computer Corp. integration dependencies take place at different levels of operation.  
Developers assuming the build manager role typically assume responsibility for gathering 
components for a sub-system of the over all product.  They are part of a small team of developers 
working on a similar section of the product.22 
 
However, some of the groups have complex integration dependencies.  In these larger groups no 
developer can both develop software and assume the build manager role,  and Computer Corp. 
provides an organizational function instead: 
 

what happened was for hard configuration problems specialists were identified, so 
we had these in certain areas people who job title was [build manager] and that’s 
what they do they manage configurations mainly because they’re so important 
that they knew that they had somebody to do it but no developer had the time to 
do it. (5: 1183-1186) 

 
One of the reasons why integration dependencies get difficult is because the size of the group 
increases.  Some sections of the product, often the central sections like the engine and the kernel, 
have over thirty developers.  The developers find it impossible to integrate all the changes and 
continue their own work, if the team is large: 
 

I’m not a big supporter of, I don’t think there are that many places at [Computer 
Corp.] anyway where there is a build manager.  There are some.  There are some 
large groups for large projects that have build managers, [builders] are responsible 
for building the release kind of thing, but I believe there are more groups that 
don’t have that. (4: 1051-1054) 

 

                                                
22  Small teams have no more than 20 developers in them. 



74 

I call the people whose job was build management "builders."  Computer Corp. had around 50 
people, in comparison with the 700 developers, whose job function was: 
 

Our [builders] currently do a couple of things that are important one is that they 
actually do the final build and release if you have a [builder], now in our group 
we're so small that we provide our own [builder] function but when I worked in 
different groups that were larger we had a [builder] who did that for us and that 
was ideal in terms of when we said we were done and we released our code and 
they captured it they put it some place and then secured it so we couldn't get at it 
so there was no more last minute sliding in, when they said code freeze it was 
code freeze laugh yeah code freeze or die so I do like that I like the I mean I again 
its sort of like you get used to the concept of code freeze date meaning something 
and you are tested you're ready to go you know go ahead take it. (7: 2258-2265) 

 
As well as managing the integration dependencies of teams, builders also provided other critical 
functions as a result of their role.  Their ability to enforce code freezes, to prevent developers 
from modifying the software, and other policies, meant that the developers could rely on the 
system in ways that groups without builders couldn't.  This is similar to the ways that the 
developers at Tool Corp. rely on the tool. 
 
The builders at Computer Corp. helped individual groups to integrate their sub-systems.  At the 
same time, along with the release area group the builders provide a broader function, as senior 
manager explained to me: 
 

Literally it takes, there’s if you look at the people involved it takes a lot of people 
just focused on their work problem.  No one person can actually release anything 
it takes 30 people in this group to the release area and 20 people and 10 people in 
building and 10 people in that people and what is their job?  What do they do?  
They just going around trying to figure out what the configuration is, and how to 
build it, and why this build failed, that’s all they do (5: 1377-1382) 

 
As well as having large teams of people, the organization needs to routinely integrate the entire 
product together.  Builders begin this process by gathering individual sub-systems together and 
trying to figure out what other parts of the product their sub-system relates too.  Especially as the 
organization moves close to the release date they need to be able to construct the entire product 
and test it out together.  As one manager told me, 
 

It's a big problem now to, the big problem is when things build correctly there’s 
no errors and yet they hit the field and there’s incompatibilities because not 
everything was really integrated at the same time and that’s the key gotcha in all 
of our process. (5: 1288-1290) 

 
It was this problem, building the sub-systems, that lead me to call these dependencies integration 
rather than build dependencies.  Software engineers are familiar with build dependencies in a 
technical sense, but build dependencies typically refer to the linking together of components in a 
sub-system, something that a makefile resolves.  I wanted to capture something more than that, 



75 

not only the social aspects of the low-level build dependencies, but also these higher-level 
integration issues. 
 
Because sub-systems must come together to create the working product, Computer Corp. must 
find ways of managing the complex relations behind the code itself.  Currently Computer Corp. 
does this by having an organizational unit, the release area, managing all the relationships 
between developers solely through the code: 
 

because right now development does all of its things and then it throws over a 
very high fence to release and then release has a whole other different process to 
managing these configurations, and literally they have only one version at any 
given point in time and then the next release window happens they get an entirely 
different version and if the first one is completely overlaid.  So development can 
never go to the release area and say give me something from last week because 
it's not there in release.  It's not there.  So if we could get a version scheme into 
release then we could get the release to be more like flexible in how they deal 
with releases and hopefully speed the throughput because right now there’s 
release windows and you can only release during those times cause that’s how 
they manage their versions. (5: 1362-1371) 

 
Computer Corp. relies on the release area people to construct the product from the code they 
have at hand.  If the release area people have problems making the product fit together then they 
notify the groups whose code does not work.  This comes with a price, as the quote reveals, the 
release area people do not keep older versions of the entire product, so developers can never go 
to that group and get those older versions back.  They have gotten re-written by the release 
group, and are very difficult for any development group to construct without help. 
 
Integration dependencies reveal an important difference between Computer Corp. and Tool 
Corp.  To resolve integration dependencies between developers Computer Corp. provides special 
people within the organization, builders.  Computer Corp. also has an organizational division, the 
release area group, to work on a level of integration that Tool Corp. does not deal with at all.  
What one developer can do in their spare time at Tool Corp. requires an entire department at 
Computer Corp.  As the scale of development increases, the complexity of dependencies rises.  I 
will return to this in more depth later. 
 
Historical Dependencies 
 
Like their counterparts at Tool Corp. the developers at Computer Corp. also relied on decisions 
and changes made in the past; however, unlike Tool Corp. Computer Corp. did not have such a 
comprehensive organizational memory.  Most configuration management tools provide some 
way of viewing the evolution of software over time.  Even RCS, one of the early versioning 
tools, provides developers with past versions of code and a chance to enter some comments 
about actions taken on a particular version of they want to. 
 
One developer described a particular instance of going back to examine code in the past: 
 



76 

Well um the particular example I’m thinking of that helped avoid a mistake was 
um where I was able to look at the [evolution] of um a set of changes to a module 
and um graphically compare them and that was be able to do this in an almost 
instantaneous way um is very helpful cause if the barrier to um like a cognitive 
barrier if you have to go through a lot of steps to figure out the history and do 
comparisons and things like that you tend not do that.  You know cause I don’t 
have time to do this, I’ll just kind of blast ahead and cross my fingers and hope 
that I haven’t screwed up.  That’s the result, OK, if you can easily by clicking a 
few buttons, um get the comparison, see the history, and instantly see why this 
particular change was made um how it does or doesn’t affect this next set of 
changes or you know understand why um this person made this change and er 
hadn’t considered this other problem and that sort of thing. (9: 2733-2742) 

 
The developer used a combination of tools to help him see the differences between the two 
versions of code that he was interested in because he did not have access to a merge facility.  He 
then had to work out what those differences in the code implied, what was the change that caused 
those particular differences?  Sometimes however, this proved too time consuming and the 
preferred mode of working was to hope that his general knowledge of the software would ensure 
that he didn't break anything while making his changes. 
 
The developers who had switched over to Tool Corp.'s product found some difficulties with the 
way that the organizational memory worked for them.  Even though it may have reduced the 
time spent figuring out why two versions differ, it presented new challenges.  As one developer 
explained to me, using a Presidential metaphor, 
 

Yes, I do I mean I've used the [evolution] command a lot if anything that's kind of 
valuable I wish by default it would go down to the last one though versus the 
beginning one.  Because I don't really care about history it's like it's like saying 
who's president now, George Washington or Clinton, I don't care about 
Washington because he's way back there right now and I need to see where 
Clinton's going right now because that's affecting me right now today whereas the 
source control I need to see the one that's latest in there, I don't care about 1.1 
where not using 1.1 we're on 1.50 or something depending on what file so 1.1 
means nothing to us.  Oh sure I'd go back to Bush Reagan or Carter. (6: 2014-
2021) 

 
It was only a simple request, that the tool display the nearest ancestor rather than the furthest 
ancestor when invoked, but when the software evolves through several hundred versions, still 
showing this distant relative will be very frustrating.  It was also symptomatic of a bigger 
problem that he described: 
 

Finding out the information like um what functionality I want to add to my next 
release is in that [evolution] view and sometimes looking at versions looking at 
what people are doing with you.  Yeah, it's powerful in that way um you can also 
sometimes if you want to rearrange although it is created in a timewise manner 
sometimes you still want to rearrange laughs history and I found myself doing 



77 

that because one object needs to be in front of the, it's more the functionality 
within it needs to go after one object that have created from before,  they're not 
really even though they're serial or and yet they're not really serial, anyway, yeah 
I rearrange things at times. (6: 1571-1578) 

 
Software visualization is an important research topic today.  As this developer explains, 
sometimes even though history is the appropriate context, the serial view of the evolution is not 
the most appropriate.  The developer wants another way of visualizing the evolution of the 
module, perhaps following various changes as they evolve.  The developers at Tool Corp. never 
mentioned reorganizing history, and I speculate that they have adapted to thinking about 
software evolution serially.  However, other factors such as the size of the development effort 
may also impact the strategies that the developers at Computer Corp. use to manage the historical 
dependencies they have with others. 
 
Configuration Management Tool and Practice Dependencies 
 
The developers at Computer Corp. use a variety of systems to support their configuration 
management activities.  I have already discussed how they come to rely on those tools.  When 
they are changed the developers must find out what the new tools support.  The developers then 
have the choice of revising their configuration management practices to fit the tool or ignore the 
new system.  However, the developers that I spoke with at Computer Corp. generally valued any 
support that they could get for configuration management, and along with their interests in 
technology as software engineers, they usually made some effort to try to accommodate the new 
tool.  In this section I review some of their configuration management dependencies not 
discussed earlier. 
 
All configuration management systems, from the earliest versioning tools, support some 
mechanisms for backtracking.  Simply by storing versions of software the tools allow developers 
to go back to previous versions when they make errors: 
 

Being able to go back in time is nice because providing I know exactly what I can 
go back to, I can say add a path as existed at this point in time, so I have all old 
modules even leading in the past, the future from this point, even in the [operating 
system] they’re there so I don’t have to, I never have to have any of these worried 
about.  If I really screw this module up I delete it, but I can delete it, I can do 
anything I want to, because it's still there. (4: 1110-1115) 

 
Developers like this feature simply because it provides them with security, a knowledge that 
whatever they do they will not lose something that works.  It encourages them to use 
configuration management tools in their work. 
 
During my visit many of the developers that I spoke to were changing tools.  As I have already 
mentioned, the tool change was forcing developers to adapt their strategies for managing 
dependencies.  At the same time it was forcing them to revise their perceptions and 
understandings of configuration management and as a consequence of development itself.  As 



78 

one developer told me after I had asked him questions about his configuration management 
strategies, 
 

I guess maybe I'm just real fond of RCS laughs I mean its one of those if you've 
use it for a lot years its like the devil you know so I'm trying to like get out of that 
mode of thinking and into this new mode well no I mean like you're bringing up 
all my fears and worries and concerns and all the things that I'm still struggling to 
try to get into this new paradigm and this new mode of operation and I'm having 
and I'm going through the learning curving, I'm going through the learning curve 
of a completely different method of operation and I'm not happy about it. (7: 
2179-2185) 

 
As well as developing their own individual strategies to cope with the changes, the introduction 
of the tool creates situations where developers need to devise new group practices.  The same 
developer also described how he and his colleague, who were working together on a small 
section of the product were trying to devise policies for using the tool together: 
 

[Developer A] and I are trying to come up with our own set of operational 
procedures and I mean its sort of working but its not a corporate wide policy we 
asked [Manager] at roll out time what I thought was a real elementary question, 
how should we name our projects, and we don't have a standard for that, our 
projects, like we have um product numbers so all of our products have [numbers] 
and it sounded to me like maybe all of our projects should be named based on the 
product [number], release well if you go in and look at our database laughs yeah 
you would see that it is just hodge podge of we have no uniform rules we're still 
struggling with this, we're taking big steps.  ...  I think that my opinion of a roll 
out of this should have been that there should already been a set of rules standards 
that our company someone said here's how we want you to operate instead we're 
like learning on the fly um like everything else we're doing it ad hoc. (7: 2237-
2247) 

 
At Computer Corp. those individuals responsible for helping the company to move to the new 
product were very busy.  Often they did not have time to spend helping individual developers, or 
groups, work out policies for tool usage.  This left the developers wondering how to incorporate 
the tool into their work routines. 
 
Platform Dependencies 
 
One dependency that the developers at Computer Corp. encountered that did not affect people at 
Tool Corp. involves different hardware platforms.  At Computer Corp. they develop their 
product for one particular hardware platform that Tool Corp.'s tool does not run on.  That means 
that the developers working on the unsupported platform must develop their software on another 
platform where the tool runs, and then cross compile their code and port the compiled versions 
onto the unsupported platform and then run it. 
 



79 

This creates additional work, as well as additional complications for using the tool itself.  
Because multiple developers need to port code they have had to work around some of the 
features of the tool itself.  As one developer explained, 
 

we ultimately have to move our source code up to [unsupported platform] and 
ultimately do our testing and building for our release product up there but to 
shorten the cycle we use cross-compilers on the Sun.  [Unsupported platform] 
does not allow [Developer B] and I to share a directory unless we share the UNIX 
directory [and] Tool Corp. tool does not allow us to have two different projects 
that both have the same [directory] ... seeing as we both work in the same office 
we said lets share the Tool Corp. [view] for right now and we'll figure out later 
when they integrate fully with how this cause its not clear right how we're going 
to do this. ...  We had to change all of the permissions on Tool Corp. tool ... 
basically anybody can do anything right now to our project we're running in a 
very um unprotected mode of operation. ... So we're running in a strange mode 
where this is not ideal but until we understand the integration that we need to go 
through with um which they don't have yet and it's like it's always coming its 
coming any day now, it's coming any day now, er until we get that  straightened 
out. (7: 2110-2127) 

 
Every hardware platform has certain unique features.  These features both liberate and constrain 
developers in their work.  They may provide developers with opportunities to improve the 
software, for example make it run faster on that platform, if they exploit the features of the 
hardware.  At the same time they constrain developers, because sometimes these features dictate 
how certain software must be written. 
 
The developers at Computer Corp. build software to run on some platforms that Tool Corp.'s tool 
does not run on, because they offer certain features that are important in Computer Corp.'s 
market.  At this point the developers invoke technical relationships, between the platform for 
development, and the target unsupported development environment, where the code must run.  
This changes not only their way of working individually on the system, but also ways that they 
work with each other. 
 
 

5.3 Scaling-Up, "Group-Level" Dependencies 
 
Life-Cycle Dependencies 
 
I have already described how at Tool Corp. different platforms have different release cycles.  At 
Computer Corp. the developers must also manage those kinds of differences.  As an organization 
however, they have multiple life cycles going at different levels as well.  In individual groups the 
developers work on a life cycle to build a specific sub-system.  At the same time the entire 
product has a larger life cycle, the time to release cycle. 
 



80 

Then there's a bigger life cycle because within that product now they have to 
come together and within that coming together all these products then they'll got 
through and that coming together all the products are actually more in the QA life 
cause that's when you integrate everything and you test the integration of all these 
things.  It's big it takes um right now they they're as far as productivity's 
concerned they have been releasing things within like 15-18 months which is 
really short laugh but before it took two years. (6: 1622-1627) 

 
Simultaneously the developers must work towards completing their product as well as the entire 
product.  Sometimes groups do not contribute to a specific release as their section of the product 
stays the same between two releases.  So at any time, Computer Corp. has a number of life 
cycles going on, with different groups always involved in their own small sub-system life cycle 
as well the product life cycle, as well the different product release life cycles. 
 
"Big Picture" Dependencies 
 
Trying to understand the "big picture" is virtually impossible at Computer Corp.  The product as 
a whole contains millions of lines of code, that no single person could possibly remember and 
understand the relationships between them.  It would also be impossible to try to imagine all the 
states that the software may get into during operation for a system the size of the one that 
Computer Corp. builds. 
 
However, the developers at Computer Corp. still need to understand the "big picture" of their 
own sub-system.  As one developer described the problem, 
 

Because, OK, I mean it's easy if you see these couple lines for instance if they just 
incrementing a pointer or something like that.  But if those couple lines for 
instance change the state in a sense and that state may reflect may affect you and 
what you were doing because now you changed the state a different way or you 
added another state so if you had the state diagram before in the previous thing 
where you had four states but now after you merged it you see that oh god this 
thing has ten states cause they added four more to them it's like well can I actually 
do the changes that did in this state?  Right, so that means you don't understand 
exactly what happened yet until you examine the whole code you may actually 
just see oh well wow there's four different states now added to here but that means 
nothing to you have to look in the context of the big picture. (6: 1964-1972) 

 
They need this kind of information for a number of reasons, to cope with parallel development as 
well as to make modifications and understand how those changes will impact the work of their 
colleagues.  As a team of developers working on one sub-system they struggled to maintain a 
vision of what their part of the product did. 
 
The scale of their sub-systems easily matched the size of the entire product at Tool Corp., and as 
such these problems were comparable.  However, I noticed a marked difference between the 
expectations of developers at Computer Corp. and those at Tool Corp.  Developers at Tool Corp. 
felt worried about the fact that they had lost the ability to see the product, and behind closed 



81 

doors they blamed bad management practices for this.  While individual managers may have 
played a role, it is more likely that the loss of the "big picture" accompanied the expansion of the 
group in size.  As the group grew bigger more people worked on different parts of the software 
and the developers slowly lost track of what everyone else was doing. 
 
At Computer Corp. while developers wanted to understand the big picture, they did not view the 
fact that they couldn't as a managerial problem.  As this developer put it, 
 

I think in general in many ways the kind of work that I’ll call trailblazing or 
frontier mentality um the time for that has gone.  Most of the kind of work that 
can be done by an individual now here’s this well-defined thing and you take this 
you know asocial or anti-social individual and put him in a room you know lock 
him up throw raw meat under the door doesn’t work anymore because most of the 
work that at least for [Computer Corp.] and I suspect that’s true in just about the 
whole industry most of the work that could be done under that paradigm has been 
done and now all of the new things have lots of dependencies, lots of variations, 
systems upon systems and you can’t make things like that using one person cause 
one person can’t do all the work can’t see all the ramifications can’t understand 
the whole system, its just too big for one person to mentally grasp and so you 
have to do things with teams and so it says the kind of person that didn’t like to 
work in groups is a dinosaur. (9: 2769-2779) 

 
For the developers at Computer Corp. the lack of understanding the big picture was simply a 
consequence of working in large teams rather than as individuals.  It was also a consequence of 
working on a large product rather than a small one.  The developers did depend on their 
understandings of the "big picture" to make decisions about what course of action to take.  
However, unlike the developers at Tool Corp. they were resigned to the fact that their own 
interpretations of that big picture were incomplete and possibly mistaken.  Perhaps because the 
release group or the builders took care of the final integrations of the product the developers at 
Computer Corp. didn't worry too much if they made mistakes based on incomplete information. 
 
I have already discussed two organizational functions that Computer Corp. uses to cope with 
dependencies, builders and the release area group.  Computer Corp. also has another class of 
employee who manage "big picture" dependencies that span the different development groups, 
architects. 
 
At Computer Corp. architects map out the higher levels of the product.  They work hard to define 
the overall product structure, and then get involved in breaking down the sections into sub-
systems that different groups can work on.  Because they usually start from existing code, the 
architects often find themselves in the position of mapping out the new extensions and directions 
for the products, in technical terms, and then assigning the work to the appropriate groups.  As 
this architect put it, 
 

as a system architect there are not a lot of architecture paper generated, there are 
some I think, in fact there’s a discussion going through most of the job isn’t so 
much er thinking up new architectures but getting them accomplished. ... that’s 



82 

the larger part of the effort ... in many ways the act of coming up with a specific 
architecture is you know just draw some lines and boxes and arrows and it's 
almost a dime a dozen.  Lots of people have um intellectual architectures and not 
too many people can translate those into actions and um agreement and creation, 
that’s really where the rubber meets the road. (9: 2816-2824) 

 
An architects work consists of the translation from the direction for the product, into logical 
changes required, into technical changes that need to be made.  At the same time, the architects I 
spoke with recognize that they also manage these dependencies that they define and create for 
the groups.  They become boundary spanners, helping groups communicate with each other.  As 
the architect explains, 
 

Oh, well um, to give some examples um without naming names there have been 
cases where say one group has been at odds um they have and largely driven by 
different role leaders, each one kind of thinks its the center of universe and um 
they have totally different management chains um but they have a dependency 
relationship, right (the code has the relationship but the management chain 
doesn’t) and over the years there have been you know repeated friction’s and um 
you know at times they as a result of them um mail wars diatribes um people 
yelling that kind of thing and I think that’s behind us but that kind of thing can 
happen and um when you do have a pair of groups then who have this 
dependency or interdependency it becomes difficult to accomplish change and 
when change is really needed in order to deal with um technology advances with 
competitive requirements things like that um we need to kind of revisit the 
interfaces between the software components that those two groups produce and as 
a result we need to revisit the interfaces on a personal level. (9: 2791-2802) 

 
At the same time that architects define, create, and sustain technical dependencies between the 
different groups involved in building the product at Computer Corp. they also engage in social 
dependency management.  They move between groups presenting each with the bigger picture, 
an understanding of what the other group does, and why that's important.  Garlan and Perry 
describe these social properties in dry terms, but for practicing architects, conveying these 
meanings, building these shared understandings, does not happen as a result of drawing 
diagrams, instead it involves spanning different groups and artfully persuading them to fall in 
line with the main development efforts. 
 
 
Shared-Code Dependencies 
 
I have already discussed the problems of crossing groups, in the discussions of specific cases of 
dependency management.  Sometimes individual developers find themselves working with other 
developers remote to them, managing changes.  Other times individuals either in the 
development group, or specially assigned individuals must integrate sections of the product 
together.  A broader, group-level problem, concerns shared-code dependencies. 
 



83 

Modular decomposition begins with an idea for a system.  The idea gets broken down into small 
conceptual units, and through principles of modular design, becomes sub-systems ready to for 
developers to implement.  During the process of modularity the emphasis focuses on "separation 
of concerns" dividing up conceptually distinct parts of the system.  For example, it would be bad 
practice to confuse kernel functions with the user interface.  Even though good software 
engineering practices focus on the distinct modules and sections of code, the links between them 
remain. 
 
The links between different sub-systems cause developers to need to access the code written by 
other groups.  Shared-code dependencies arise when one sub-system relies on another to 
function.  When shared-code dependencies occur then the groups involved must work together 
enough so that they get the software that they need to complete their own work. 
 
One developer at Computer Corp. felt that the problem was particularly bad within this particular 
product because it was designed to have many shared-code dependencies.  He said: 
 

Now partially you know the way other companies deal with this is they just they 
structure themselves so they don’t have to ... um if you look at [large computer 
company] for example ... the way they tend to do things is much more layered.  ... 
the reason our computers are so much faster in you know these in our targeted 
applications is because of that kind of integration for example [database 
company] can’t hope to compete against our SQL product because our SQL 
product is tightly coupled to the operating system.  [Computer Corp.] avoids that 
by you know our SQL people will talk right to their counterparts writing disk 
drivers and operating system message passing services and all that.  So that’s well 
and good for performance but then we get all of this big ball of yarn tons of co-
dependencies instead of nice clean message interfaces right.  We have different er 
parts of the software that have to intimately be in bed with other parts so it's a big 
mess (8: 2384-2403) 

 
The technical trade-off between performance and layered code in his opinion had created more 
shared-code dependencies, occasions where during operation the program jumped between sub-
systems to increase performance. 
 
Shared-code dependencies also have a social component.  To ensure that the sub-systems operate 
together developers from different groups need to have access to latest working versions of other 
parts of the product, so that they can align their development and test their own code.  They rely 
on the other groups to put their code somewhere where they can find it.  This turns out to be 
more problematic than it sounds: 
 

The issue that [Computer Corp.] developers face today is they’ll put a location in 
their build file to point at a piece of shared code and it might change locations it’ll 
move and reason it moved is because a new version came out so to ensure that no-
one uses version they’ll delete the old one and move it to a new place but this 
poor guy doesn’t know where the new one is so then its research and rehash and 
time delays cycle loss... (5: 1345-1349) 



84 

 
Developers have a number of ways of trying to find and maintain their knowledge of where that 
code resides.  One developer explained how he managed his shared-code dependencies: 
 

it’s all word of mouth, you know have to just go to this person who’s been with 
this group a long time and has a great memory and say who uses it, where does 
this thing come from you know, so it's pretty crude (8: 2497-2499) 

 
However, this method of tracking shared-code has a number of problems.  If the person who's 
been with the group for a long time leaves then the developers need to find some other person 
who has a similar network of contacts across the organization and the institutional memory of 
what ended up where. 
 
The other side of the shared-code dependency, having another group relying on your code, also 
requires management.  If development groups leave their code in a public access directory then 
other groups can access it without the knowledge of the group that put it there.  The group ends 
up being in the situation of not knowing who's using their code at all.  As one developer 
explained, 
 

I'm creating code and I don't know who uses it, I know a few people cause they 
complain when its broken, but there are always more like if I send out a mail 
message saying well we're obsoleteing this product we're not going to produce 
anymore then people come out of the woodwork you know I get totally shocked at 
the number of developers that over time you know just sort of this has infiltrated 
into other products so um you know a lot of this happens you know is planned 
architecturally and then some of it you know err people would rather use working 
code than write their own hopefully cause that's the right way to do things. (8: 
2335-2342) 

 
His strategy for managing his end of the dependency consists of sending out e-mail letting 
people know when radical changes will occur.  Often the e-mail needs to be broadcast to the 
entire company to be sure that everyone who uses the code will be aware of the changes that are 
about to be made to the tool. 
 
A manager explained that for some of the more common pieces of shared code get managed by a 
central group: 
 

for some of the more common shared code like they have some of the shared 
libraries that are really common and they kind of package those and put a group in 
charge of them ...  So that’s how they do it today.  Right.  We’ll try to automate it 
and we’ll still have a central group that manages the database but now their job 
will be ensuring that the database is accurate and valid and you know there aren’t 
problems with it. (2: 804-813) 

 
Supporting these dependencies by hand is error prone, and so Computer Corp. has an initiative to 
support these dependencies using technologies, that include Tool Corp.'s product.  However, 



85 

these kinds of dependencies cannot be supported easily with technology, as a number of people 
at Computer Corp. explained to me with respect to the adoption of Tool Corp.'s product: 
 

... it's unrealistic to expect 700 developers and billions of lines of code to go into 
one database so we have a inter-database problem ...  It's huge problem. (2: 772-
776) 

 
Tool Corp.'s product relies on a database to store all the system components.  The developers at 
Tool Corp. used their tool, and its database to store their code.  In fact they used two 
instantiations of the tool, and two databases, to store their entire product.  If the sub-system was 
not in one database it was in the other.  I did not witness or hear of any problems sharing code, 
because they had a relatively limited search to find any code that they happened to want. 
 
At Computer Corp. the scale of the problem was significantly larger, as one manager explained: 
 

The issue we have with it that inside the database it's very good at that.  Our 
problem is beyond the scope of a single database.  We’re going to need upwards 
of ten possibly so when you and we don’t have visibility across databases as we 
speak today.  So one of the projects in place is to get a database to database 
communication going that has more of a two faced database transaction kind of 
communication. (5: 1296-1300) 

 
Computer Corp. had also run into problems associated with creating that type of technical 
solution for managing shared-code dependencies.  In the tool, the code gets stored along with the 
name of the developer working on it.  However, at the level of inter-group shared-code 
dependencies the name of an individual developer turns out to be not so useful: 
 

There’s no abstraction within the tool for a group, there’s no name for a groups, 
you can’t group people together and give it a name, you can’t have things owned 
by a group, um and all of that is not too serious when you’re talking about it as 
groupware but when you’re talking about it on a corporate basis now you’re 
looking at a higher level you don’t really care about individuals anymore you 
know the corporation doesn’t see Joe who’s working on this product, they see the 
product, right, and they want to deal with it at the product level not at Joe’s level.  
So when they see something show up in the central corporate repository they 
don’t want to see stuff owned by Joe they want to see it be owned by the product 
which is the group right. (3: 840-848) 

 
Having individual names associated with sections of code may provide some information for 
others; for example, a name to go to when the code breaks.  At the same time, it makes finding 
other pieces of code difficult.  Often the developers can identify the purpose of the software 
when they know which group developed it.  This often occurred in the conversations that I had 
with developers where they talked about other groups' code by referring to an acronym for the 
group itself rather than describing the code or naming individuals. 
 



86 

Shared code dependencies exist between different sub-systems.  In their technical form they 
create the desired functions of the product; sub-systems interact with each other to provide the 
desired functionalities and outputs.  At the same time they create dependencies between the 
different groups working on building those relationships between the code. 
 
 

5.4 Inter-organizational Dependencies 
 
Like Tool Corp., and Contract Corp., Computer Corp. does not develop software in a vacuum.  
As they move forward on their development trajectories for their current release as well as their 
future directions as a company they must shift and adapt their plans to accommodate changes in 
their market.  In this section I describe some of the dependencies that Computer Corp. must 
manage as a commercial software vendor in the high-performance real-time systems market. 
 
Vendor Dependencies 
 
Computer Corp. depends on vendors in two ways.  They depend on the vendor of the tools that 
they use in their development environment.  As my introduction to the company came through a 
Vice President at Tool Corp. I learned particularly about the dependency between Computer 
Corp. and Tool Corp.  However, Computer Corp. also depends on other vendors with whom they 
compete for their business.  Developers and managers at Computer Corp. spoke about these 
kinds of dependencies also, and their affects on software development itself. 
 
Computer Corp. chose to bring Tool Corp.'s tool into their development environment to help 
them address their configuration management concerns.  The highest levels of management had 
discovered that the company could not always guarantee that they had a complete version of the 
product that they had released in source code form.  This led the company to review the ways 
that they currently managed their development process, and the role of tools such as RCS and 
particularly the home-grown tool, Alpha.  As one manager explained the decision came down to 
a buy versus build decision, between Tool Corp.'s product and Alpha: 
 

And so we needed to have um well we felt it would be a more um state-of-the-art 
tool, it turned out [Alpha] was as about as state-of-the-art as you could get but we 
didn’t want to continue to pour resources into it because a business decision if 
you’re going to do that is to productize and since we weren’t going to productize 
[Alpha] we'd better go buy a product, and so that’s the decision we made. (5: 
1129-1133) 

 
They opted for bringing Tool Corp.'s product into their development environment as they saw 
advantages in doing that.  First, as the manager explained Alpha consumed resources in the form 
of developers assigned to maintain Alpha, even though the tool would not be sold and only used 
in-house.  Second, by bringing in a vendor, Computer Corp. could benefit from upgrades: 
 

Because we're going towards in this company in this company towards which is a 
third party tool instead of providing our own tools here within [Computer Corp.].  



87 

So that the changes we will keep a breast of changes by um by the third party, by 
our you know tool. (6: 1483-1485) 

 
At the same time that Computer Corp. gains benefits from Tool Corp. it also loses control over 
the implementation of certain features.  I have already described the directions meetings that 
Tool Corp. holds to solicit comments about future directions from preferred customers.  
Computer Corp. is one of these preferred customers and they bring their requests for changes and 
improvements to the product, to the meetings: 
 

Actually what we’re doing is lobbying the to get changes made to future releases.  
It's the best we can do, but, it's one of the advantages of being a [preferred 
customer] company. (3: 848-849) 

 
However, unlike Alpha, which Computer Corp. could develop and customize at whim, Tool 
Corp. has its own agenda and sometimes they do not agree.  Computer Corp. remains dependent 
on Tool Corp. to maintain and upgrade their product.  Computer Corp. hopes that Tool Corp. will 
continue to follow a trajectory of development that suits their own development needs. 
 
The developers at Computer Corp. must also manage relationships with vendors in their own 
development.  Computer Corp. attempts to build "open" systems, and so it must develop systems 
that work with other popular software.  At Tool Corp. I described how this impacted the 
directions of development broadly.  While at Computer Corp. I found developers who must work 
with the consequences of other vendors revising their products routinely. 
 
I spoke to one developer was hired into the organization particularly for his experiences with a 
software package that Computer Corp. wanted to integrate their software with.  His own 
development, the integration between the two products, was routinely impacted by changes made 
to the vendor code, as he explained: 
 

what we did was when I first implemented the code when I ported it, I checked 
that version in so that's how you got it from the vendor, and you may want to see 
for instance if you're port this new code that they have for you need to compare 
that code to find out how it's different from the original base to see what you're 
put, what port, what implementation that you have right now and put it in there.  
Right, it's a way of learning about what changed, right because the thing is doesn't 
not have our changes, basically you have to take their base and compare it to what 
they've given you now and see the differences there and then you have the choice 
of either implementing it from their new code or putting their changes into your 
new code the code that has the changes. (6: 2021-2029) 

 
These vendors change their code, not only in terms of functionality of individual modules, but at 
higher levels, in the architecture of the overall product, over time.  But, other software 
development organizations who depend on these vendors, pay a high price for that dependency, 
because each time the code changes, they must adjust their code to match. 
 



88 

The developer quoted above spends much of his time reworking his code to accommodate the 
new changes to the integration.  Although he may hear rumors about potential changes coming, 
he must often adapt his entire development schedule simply because a vendor produces a new 
upgrade, or worse yet, an entirely new release.23   He depends on the actions of other developers 
in other organizations routinely, because his code depends on the software developed by the 
other company. 
 
Customer Dependencies 
 
Computer Corp. manages very direct and more indirect customer dependencies like Tool Corp.  
Computer Corp. contracts for certain customers, such as government agencies and large 
multinational corporations, as well as selling their product on the open market.  Customers who 
buy Computer Corp.'s product will expect support for a certain time after they buy the software.  
Organizations that contract with Computer Corp. may demand that they guarantee support for a 
certain length of time after the customized system is delivered. 
 
Either way, Computer Corp. must support multiple versions of the software simultaneously.  
Simply put, the customers depend on Computer Corp. to provide this support, 
 

We have to support multiple versions of the software simultaneously, we have to 
support um both in time you know things were released sequentially but 
customers have contracts where they say you know within in reason they’re not 
obligated to move up to the latest version of software, and yet we have to keep 
delivering bug fixes of certain severity.  Eventually we can determine, we can 
declare an operating system obsolete, where a customer can keep running it if 
they want but they can not expect us to continue officially supporting it make sure 
that things are backward compatible and that sort of thing.  But it doesn’t happen 
instantly, you know it's not when we release new OS it's not like all previous ones 
are immediately frozen so um if I’m a developer out in software development 
land I may have several variants of my products that are targeted to serve the next 
up coming release of software. (9: 2563-2580) 

 
Computer Corp. may wish to innovate by design and develop completely new products.  
However, at the same time, customers depend on Computer Corp.  A tension exists between 
being innovative and supporting existing customers, which is one aspect of the complex 
customer dependency that exists. 
 
As well as formally expecting support for products, customers influence the directions that 
Computer Corp. takes in their own development.  These influences are less direct, and to my 
knowledge Computer Corp. does not have directions meetings with preferred customers like 

                                                
23  In this respect Cusumano and Selby studied a very a-typical organization when they visited Microsoft.  While 
many other organizations may have to adapt and fit their code to Microsoft's latest operating system, database, word 
processor or spreadsheet, the reverse does not seem so likely.  Microsoft's extremely privileged position within the 
market seems to suggest that they feel the burden of dependencies much less than other organizations like Computer 
Corp. 



89 

Tool Corp.  Customers exert these influences in two ways; what they want, and when they want 
it. 
 
A project leader pointed me towards the influences that customers have on determining what 
features should be in Computer Corp.'s product.  At the same time he also highlighted the 
implications that these demands have on the development of the product over time: 
 

Well that can be one of my jobs, and has been so um one of the things I’ve been 
trying to do is to kind of re-establish respect and um credibility um on the part of 
one group with another to really educate the other group about um the market 
forces and competitive forces that are driving the first group to change the 
requirements that um leads to what we need to do then...  Right, and that can be 
hard, laughs.  I have history with one of the groups.  Yeah and at my level and in 
my role that’s what’s expected of me is to sort of um I’m expected to be um a 
[Computer Corp.] advocate not a group X or group Y advocate. (9: 2802-2808) 

 
In this case the two groups (X and Y) had diverged over the years due to external influences.  However 
at the same time they had code dependencies, their software had to work together.  This had led to 
conflict and tension between the groups, as a result of these external pressures pulling the groups in 
different directions.  The project leader for these groups was caught in the situation of having to smooth 
over these differences created by market demands. 
 
As well as influencing what gets put into the latest versions of the product, customers create a 
demand for new releases.  However, this is not strictly a customer dependency, because other 
vendors releasing rival products also force Computer Corp. to speed up their life cycle.  
However, behind the need to compete is a market that has not been saturated for the products that 
Computer Corp. and its rivals produce.  This demand has begun to put a huge stress on Computer 
Corp., as a senior manager described: 
 

Open means release every 18 months, 15 months, 10-12 months its shrinking and 
shrinking and shrinking.  There's more complexity in the world so to get all that 
straightened you need 30 people delimited is one way to do it but when the 
overhead component of it is this cost insuring so those thirty people have got to, 
maybe they'll actually shrink an absolute number but they've got to shrink in the 
sense that their productivity grows, they have to be much more effective you 
know they have to just do their thing quickly because they don't have, I mean life 
cycle pretty much was five years ten years ago now its down to like less than two 
years and its shrinking, we got get to release in some record amount of time in a 
year from start to finish a whole new turn everything and everyone's looking 
around at me in a kind in a daze like I don't want to spend another year like that 
again you know it was a very difficult task.  So, you have to somehow learn how 
to do this as a business as a routine not as a yet another heroic event. (5: 1458-
1468) 

 
Customers may directly depend on Computer Corp. for enhancements, features and support.  At 
the same time Computer Corp. must follow the demands of the market to ensure that their 



90 

product remains competitive.  This customer dependency plays out in the features of the product 
itself, and although it may appear that the customer could fall victim to choices made by 
Computer Corp. about what to provide, if Computer Corp. does not supply a certain set of those 
features then the customer may choose to purchase new systems from a rival. 
 
 

5.5  Summary 
 
Research at Computer Corp. reveals that the organization shares many of the same  dependencies 
as Tool Corp.  They must manage parallel development, integration, expertise, and change 
dependencies.  However, the scale of operations, the size of the product, the number of 
developers involved, and the complexity of the code, means that Computer Corp. has developed 
strategies for coping with these dependencies that are embodied in the organization itself.  
Unlike Tool Corp. Computer Corp. needs to employ special people, "builders," have 
organizational divisions like the release area group, to manage these dependencies.  That may not 
be the purpose of the builders or the release area, they have technical definitions for their jobs, 
but in reality they end up working on the social aspects of dependency management. 
 
Computer Corp. has a distributed development environment unlike Tool Corp.  The main 
development operation consists of several large buildings and they also have developers working 
in different states and around the world.  All of these development efforts must remain aligned so 
that the product fits together.  Currently formal procedures, managerial strategies, departments, 
committees, and informal communications networks work well enough so that the company can 
release software.  However, Computer Corp. recognizes that these methods are susceptible to 
failure, and has begun to pursue other courses of action. 
 
Finally, just like Tool Corp. Computer Corp. finds itself in a software development world.  Other 
vendors as well as customers influence the directions that Computer Corp. takes in its software 
development efforts.  However, customers and other vendors alike also depend on what 
Computer Corp. does to set their own trajectories.  Software development worlds have a critical 
balance of influences, so together companies move forward in competition, but also, necessarily, 
as allies. 



91 

Chapter 6 
 

Case 3:  Military Contractor Adapts to Policies 
 
 
 

What type of tools do you need, at that point we've got to start looking at the 
future of the organization, where's it going, what's its life expectancy, a lot of 
organizations have only one mission in life.  You know if you're at some location 
working for the [DoD Agency] you have an organization that's only responsible 
for maintaining one electronic warfare pod on a plane, well that may have a 20 
year life cycle, you're into the tenth year so you're half way through, and they're 
still using VAX's they're still using FORTRAN compilers, and a whole lot's not 
going to change, so you have to think of why give them expensive tools to just 
make a minor improvement that they're going to throw away in ten years. (1: 649-
656) 

 
This chapter covers Contract Corp. a small military contracting company.  I review inter-
organizational, organizational, and individual dependencies that impact the software 
development process.  The emphasis is on highlighting both the similarities and differences 
between a military environment and a commercial one. 
 
 

6.1  Contract Corp. 
 
Contract Corp. was founded in the late 1970's as a contracting company.  Today they compete 
for both governmental and commercial contracts to supply customer specific hardware and 
software systems.  They have specialized in providing application specific systems for tracking, 
control centers, and large data handling systems. 
 
The company has a number of locations in the United States and around the world.  Despite 
being a publicly held company, it remains difficult to find out exact details about the company.  
The division of the company that I studied concerned itself with government contracts 
exclusively, ranging from unclassified projects for agencies such as the Federal Aviation 
Administration to national security, black environments. 
 
As well as writing systems for customers the company also engaged in a small amount of 
internal software development.  This would happen when the organization needed a certain kind 
of tool in order to complete a contract requirement and they could not find one available 
commercially.  So, in addition to having configuration management demands for their contracts, 
they also used a manual procedure in-house for these home-grown tools. 
 
As a contracting organization the size and nature of the company changes dramatically as the 
contracts come and go.  At the time of this study the company was between two large contracts 



92 

and there were few software developers present.  This coupled with the sensitive nature of 
working on government contracts meant that the data from this site was limited and consists of 
two of interviews with a senior project manager and a configuration manager.  I used semi-
structured interviewing protocols and conducted over 3 hours of interviews with them.  The 
access I obtained influenced the kinds of dependencies that I was able to find, with most of them 
concerned the social world of military contracting software development.  As a consequence the 
order of the sections is reversed in the chapter, beginning with an analysis of inter-organizational 
dependencies. 
 
Despite these limitations the data raises some important new insights and extends and adds to the 
two previous chapters.  Despite the limitations of the data gathering, military contracting 
environments provide an important contrast class for the previous two chapters.  Large scale 
software development also begun in the military and government contexts, and many 
configuration management text books acknowledge this heritage — some focus exclusively on 
military software development standards — so I believe that the opportunity to revisit 
configuration management in this context proves worthwhile. 
 
 

6.2  Inter-organizational Dependencies in Military Software Development 
 
This section describes the inter-organizational dependencies Contract Corp. manages.  These 
dependencies differ from the kinds that Tool Corp. and Contract Corp. manage because of the 
military software development context.  However, they do share common properties that are 
described in this section. 
 
Vendor Dependencies 
 
At the same time that the contractors may have limited relationships with each other, contractors 
also end up being dependent on vendors.  In the past, military systems may have been free of 
commercial products but not today.  Commercial Off-The-Shelf (COTS) development comprises 
a large part of military development.  Sometimes military applications center on a COTS 
product, and then the in-house development involves building security, process, and other 
military specific wrappers around the product.  Other times contractors wish to incorporate a 
certain functionality into their system, and simply build an integration to a COTS product.  
Finally, contractors may choose to use COTS products in their own development environment to 
help with the project.  Often military contracts demand that tools and platforms used in the 
development process become part of the deliverables — this is discussed in more in the section 
on classified environments — as well. 
 
Deciding to use COTS products proves difficult, especially in large projects because of the 
length of time that the system must be operable. 
 

Most of these very large expensive systems require a life time, a life expectancy 
of twenty years, so we have to ensure our customer that yes everything we build 
can be supported for 20 years.  The government pays a lot of money for these 



93 

support contracts and we have to make the buy decision, can we buy this service 
from the general vendor, or do we develop something like the [ContractX] and 
support it ourselves. (1: 467-472) 

 
However, COTS products do get used, often when the expense of building in-house proves too 
great. 
 
The decision to use COTS products though, creates a new set of dependencies, between the 
contractor, the vendor, and the customer of the software being built by the contractor.  Instead of 
controlling the functionality of the product, they depend on the vendor to provide the appropriate 
behavior.  However, military systems have certain safety requirements that make relying on 
commercial products very dangerous, financially, and in terms of lives. 
 

If you go from one version of the compiler to the next usually there's new 
switches, typical thing is optimizing, your code is optimized, runs a little faster, 
just because things are organized a little differently.  If you're an embedded 
system, ... warheads, guidance systems, or launch trajectories, tanks, you need to 
have the exact same binary.  Right down to the bit, no changes.  That's the 
question, can you generate another binary image, and the general case is the 
answers always no, because tools have changed, CM systems have changed, 
binary files have change, binaries have changed, objects have changed, your 
source code has changed, and nobody knows where the original combination is.  
Is it important to have that particular binary image, if it is, we have to have a 
series of tools that will ensure that everything that developed the original binary 
can still develop it today. (1: 711-721) 

 
Far sighted developers and project managers can predict that tools will change between versions, 
and so the same binary will not be produced.  Therefore the system will not execute in quite the 
same way.  However, other hidden properties of vendor products can impact development, as the 
project manager also explained: 
 

Far searching compiler business will know about future improvements so the 
compiler can automatically take care of things, or take advantage of things that 
don't exist yet. So when you make a hardware change also the compiler is now 
looking better because the engineer knew that you know we're now doing to have 
a 40 point processor that's different, so I'll detect when that processor is there and 
do it different.  So just having different hardware can sometimes affect your 
binaries coming out the end. (1: 728-734) 

 
Commercial vendors have their own priorities and demands.  Because Contract Corp. has chosen 
to use COTS products, they now find themselves dependent on these marketing decisions.  These 
dependencies manifest themselves as a need to maintain control over their environment, either by 
putting all the tools under configuration management, as well as knowing about all the hidden 
affects of changing one component in their development environment. 
 



94 

I have described the affects of hidden functionality on the development environment at Contract 
Corp.  However, Contract Corp. also depends on the vendor delivering the functionality that they 
promised in their sales pitch.  This does not always happen: 

 
Anyway, we took the product and looked at what was underlying it and said OK, 
it looks like it'll work and we bought it.  This was back in '90.  We went away for 
three months six months and we did requirements analysis and other things came 
back and took a look at product and said OK now lets make it work sat down 
couldn't make it work. (1: 399-402)  

 
This left Contract Corp. with a dilemma about how to proceed.  Whether they use the COTS 
product in their development environment, or bundle it into the system that they provide to the 
customer, Contract Corp. has to cope with having been sold "vapor ware."  In this case they 
solved it but at tremendous personal cost to themselves. 
 

we made a conscious decision to either throw it away go with another product 
throw it away and develop another product buy another product, or fix the 
problem.  And we looked at all those and we said we're going to fix it.  It's a make 
or buy decision.  Three years later we fixed it. (1: 408-410) 

 
When the COTS product becomes part of the solution for the customer, then the contractor 
creates a dependency between the vendor and the customer as well.  If the customer decides to 
follow a path of upgrades then they instantly have to assume new costs, beyond the cost of 
buying the upgrades themselves.  As the project manager explained, 

 
they [vendors] have a tendency to bring out new products, this is good, but they're 
not always 100% applicable and applicable means more than just the software.  
Sure the old stuff still works and that's good, don't ever change that, but, what 
new training is required, you've changed the interfaces, you changed the 
documentation, we have to retrain.  So we have to consider how often they do 
that, if it's aggressive company, nine months, every nine months they ship a new 
modification, over ten years that's 12 that's 13 retrain, that you have to go through, 
and that all has to be costed as expense (1: 681-688) 

 
Contractors find themselves both at the receiving end and in the middle of dependency 
relationships with vendors.  They rely on vendors' products in their own development work.  
When they work they must remain vigilant to the fact that as the products change that impacts 
their development environment.  They must either choose to settle for one version and retain a 
stable working environment, or upgrade and then amend all the code affected by the product 
changes.  The hardest COTS product dependencies that Contract Corp. faces are those where a 
change in one aspect of the environment invokes a hidden change in something else.  Sometimes 
Contract Corp. does not even get to this point, because the product that they bought does not do 
what they thought it did.  Then they must either buy another product or fix the broken one and 
both solutions involve incurring expense that they may not be able to bill to the final customer.  
At the same time that Contract Corp. enters into a dependency relationship with a vendor, they 
may also bring the customer into that relationship.  When the customer ends up with the tool in 



95 

their solution, then they must either settle for that version of the product, or incur costs and 
delays during upgrades. 
 
Customer Dependencies 
 
I have already talked about customers in the previous section.  The most obvious dependency 
happens between the customer and the contracting organization.  In this section, and the 
following ones, I describe the impacts that the customer, particularly the DoD customer has in 
software development. 
 

Standards 
 
Standards influence the way software gets developed in very obvious ways.  They dictate the 
exact format of the solution.  The configuration manager described this for her own work in the 
following way: 
 

The government gives you a base handout, they're automatic, pretty much things 
that are done on a computer by somebody cutting and pasting.  They must have a 
standard set of what they call their contract data requirements, cdr form.  And 
then they tailor it to fit whatever contract it's going out on so for example we have 
a version description document which describes the software, it actually has the 
software files in it, and what version they are, so it's like a it's a document that the 
government can go back hopefully and pick up and say OK this is what this is.  
That's, they're all different, they've got some that describe the hardware, and some 
that describe the software, and some that describe what you're going to do with 
the software hardware.  Some get very technical. (2: 1121-1130) 

 
The government particularly supplies sets of standards so that it need not be so reliant on the 
contracting agency to make the final solution work.  Theoretically, when the agency assembles 
the working product, it should have all the information necessary to both operate and maintain it.  
These standards come on top of other practices that also mandate certain procedures, as the 
project manager pointed out: 
 

And there's a whole range of subjects in there, TQM, total quality management, 
configuration management, software quality assurance, a whole range of what we 
call soft sciences, and then the government adds a whole series of layers on top of 
that it makes it even worse. (1: 22-25) 
 
Um, unless you're a large organization like the government that mandates you 
shall do this, you shall do this, you shall do that, um soft sciences are almost 
totally unknown. (1: 67-69) 

 
However, while governmental agencies demand quality in their software systems, and try to use 
standards to enforce that, other organizations interested in contracting out software are usually 
more concerned with dollar and time demands.  The character of software development 
fluctuates from contract to contract.  Sometimes standards create extra layers of work for 



96 

Contract Corp. so that actual development time becomes a small part of the total time and cost 
taken to provide a system.  On other contracts development is a large part of the time spent by 
Contract Corp.  In both cases Contract Corp. does not make that decision.  Although they may 
choose to follow certain practices out of their own professional pride, the final decision is made 
as a function of cost and time to meet the standards imposed on them. 
 
Even when standards get imposed on Contract Corp. developers may have problems 
implementing them, 
 

We also have the problem of Ada, introduced about the same time frame Ada is a 
methodology all unto itself, so if 2167 is a methodology that doesn't correspond 
with Ada then the two are going to conflict which one should you use?  Well, Ada 
enthusiasts treat it like a religion, you know, thou shall not disgrace Ada, C 
programmers are the same nature and 2167 enthusiasts are the same.  So we get 
into a lot of religious arguments as to which ones right and it's just like the 
program manuals out and thou shalt and they thump on their standards just like a 
southern Baptist with his bible.  It's hilarious just sit down and watch that go on 
for days and days. (1: 300-308) 
 

Standards, like Ada and DOD-STD 2167 may conflict under certain circumstances.  At that 
point, decisions need to be taken about how to proceed.  At Contract Corp., and likely most other 
organizations, enthusiasts for both standards want to continue the "right" way, so the manager 
lets developers arbitrate. 
 

Requirements 
 
All customers, governmental agencies and commercial organizations have requirements for the 
contracts that they have up for tender.  Sometimes the customer has unconventional 
requirements: 
 

If the DoD Agency wants a new communication box, to plug into a Hardware 
Platform developed in the sixties, we can do that for them.  And we will.  And 
their requirements will dictate what kind of CM we use. (1: 549-552) 

 
In this case Contract Corp. had to either get this specific and obscure hardware platform from the 
customer, or own it.  They also needed to find employees with the skills to develop systems on 
that particular platform: 
 

Since we do the development here one of the things that we have to make sure 
that the tools that's we're using match the engineers.  Can we change the tool or do 
we have to change the engineers, usually we have one or the other, we don't get 
both, in some cases the customer says this is your tool, in other cases, go ahead 
use whatever tools you want, I wish we had that more often but we don't.  (1: 660-
664) 

 



97 

At Contract Corp. the customer usually dictates the technical requirements for the project, the 
tools and platforms to use.  At the same time, they end up dictating Contract Corp.'s hiring 
strategy for that particular project.  As a result of this, Contract Corp. has adopted a fluid hiring 
policy, where people often get employed for specific projects and then leave unless they can be 
useful on the next contract. 
 

The Buck Stops Here! Dollar Dependencies 
 
Dollars also influence Contract Corp.'s approach to development.  Money shapes the 
development in a variety of ways though, some of which  I have already discussed in the context 
of other dependencies.  Companies like Contract Corp. usually bid for contracts that they want.  
In their bid, Contract Corp., needs to demonstrate that they can provide the solution for a price 
that the customer can actually afford.  Although this sounds easy, in practice the customer does 
not often provide information about exactly how much money they have to spend on the 
contract.  Instead, managers at Contract Corp. have to guess: 
 

If you're writing software for someone else you have to look in their wallet.  
These people won't let you look in their wallets you have to take a good guess, 
and with competition the way it is you short cut everyone you can to win the job. 
(1: 64-67) 

 
When Contract Corp. puts a contract bid together, money does not solely determine what they 
propose to provide in the solution.  The project manager described a spectrum of concerns based 
on safety. 
 

At the highest level we have what is called the end safety and at the lowest level 
we have dollars.  There's a spectrum in between of all kinds of software typically 
commercial systems are closer to the dollar impact, if the software fails we find a 
solution, what's the impact,  generally something that affects the bottom line.  
DoD weapons research nuclear systems space shuttle avionics, airplanes usually 
deal with someone dying.  OK. (1: 4-9) 

 
Contractors like Contract Corp. know that when a customer needs a safety critical system they 
will pay to have certain safety enhancing features in the final solution. 
 
Multiple Contractors / Contracts Dependencies 
 
Military command and control systems often contain millions of lines of code, usually embedded 
into military specific hardware platforms.  Usually these contracts require that multiple 
organizations work together to produce the final system, and Contract Corp. finds itself often 
working with a variety of other companies, large and small.  As the configuration manager put it, 
 

Yeah, the military, because it is a military contract has a problem in that they're 
dealing with, if you look their lot configuration it's so very complex because of its 
millions and millions of parts built by thousands of different people  (2: 833-835) 

 



98 

I don't really have any ideas [how many developers and lines of code] because um 
as for developers I think that at this company we got up to fifteen developers and 
they were working all on different parts and plus the subcontractors had at least, 
probably one company an equal amount and the others had four or five.  (2: 846-
849) 

 
n the contracting environment, limited information passes between the different organizations 
working on the same system.  Although one or a few contractors may win the over all contract, 
they usually end up subcontracting parts of the project out themselves.  This creates a hierarchy 
of development, which contains contractors and then subcontractors.  At this level of 
stratification the individual organizations can only guess about the participants on the contract, as 
the configuration manager does in the quote above. 
 
The center of coordination for the entire project becomes the governmental agency.  As the 
configuration manager explains for her work she interacted with the governmental official in 
charge of configuration management, who was responsible for pulling together all the pieces of 
the system, being developed in different organizations. 
 

I talked to people on the government side, I talked to their configuration 
management in particular.  He had been their CM person for 20 years and he had 
actually been a quality assurance before CM and so his, I got most of what I know 
from him, and talking to him because I mean he was telling me what the 
government wanted, and that's basically what we were trying to do, is give the 
government what they wanted.  (2: 1206-1211) 

 
In this situation the development done by Contract Corp. was dependent on the demands of the 
governmental agency.  However, the central coordinator was not stable during the project.  Large 
systems development often takes several years to complete and during that time the people at the 
contracting organizations and the government change.  In the case of this particular contract, 
 

They, well actually the project managers, this project has had six project 
managers, since I've been here and that's on our side, no that was on the 
government side it's had four project managers on our side, and I don't know how 
many of the subcontractors, but they changed. (866-869) 

 
This contract exemplifies the problems of working in a military contracting environment.  The 
numerous contractors and sub-contractors depend on the government agency, the customer, to 
coordinate the individual efforts into the overall system.  The governmental agency divides the 
system into different contracts that hopefully reduces the need for different contractors to work 
together to produce a working system.  However over time people join and leave the project that 
increases the complexities of coordinating the contract. 
 
Although I have described the scenario of multiple organization contracting, I have not explained 
what affects this has on the systems produced.  The social arrangements between these 
organizations, or the lack of connection, creates unusual systems, as the project manager 
describes: 



99 

 
We have [parts] coming in from the field that have lets say a lot, I can't tell you all 
the languages, but they have Jovial developed on the VAX system, they have PC 
Intel chips inside of it so we've got 8088X micro code in there, we've got TI 
chips, we've got some Ada code sitting on top of that, we've got FORTRAN code 
sitting in there.  Um the [part] is just a jumble of components and a lot of these 
components come from different contractors each one developed separately, so 
we have dozens of languages. (1: 380-386) 
 

When Contract Corp. got involved with this particular contract, an especially large project, they 
found themselves working in a heterogeneous environment.  Commercial software development 
organizations have to be heterogeneous in terms of platforms, software and networking 
protocols, because the market demands it.  In order to compete in any market most organizations 
need to provide their product for a variety of platforms and software technologies, so they have 
to have the appropriate technologies running in-house, to develop and test their hardware and 
software specific sections of code.  Military contracting environments find themselves in the 
position of being heterogeneous because previous development contracts have produced very 
diverse environments. 
 
Contracting environments also become heterogeneous because of the variety of contracts being 
worked on at any one given time.  In either case the organization has to cope with this 
heterogeneity, either bought on by the contract or the necessity to have multiple contracts.  
Contract Corp. copes by hiring and assigning engineers who can transition between these 
different languages and platforms.  As the project manager explained to me, 
 

Another thing we do is we hire people who are adaptable, we like individuals who 
can change directions immediately, we have a number of people they work 
different projects in a given day, that's very difficult.  In one instance I'll be using 
vi and UNIX working on Ada code and a couple hours later I'll be sitting with MS 
Word putting a document together because I've just used edlin on the PC to put 
some Pascal code together. (1: 597-602) 
 
And if you're doing something like the [ContractX] that was very difficult 
because we had to have people who spoke Jovial, FORTRAN, COBOL, and other 
applications, and some LISP.  All in the same group of requirements for the set of 
engineers, so we had four engineers who could do that and they were moving 
around between all those languages and environments. (1: 606-610) 
 

When multiple contractors work on the same system all of the participants are affected by the 
presence of the others in two ways.  First, it creates a situation where the agency in charge of 
administering the contract becomes responsible for ensuring that the division of work minimizes 
inter-organizational dependencies.  Second, both multiple contracts and multiple contractors 
have the effect of creating heterogeneous development environments.  In the first case, 
developers need to cope with these environments when they either join the initial contract after 
the decision to build on different hardware and software platforms has been made, or as is 



100 

increasingly common in all development contexts, they have to start with existing systems and 
extend or modify existing code and these existing systems have been built by several contractors. 
 
These interviews revealed Contract Corp.'s strategy for coping with these impacts.  They relied 
people with two critical skill sets.  Their preferred developers had working knowledge of a 
variety of languages and hardware.  Second, Contract Corp. also wanted people who could move 
around between projects, software and hardware easily.  Although the project manager 
recognized the costs of moving people abruptly between these different environments he 
sometimes had no choice. 
 
The challenges of heterogeneous environments surfaced in Contract Corp.'s hiring strategies.  
The company often sought people from small organizations, using the rationale that people in 
those companies would have to do many different tasks.  Prospective employees from small 
companies would not only be more likely to have knowledge of different systems and hardware, 
but also be able to change tasks abruptly. 
 
Classified Environments 
 
When a system operates in top-secret situations, the military refers to the environment as black 
or classified.  Classified environments create special demands on contractors like Contract Corp.  
The special security measures that the military demand to keep the project secret impact Contract 
Corp.'s operation in a variety of ways.  Physical manifestations of this included the rooms that 
had special blinds over the windows which developers would close during secret development 
projects.  They also maintained a careful log of visitors and visitors' badges displayed the level of 
security clearance that the person visiting had. 
 
Classified environments create special demands on contractor's development processes as well as 
the customers operating procedures.  Usually classified environments demand that the contractor 
produce a working product, that will not change during its entire operation. 
 

what happens if you're in the classified environment where the system doesn't 
change, you're prohibited from changing it.  Everything has to be exactly the same 
today as it will be twenty years from today.  The system does one specific thing 
and that's all it does and it never does anything else.  It's a scary environment 
because you have to forecast will it meet the need ten years, twenty years from 
now, they call, generally those are black environments or classified environments 
so we have a version of product that is in a black environment running, and it'll 
run for the next twenty years. (1: 689-696) 

Classified environments in the 1990's may then still use technologies from the 1970's if they 
have a life expectancy of twenty years. 
 
At the same time when contracting organizations introduce commercial tools as part of the 
solution for a classified environment, they create a dependency between the customer and the 
vendor of the COTS product that needs resolving.  Specifically the customer needs support for 
the commercial product, and this creates two problems.  First, the vendor of the tool will 



101 

probably not be allowed into the classified environment to provide support.  Second, the vendor 
will not guarantee to support a specific version of their tool for twenty years. 
 
Therefore the customer must hire people who's function will be to support the tool during the 
entire life cycle: 
 

It's a government operation so they just hire additional government people that'll 
work there for the next 20 years, and part of our requirements, part of our job is to 
train their people on how to use the system, maintain it, manage it, and handling 
all the problems of product. (1: 702-707) 

 
If during this time, the vendor of the COTS product fixes any problems with the version of the 
tool installed in the classified environment, the customer can not upgrade.  They must keep using 
the old version until the operational phase of the system ends. 
 
Development, Maintenance and Operations 
 
In the discussion of classified environments the relationship between development and 
maintenance became an issue.  The choices made during development create what some 
economists (like Rosenberg, 1992) call path dependencies.  That means, that choices made 
earlier on affect actions upstream, because commitments have already been made.  The project 
manager at Contract Corp. recognized that both action and inactivity shaped what happened in 
the future: 
 

What do you do in development that will impact the maintenance side, the 
operation side, what don't you do, in development that impacts your operation and 
in larger systems it's become very typical to include the configuration 
management and all the other practices of soft science in the operation side so that 
the tools we use to develop with are actually the same tools that they'll maintain 
with. (1: 32-37) 

 
I described the extremes of classified environments previously, but all military environments 
have much longer life-times than vendors like Tool Corp. and Computer Corp. deal with.  Even 
in non-classified environments, contractors like Contract Corp. must plan ahead, and consider 
what kinds of path dependencies may arise from the choices they make, for several years. 
 

But you also have to consider who's going to maintain the system very seldom 
does the developer also become the maintainer so we have to take into account the 
quality of people who are going to be using the system 10 years from now.  Not 
just next year but 10 years from now.  And what's the cost to the user.  You know, 
if we're using a very complex system that requires a lot of specialized 
administrators a small staff to just maintain the tool itself you're going to increase 
the cost to the end user, they're not going to be very happy because all of our 
contracts require that we give them initial bit at the beginning but it includes the 
entire life cycle.  If our solution has a very expensive life cycle cost we'll never 



102 

win a contract, so we have to balance, what's good and what's expensive with 
what's effective. (1: 668-678) 

 
Clearly the downstream aspects of software systems, maintenance, and operations depend on the 
decisions taken during development.  However, contracting companies can not decide to do 
everything that they might, like total quality management, software quality assurance and so 
forth, even if they would like to.  At all times they have to balance the potential pitfalls of 
avoiding upstream activities against the costs of those implementing those procedures, 
techniques, and tools. 
 
 

6.3  Individual Dependencies 
 
I learned much less about the dependencies that the developers working in military contracting 
environments must cope with to develop software, because I did not speak with any 
programmers.  I did learn about some dependencies that developers face with time, and other 
personnel on the project.  In this section I describe those dependencies, and their affects on the 
software development process. 
 
Historical Dependencies 
 
At both Tool Corp. and Computer Corp. developers routinely go back to previous versions of the 
code to find out what changes other developers made.  At Contract Corp. they have another 
reason to visit the past, to recreate environments that they must extend and modify.  Like all 
software military systems grow old and become obsolete.  Contract Corp. bids for contracts to 
revise and update these systems, and to do that they must understand how the old ones were 
generated. 
 
Unlike commercial settings military software can grow very old before it gets replaced.  Whereas 
Computer Corp. and Tool Corp. developers would go back routinely a few months, or unusually 
three years, Contract Corp. staff sometimes found themselves regenerating environments from 
twenty years ago.  This following quote illustrates the problems of working in so far the past.  
Contract Corp. needed to regenerate a binary, X', and when they compiled the code, they got X" 
instead.  At first they assumed that X' had been developed by different source code, but: 
 

turned out, X" and X' were compiled from the same piece of software two 
different binaries just by recompiling we'd solved the problem.  Everyone sat 
around going huh, and this was, this particular piece of software was very benign, 
and there wasn't a man-safety issue so it was fine, so we basically had two 
binaries coming from the same source code, same compilation, same everything 
except hardware, but they were fifteen years apart.  And the new compilation 
worked and the old one didn't.  We went as far as to even resurrect the old 
hardware and recompile it, still different binary, X" came out.  How was X' ever 
generated, we don't know, but by recompiling it fifteen years later the problem 
was solved.  If it was a crucial component I'm sure we could spend enough money 



103 

to figure out exactly what happened go back and interview all the original 
engineers and you know maybe X' was patched that's always a possibility.  But 
since it's not a critical component and the problems been fixed, we're just going 
on with life. (1: 773-785) 

 
In this case the developers had gone to the lengths of recreating the exact development 
environment to recompile the software, to reduce changes that might have crept in from 
commercial products.  The code was fifteen years old, so this required finding tools and 
technology from the very early 1980's.  It also demanded that the developers have the skills 
necessary to install and work on these old systems.  Although this particular piece of code did 
not require intensive investigation as to how X' was developed, the project manager clearly 
suggests that had it needed that they would have had to go and interview the developers working 
on the project at the time. 
 
This is an extreme example of the difficulties of working with what has been called legacy code, 
old pieces of the system.  At Tool Corp. I showed how developers depend on the work that their 
colleagues did in the past.  Contract Corp. takes this to the extreme because of the circumstances 
of military contracting situations.  Contract Corp. often finds itself working with legacy code 
when it joins a contract.  At the same time they find themselves in the position of guessing how 
developers in the past solved a problem, how they generated files, and what the software 
development context looked like.  This requires reflecting back to the practices and standards in 
place at the time, as well as recreating the technical hardware and software environment. 
 
Configuration Management Tool and Practices Dependencies 
 
At Contract Corp. the developers depended on their configuration manager, the embodiment of 
their tools and practices.  The configuration manager took responsibility for ensuring that the 
developers and managers produced all the required documentation for the project.  She depended 
on both groups to get her own work done, and spent considerable time adjusting her working 
practices, communicating with, these two groups.  In this section I describe how her technical 
work of producing documents generated dependency relationships. 
 
Military contracting environments following standards like DOD-STD 2167A must produce 
many reports accompanying the software and hardware that they develop.24   These documents 
relate to specific pieces of code in the system; they perform the accounting function within 
configuration management work.  The documents depend on the software because when the 
software changes the paperwork must be updated.  At the same time the configuration manager 
depends on the developers to tell what has been changed so that she can update the documents.  
As the configuration manager says, 
 

When I came on, they told, my first boss said that my whole job was to be a 
document cop which meant that I was to ensure that the documents were written, 

                                                
24  Newer standards such as MIL-STD 498 for software development have made efforts to reduce this paperwork as 
there is a growing concern among the software engineering community that focusing on documents has reduced the 
quality of the actual software built. 



104 

that they were written according to a standard whatever military standard and that 
they were shipped on time.  And I was not to concern myself with anything else.  
So that's pretty much what I did.  Later on it became obvious that the documents 
were related to other parts of the project and so we needed more control over 
other things. (2: 872- 879) 

 
The documents describe each step in the process.  While some reports give high level summaries 
of what has happened, others require very low-level technical details.  To do her job, the 
configuration manager needed the developers working on specific sections of the project to 
complete various documents.  To know what she needed from developers she devised strategies 
to find out.  Particularly she would ask them, but also surf the network for documents to see 
where the developers were in the documentation process. 
 

So that happened, whenever we shipped a tape I would keep the electronic copy 
and I would maintain that version, and a lot of times I just went around and asked 
people what they were working on, and you know be sure and give me a copy 
remember.  It's still funny how much, routinely I would, we have a network server 
so routinely I would get on it and go network surfing and see what people were 
working on.  (2: 1012-1017) 

 
These strategies helped her to align her own efforts with those of the developers.  As she relied 
on them completing detailed descriptions of the software that they had developed to complete her 
own required work, she had to devise strategies to find out where everyone was in their work. 
 
As well as relying on the developers for the descriptions of the latest changes, she also relied on 
the project leaders in her document production work.  Project leaders for the contract changed a 
number of times at Contract Corp. while she remained the configuration manager.  Each new 
project leader bought their own preferred ways of working, particularly for her, with respect to 
document production, that she had to comply with. 
 

I started out on a Macintosh with just word processing which I personally thought 
was a horrible way to go, but that's what my first [project leader] wanted.  Then I 
ran into a flat file system filemaker pro to keep the records and I tried to keep 
track of, I tried to leave some record of what we were doing so that at least I 
would know if you know a mistake something happened.  It was very simple.  
And then they got DBase4 which I never worked with for UNIX and we tried that 
for a while and then they decided that was too hard.  So then they took me off of 
the Macintosh and the Sun computers and they gave me a PC because we had a 
[project leader] again, and he preferred the PC, so, I mean this was all [project 
leaders].  This was the funny part was that every [project leader] came in and 
wanted my reports in a format that they were familiar with, so my files kept going 
through different systems, I ended up on PC using access to keep records, a 
database, and that's just because that's what my last [project leader] felt 
comfortable with.  (2: 970-983) 

 



105 

These changes in systems impacted the work of the configuration manager because she had to 
learn new products and devise new ways of producing the required documentation.  The 
technical dependency between her and the project leader involved the production and verification 
of the DOD-STD 2167A documentation associated with the software developed.  At the same 
time this technical relationship put the configuration manager in the situation of depending on 
the developers for the information to go into the documentation for the customer, and on the 
project leader's preferences for document production. 
 
Code Dependencies 
 
The developers at Contract Corp. face the hazards of changing code once they've built the 
system.  As I could not interview developers it was difficult to know exactly what dependencies 
they had to cope with on a day to day basis; however, clearly they existed because the manager 
spoke of strategies they used to get around the problems of managing them.  Specifically, the 
manager described hiring and financial incentives they used to encourage developers to 
remember as much of the code as possible: 
 

If it's not working, like a configuration problem, it's more than just changing a 
line of code, there's a ripple effect in the system, and all of a sudden they think, ah 
I've got to change it here, change it there, they're thinking through the entire 
process.  I've seen them sit for a half hour just thinking through all the different 
ripples of what's going on.  They sit down and read the mental work we pay these 
people a lot of money because they are very good. (1: 140-146) 
 
Um, we measure, in this organization we measure the quality of the software 
engineer by his ability to intimately understand lines of code.  We measure that is 
it a hundred lines of code, is it a thousand lines of code, 10,000, our senior and 
best engineers intimately track 60,000 lines of code.  This doesn't include 
comments, these are all lines of code, original source code, um.  They're hard to 
come by, a lot of experience.  Our typical engineer can at the entry level 500 to 
1000, our general working staff can do upwards of 5,000-6,000, it takes um a lot 
of dedication to go beyond those points, you have to live it. (1: 128-135) 

 
Clearly developers at Contract Corp. have developed two strategies for coping with these ripple 
affects.  First, good developers "live" their code represented by their abilities to track large 
amounts of code in their minds.  Second, beyond that they can visualize the behavior of these 
sections of the code that they know.  They sit and think about the impacts that a change will have 
on the software that they know.  These strategies have one severe limitation; what if the change 
impacts code that the developer has little or no familiarity with?  Evidence from Tool Corp. and 
Computer Corp. suggests that this may be a problem for Contract Corp.  It may also not only 
affect Contract Corp. but other contractors working on the same overall system, but different, yet 
dependent, sub-systems. 
 
 

6.4 Summary 



106 

 
Software development in the military contracting context highlights the complex set of 
dependencies among contractors, customers, and vendors.  Building software systems involves 
managing these relationships.  This case brings demonstrates how complex these inter-
organizational dependencies become as they last a long time and involve more organizations 
than inter-organizational dependencies in product development. 
 
Individual dependencies at Contract Corp. also have unique features.  Standards used in military 
contracting focus greater attention on documentation activities.  Much of the work that the 
configuration manager described was a process of aligning the documentation with the software. 



107 

Chapter 7 
 

Dependencies in Software Result from: 
Systems Change, External Influences, Multiple Products and 

Integration 
 
 
 

What you really have is um complex dependencies so it's a layered dependency 
problem so it's not like every dependency is exposed in the first order to every 
other space it might be second or third order dependencies out there.  So in that 
sense it has this dimensionality to it that makes it feel parallel but it really isn’t 
parallel it's just a dependency tree that’s really um weird, really hard to even 
visualize what it might look like or even, we’re thinking of starting an initiative 
that would be a whole task force or specially chartered group to examine 
dependencies.  Just because you know that is such a hard problem for people 
because it bites, it's enterprise wide dependencies, right so how do you manage 
them, well right now we don’t manage it, we stumble over it, and try to solve it 
every dependency one at a time, and so I, this we use group is like critical to us.  
It's solving that dependency issue.  Configuration Manager, Computer Corp. 

 
The previous three chapters presented data gathered from different software development 
organizations.  Each of the chapters focused on one organization and examined the dependencies 
that the developers, groups and the company face in their work.  This chapter groups those 
dependencies by the events responsible for them.  These are: changes made to the system, 
external influences on development, the necessity of building multiple products simultaneously, 
and the need to integrate the software components.  Before focusing on the causes of these 
dependencies, four differences among the three sites are discussed.  These differences influenced 
the way that each organization coped with their dependencies. 
 
 

7.1 General Observations 
 
Four aspects of the organizations studied form a useful foundation for understanding how these 
organizations differ in their strategies for coping with these dependencies: the effect of the size 
of the organization on the approaches to coordinating software development, the challenges of 
heterogeneous environments, length of time using any technological support for developing 
software, and differences between contract and product environments. 
 
Size of the Organization and Scalable Solutions 
 



108 

Software engineers know that the size of the development effort makes a difference in terms of 
the implementation of development methodologies.  In their discussions of scalability they 
frequently ask whether a technique from programming in the small works for programming in 
the large (Tichy, 1992).  Software engineers focus on the technical aspects of that problem, for 
example: does the notation produce unwieldy specifications for complex systems, does this 
testing strategy work in very large cases, and does this method remain workable for big sections 
of code? 
 
My study suggests that another critical dimension of scalability concerns the management of 
software development.  In this study I described two organizations that were very different in 
terms of the size of their development effort, people and code.  This was reflected in the actions 
that each organization needed to undertake to coordinate their software development effort.   
 
What Tool Corp. can achieve with 14 developers, one part-time build manager, and a project 
manager, takes Computer Corp. developers, people employed full-time as builders, steering 
committees, and entire departments to accomplish. 
 
The nature of the solutions that Tool Corp. and Computer Corp. have adopted to manage these 
problems differs as well.  Both organizations use informal procedures, e-mail, and face-to-face 
communication to manage some of their dependencies.  Both organizations also have some 
organizational functions to help manage other dependencies, such as project managers, and 
having someone do the build.  However, the size of the development effort means that Computer 
Corp. needs to provide departments, committees and special job functions to coordinate the 
development efforts across the entire organization.  Clearly, scalability of dependency 
management solutions has to factor into any technical or managerial decisions made. 
 
Heterogeneous Environments and Tool Usage 
 
Another stark difference between Tool Corp. and Computer Corp. concerned the homogeneity of 
tool usage.  At Tool Corp. the development environment contains a variety of machines that all 
run the product.  The equipment exists within the environment because the developers need to 
build and test versions of their product on those machines.  The tool support remains functionally 
consistent across all the machines: although the interfaces may change, the intent of the tool 
remains the same.  In this respect the consistency of the environment lowers the barriers to 
providing effective technical support for dependencies.  For example Tool Corp.'s developers 
can make assumptions about the state of development, the presentation of the code, and the 
builds that happen each night because the penetration of the tool into the environment is 
complete.  Nothing is outside the tool. 
 
The developers also have the advantage of having their entire product inside two databases.  The 
small amount of code — in comparison to the situation at Computer Corp. — means that they 
have fewer places to look to find other components and that more developers work inside one 
instantiation of the tool.  Developers can manage their dependencies with a greater percentage of 
the others working on the project through the tool. 
 



109 

This was not the case at Computer Corp.  Although the environment consisted of seemingly few 
platforms, these different platforms supported a number of different configuration management 
tools.  In the absence of a strong push to conform to one tool — the organization was in the 
process of enforcing consistency — the development groups often varied in the tools that they 
used to help them manage their dependencies.  As such dependency management strategies did 
not bridge the entire development effort, but remained localized around certain features of the 
tool that they used. 
 
The number of repositories for code at Computer Corp. was unclear, but in their vision of the 
controlled development environment the configuration management group estimated that the 
organization would need at least 20 databases of code.  The configuration management group 
had decided already to implement another layer of technology to support some types of 
synchronization of software among these databases. 
 
I have compared configuration management systems with groupware systems, in chapter 3 and 
elsewhere (Grinter, 1995).  This research offers a number of observations about tool usage.  
Critical mass theories (Grudin, 1988; Markus and Connolly, 1990) suggest that adoption of a tool 
requires that a certain fraction of participants use the technology.  At Tool Corp. everyone used 
the same tool.  As everyone used the tool the value of the kinds of coordination that they could 
achieve increased.  Beyond the obvious emphasis that Tool Corp. developers placed on 
configuration management, two factors made this level of usage possible, the scale of the system 
itself, and the penetration of the tool into the environment. 
 
Recently Grudin and Palen (1995) examined the use of group scheduling systems in two 
organizations: Microsoft and Sun.  They offered four reasons for the high degree of use: versatile 
functionality, ease of use, organizational infrastructure, and informal peer pressure.  The two 
organizations that they studied have a common platform standard, PC's at Microsoft and Sun's at 
Sun.  This study suggests that whether an organization has one or more platforms does not matter 
if the tool works with all of them.  Developers working on different platforms at Tool Corp. 
managed to work with each other because the tool worked on both platforms.  However, the 
developers at Computer Corp. had no common tools that ran on all the platforms they used in 
their development work. 
 
After Adoption: On-Going Coordination Challenges 
 
As groupware remains a relatively new phenomenon in organizations researchers have often 
written about the adoption of technologies (Orlikowski, 1992) and the adaptation of existing 
practices to accommodate the changes that these tools bring about (Bowers, 1994).  This study 
confirms these observations, particularly those of Bowers, in a new domain, software 
development.  At Computer Corp. the developers had begun to adapt their existing practices as 
they switched over to the new tool. 
 
However, at Tool Corp. they had passed the adoption stage, and perhaps they never had one in 
the sense that they adopted the tool that they built.  The tool helped them to manage some of the 
dependencies they encountered in their software development work, but failed to support others.  
I have tried to emphasize how difficult developers and organizations find dependency 



110 

management.  Dependencies take time to resolve, even temporarily.  The tool has mitigated and 
taken on some of that work, but dependencies don't disappear because they are still in the 
software itself.  Those outside the scope of the current technology still demand other solutions.  
Some of the dependencies, like parallel development, vacillate between being technologically 
resolved or requiring manual intervention.  In studies of long-term usage of groupware systems 
we may see these "sometimes" solutions, sometimes taking care of a coordination problem, and 
sometimes failing. 
 
Different Software Development Contexts 
 
Software development occurs in a number of different contexts.  Grudin (1991) identified three 
contexts of interface design: in-house, product and contract. In this study I have examined two 
different contexts: product and contract.25  This study suggests that the contexts share similarities 
and have differences in the kinds of dependencies that they must manage. 
 
Contracting shares some of the same demands as product development.  For example Contract 
Corp., like Tool Corp. and Computer Corp., must build products for a customer and meet their 
demands, and the individual developers manage historical interactions between old and new 
versions of code.  However, both these activities have their own peculiarities based on the 
context of development.  In the contracting environment the customer sets many more formal 
demands on the contractors' development process, which come in the form of standards, financial 
constraints, and in their most restrictive form classified development.  Also, developers may find 
themselves working with old code, not nine months or a year old, but perhaps a decade old.  
What makes that different from product development contexts is that this old code may not have 
been changed in ten years.  These differences shape the skills required of the organization and 
the developers. 
 
 

7.2  Individual Dependencies 
 
Individuals within the development team often need to coordinate their work with each other.  
The process of evolving the whole product involves continuously aligning the system 
components with each other, ensuring that changes get implemented in groups, and revising 
previous versions of software.  Developers engaged in these activities must manage the technical 
relationships between the modules.  Simultaneously developers engage in articulation work by 
negotiating and coordinating their efforts with others working on those related parts of the 
system.  I called these relationships individual dependencies' to capture the fact that these 
relationships involve individual developers, those responsible for the related pieces of code.   
 
I have described the social and technical aspects of each individual dependency found during the 
study.  I have also discussed the strategies that the organizations use to cope with these 
dependencies and the degree of success that tools have in supporting dependency management.  

                                                
25  Contract Corp. operated in a special kind of contracting environment, a monopsony or single customer 
environment. 



111 

Following grounded theory explanations, I turn to a discussion of the causes of these phenomena 
(Strauss and Corbin, 1990).  In this section the different kinds of dependencies are categorized 
based on the four conditions that led to them arising: the evolution of the software, the need to 
make a whole product from the parts, the role of practices and tools in shaping dependencies, and 
the external demands placed on developers. 
 
Systems Evolution 
 
Chapter 3 began with a quote by Whitgift (1991) about the role of change in configuration 
management.  He claimed that changes create problems for configuration management activities 
because altering one piece of the system forces another modification somewhere else.  He 
identified a critical part of configuration management work — managing changes as the system 
evolves — but only talked about its technical implications.  As my data shows, the changes made 
during systems evolution generate a number of dependencies that have both technical and social 
aspects.  In this section I describe the dependencies that occur as the system evolves: parallel 
development, change, expertise and historical. 
 
Parallel development dependencies begin when two or more developers have to change the same 
piece of code at the same time.  The technical dependency that they have with each other 
involves the changes that they make.  First, each developer must make their own changes to the 
code.  Together the developers must produce a single module that combines all of those 
individual changes.  This technical dependency forces developers to engage in collaborative 
activities.  After they have finished their own changes, one developer must interact with all the 
others to produce the merged module.  The articulation work involved in producing a single 
module involves learning about the modifications that others made and how those changes 
interact.  One developer typically ends up in charge of the merge.  Developers use configuration 
management tools to help them manage these social aspects of parallel development, but often 
end up needing to have face-to-face meetings to discuss merging issues. 
 
Change dependencies arise from the concept of a logical change to the system, such as resolving 
a problem or making an enhancement.  This logical change often requires that several 
components of the system get altered, including various software modules and associated 
documentation.  The translation from logical change into systems components creates the 
technical aspect of the dependency: components must all be amended to reflect the desired 
functionality.  That work often gets divided among different developers, who must make their 
own changes and ensure that all their changes "fit" together to fix the problem or add the new 
function.  The developers assigned to the change must either locate their counterparts or the code 
that the others have worked on align their changes. 
 
At Tool Corp. the developers manage change dependencies by using the configuration 
management tool that shows them what the latest changes are and who is working on them.  At 
Computer Corp. the tools may help developers manage locally contained changes, the 
modifications to a sub-system owned by one group.  They may also use meetings and other 
informal communications to help them find out what everyone within their group is working on.  
However, when changes span groups, developers rely on steering committees to help them align 



112 

changes across the organization, and established rules about putting the changed code in publicly 
accessible places. 
 
Expertise dependencies arise from the relationships between code modules that span ownership.  
When developers decide to make changes to a piece of code that they know, sometimes they 
discover that they need to understand something beyond the scope of their working knowledge.  
When this happens a technical change in their own code relies on a social relationship where an 
expert informs the other about implications the change may have and the developer designs the 
solution to account for those possibilities.  Expertise, and the reputation for having it in a certain 
area of the system, also forms a way for managers to divide and assign work.  At Tool Corp. 
developers either know who the experts are or use the tool to find out who has been working on 
code in that sub-system.  At Computer Corp. it gets very hard to keep track of all the people 
working on related software, although sometimes the developers know which group the person 
works for. 
 
Historical dependencies arise when developers extend or modify existing code.  Technically 
code evolves as the system grows and the functionality changes.  Over time different developers 
work on the module, because other people change jobs or move into a new area of the project.  
Each developer that works on revising the module to meet new requirements must learn to 
understand how that code works to make the necessary revisions.  This requires learning not only 
about the way that the code works, but the reasoning behind it.  The more that they know about 
the context of development, the reasons that the previous developer implemented certain 
functions, the easier it becomes to pick the best solution to the current problem. 
 
At Tool Corp. people used the organizational memory to help them learn from the past, and 
coordinate their efforts with the echoes of previous developers.  At Computer Corp. the 
developers also used tools to provide them with information about how things have changed over 
time, when they had the time.  Nevertheless the developers spent more time guessing why the 
module had developed as it did.  Contract Corp. developers also managed historical 
dependencies, but due to the peculiarities of contracting development contexts they found 
themselves working with very old versions of the code.  The extreme occurs when classified 
code changes for the first time in ten or twenty years. 
 
Interface dependencies begin with the identification of a problem that needs solving.  The person 
who reports the problem "sees" that it occurs in the interface of the system.  Although a bug may 
appear to be in the interface, the real problem is often inside the system.  Interface code depends 
on the technical substrates below, and the person responsible for the interface depends on the 
other developers to help find the source of the error.  In this study I singled out interface 
dependencies, but they are a special case of expertise dependencies.  The interface developer 
probably owns more code that interacts with all parts of the system than any other developer, so 
often find himself going to others to ask them questions about the code. 
 
All of these dependencies arise because the software being developed has a problem or needs 
enhancing.  The technical aspects of all of these dependencies manifest themselves as the 
relationships among pieces of code involved in the change.  Sometimes all the code needs to be 
adjusted simultaneously, as in the case of change dependencies.  At other times only one part of 



113 

the code needs amending, but the developers need to understand how it interacts with 
surrounding modules, as in the case of expertise and interface dependencies.  Finally, when 
parallel development and historical dependencies occur the technical relationship exists between 
two versions of the same module. 
 
These technical relationships have associated social dependencies.  The social aspects of all these 
dependencies arise because different developers work on the modules involved.  When 
developers enter into a dependency relationship, together with fixing the problem they must 
spend time aligning their efforts with the development context and others' on-going work.  All of 
this requires learning, either from other developers or through the use of technology.  The goal of 
this learning is to make informed choices about how to create the new revised code, the modules 
that fix the problem or deliver the required enhancement. 
 
At Tool Corp. the developers learned from both the tool and each other with relative ease.  The 
tool provided considerable information about the evolution of the system components and who 
owned each piece.  As a small team they could easily find one another and discuss potential 
solutions or align their efforts.  The tool also supported on-line fitting, by continually providing 
other developers with the latest stable changes of the entire system code.  At Computer Corp. the 
scale of the development operation impacted developers' ability to learn about the context of 
development.  Sometimes it even affected their ability to find the latest changes of the code that 
they needed to align their work with.  Having a variety of tools and a highly dispersed 
development operation they often relied on other groups to take care of these articulation 
activities, as I shall describe in the section on group level dependencies.  Contract Corp.'s 
developers found themselves facing similar problems with changes.  However, their time-scale 
for development differs significantly from the two commercial environments; the development 
context that they may have to learn could be ten years old. 
 
Dependencies arise from the fact that as a system evolves it changes.  Not all parts change at 
once, although that may happen.  Developers find themselves working with a moving target 
when they start changing a part of the system.  The software that they start fixing does not end up 
being the system that they have to integrate their fix with.  At Tool Corp. the system could 
evolve in 14 different ways simultaneously, as there were 14 developers there.  At Computer 
Corp. it could evolve approximately 700 different ways.  These dependencies as technical and 
social relationships that need to be maintained during development so that the software 
components still work together. 
 
Making Whole from Parts 
 
A consequence of decomposing a software system into modules is that the system needs to be 
built into a whole.  Whether or not individual components of the software change they must be 
integrated and tested to see whether they work together.  At Computer Corp. integration happens 
on two levels: building sub-systems and putting the whole system together.  Gathering the sub-
system at Computer Corp. approximates the same effort required by Tool Corp. to build their 
entire product.  At both organizations the process of constructing the system often reveals that 
the parts interrelate in ways that I have termed integration dependencies. 
 



114 

Technically integration dependencies incorporate a number of relationships.  Software engineers 
recognize that modules depend on each other at build-time (an element depends on the 
components from which it was derived) and compile-time (when modules must be compiled in 
the correct order).  However, when I interviewed and watched developers integrating systems I 
observed another technical aspect of integration dependencies: aligning current versions of all 
the modules.  This involves gathering all the most recent versions of the components to go into 
the final system, and ensuring that either all of a change gets in, or stays out. 
 
Both Tool Corp. and Computer Corp. have developers assigned to the role of build manager, the 
person responsible for collecting the newest changes of the system and putting them together.  At 
Tool Corp. the build managers depend heavily on the tool to help them decide what pieces of 
code get into the nightly builds, for doing a build, and producing an integrated system.  The 
system tries to take care of much of the work involved in finding the most recent changes and 
ordering the technical execution of the build. 
 
However, at both organizations a build manager has to manage the social relationships that 
emerge as a result of the technical aspects of the integration dependency.  When a build does not 
finish, then the manager has to find the code that broke it and get the problem resolved.  At 
Computer Corp. the build manager also has to find all the latest changes to put into their build, 
which requires considerable effort.  It requires intensive interaction with all the developers 
working on the sub-system to get a sense of what is going on. 
 
Computer Corp. also reveals how as software grows in size the complexity of managing 
integration dependencies rises.  When sub-systems have many components, a developer can not 
assume the role of build manager, because they do not have enough time to do both jobs.  
Computer Corp. has a job function, builder, whose job consists of doing nothing but integrating 
large systems.  Computer Corp. also has to integrate the entire system.  They have an 
organizational division, the release group, who perform that function. 
 
Practices and Tools 
 
The three sites also reveal how their configuration management tools and practices not only 
reflect the dependencies that they must deal with, but in turn shape they ways that they cope with 
them.  At Tool Corp. the tool handles a large percentage of their individual dependencies 
routinely.  For example, it gathers code together, helps them find the sub-system expert, keeps 
records of how previous developers resolved problems in the code, and provides them with the 
latest changes.  Despite having the tool the developers still need to spend time managing those 
aspects of the dependencies that the system can not resolve. 
 
The tool shapes the way that they think about these dependencies, and about software 
development more broadly.  The developers at Tool Corp. rely on the tool implicitly and make 
assumptions about what other people are doing based on information present in the system.  
However, it was the developers at Computer Corp. who really revealed the extent to which a tool 
can shape the way that these dependencies are coped with.  For example, the shift from Alpha to 
Tool Corp.'s product was a transformation from thinking about merging entire sub-systems to 
merging modules.  Changes such as these require the developers to completely reconsider what 



115 

merging means, both technically and socially.  While some strategies remained intact, such as 
their ability to backtrack using the tool, others changed, and often the developers at Computer 
Corp. wanted help in making the cognitive shift between the old and new tool ways of working. 
 
At Contract Corp. the configuration manager did all of the work that the tools did in Tool Corp. 
and Computer Corp.  The configuration manager also had the responsibility of making the 
adjustments as tools changed.  The developers remained relatively free from the process of 
adaptation as different program managers came and went, because what changed was not the 
development environment tools but the document production systems.    The differences created 
by the configuration management demands of military contracting and the embodiment of those 
procedures in a person rather than a tool affected how changes over time needed to be managed. 
 
Tools and people support the management of dependencies.  At the same time they create their 
own dependencies, the developers become dependent on the tools and on people providing 
certain kinds of information and on doing their job in a certain way.  Changes in the environment 
require adaptation of practices and strategies for managing the technical and social aspects of all 
dependencies. 
 
External Demands 
 
External demands, those coming from outside the organization, also create dependencies for 
software developers and are discussed extensively in the section on inter-organizational 
dependencies.  However, in one instance — platform dependencies — these influences showed 
up in individuals' work.  Computer Corp. wants to provide its product on several different 
platforms to increase its market share.  However, some of these platforms do not have any 
configuration management support.  Rather than work unsupported, developers work on 
platforms where the tool exists and cross-compile their code. 
 
Platform dependencies arise when the differences between the two platforms create technical 
difficulties.  In the case that I described the developers had to choose how they worked together 
as a direct result of the platform differences.  Adaptation of practices does not only occur when 
an organization changes tools.  At Computer Corp. it also happened when the organization 
expanded its product line to compete in new markets.  As well as managing the two platforms 
technically, porting code, running and storing code in two different places, the developers need 
to adapt their software development practices to compensate for the challenges of multiple 
platforms. 
 
 

7.3  Group Dependencies 
 
Teams within the development organization working on the same product also need to align their 
work.  Development groups also need to work together as a group to maintain a shared 
understanding of the product that they work on.  I separated the kinds of dependencies that 
involve groups in these ways from the ones that individuals manage, because they represent 
something closer to what Strauss (1988) calls the articulation process.  These processes reflect a 



116 

need to work with and understand the whole product rather than the pieces.  At this level I found 
two factors that cause dependencies: the necessity to make the whole from the parts and the need 
to manage multiple wholes simultaneously. 
 
Making the Whole from the Parts 
 
I have already described integration dependencies as the challenge of constructing the whole 
from the parts.  However at the group level I found more dependencies that stemmed from the 
same need, to create a sense of a whole from the specific parts of the system.  Software engineers 
have begun to recognize the importance of understanding the whole in some abstract way, they 
call it the software architecture and it has recently become an important research topic (Garlan 
and Perry, 1994).  Again, software architectures emphasize the technical aspects of the problem, 
designing "better" systems though understanding the conceptual arrangements of the parts. 
 
The developers at both Tool Corp. and Computer Corp. need to work together to generate an 
understanding about the product.  Although the developers spend the majority of their time 
working on small sections of the software, they need a sense of how the whole system fits 
together.  Having this "big picture" gives them direction and leads them to pick certain solution 
paths.  Knowing the big picture can also help them realize when their software has a run-time 
interaction with another section of the system, and when they can reuse code from another 
developer working on a similar problem. 
 
These technical aspects of big picture dependencies require accompanying social support, which 
was very difficult to provide in both organizations.  Establishing this big picture was something 
that groups within both organizations struggled with.  At Tool Corp. the developers could not 
work together to build the picture of the whole system.  They tried to use electronic mail and 
group meetings to develop this understanding of the product, but it took more time than they had.  
The tool, while helping them with individual dependencies, had no abstraction available for 
viewing the system as a whole.  At Computer Corp. the developers realized that they would not 
be able to visualize the system as a whole, but they still wanted to understand their sub-system 
and its relationships with other parts of the product.  Some people, architects, served as boundary 
spanners for the developers at Computer Corp. by bridging two groups and aligning their 
development efforts. 
 
Big picture dependencies differ from individual-level integration dependencies.  While 
integration dependencies focus on getting the pieces together in a certain order, big picture 
dependencies operate at a higher level of abstraction concerned with the ability to visualize the 
system as a whole.  This higher order required the entire team to work together as a group to 
understand what the system was doing.  The need to understand not only how the system fits 
together, but how it interacts as a whole was especially apparent at Computer Corp. where teams 
also had to manage shared-code problems. 
 
Technically a product comprises a number of sub-systems that interact to create the desired 
functionality.  This takes teams into shared code dependencies.  These dependencies span sub-
systems often relying on what Computer Corp. calls shared code: libraries and functions that 



117 

many sub-systems rely on.  They also require management, and Computer Corp. deals with this 
by having a central group manage these pieces of code. 
 
Working out how to share the code, aligning efforts across these sub-systems, creates problems 
for organizations like Computer Corp.  It requires setting up places where individuals can access 
the code, and controlling access to those places so that other people do not change the code and 
unwittingly cause other dependent parts of the product to fail.  These issues have both technical 
and social aspects, and development organizations must manage both of them to resolve the 
resultant difficulties. 
 
Managing Multiple Wholes 
 
In any development organization a number of software development life cycles exist.  At Tool 
Corp. during my time there they developed a point release (an upgrade for the existing customer 
base) and a new product simultaneously.  The company also developed each product on multiple 
platforms, and some of the platform developments took longer than others.  The developers were 
divided into groups working on distinct platforms, and although they wanted to maintain 
consistent functionality across the platforms they had to separate the life-cycles because they 
needed to go at different development speeds.  Technically, the speed issue manifested itself 
during the nightly builds.  The newer platform code was not ready to be built each night because 
it would break the build, consequently impacting the work of the developers working on both 
platforms.  The decision to split the code however meant that the developers responsible for 
developing on the new platform had to coordinate their efforts with the others working on the old 
platform.  This meant that every so often both platforms needed to be compared to see whether 
they provided consistent functionality. 
 
At Computer Corp. the situation was more complex.  The fast development life cycles for the 
entire product mean that some groups work towards the current release and other groups work 
towards the next release.  The entire product has a life cycle and each sub-system within the 
product has its own development schedule, too.  The organization has to maintain control over 
these competing life cycles, ensuring that all the groups work towards appropriate schedules. 
 
The idea of multiple life cycles clashes with the visions of software development portrayed in 
books on the topic.  Models of software development appear to preclude the idea that multiple 
products get developed simultaneously.  However, models need to take into account the fact that 
in commercial environments the days of one product have passed.  Companies have multiple 
versions of their products and many concurrent life cycles, all of which need to be managed. 
 
 

7.4  Inter-organizational Dependencies 
 
Inter-organizational dependencies situate software development in a complex web of 
relationships.  These dependencies influence and direct the development options of every single 
development company.  The theory of social worlds captures these dependencies because it 
highlights the affects that other companies have on a software development organization. 



118 

 
Contract Corp. provides the clearest evidence that outside influences affect development.  The 
government influences them in a variety of ways, by setting requirements, standards and 
financial limits.  In certain cases the government also stipulates secrecy regarding development.  
These are the most explicit conventions within the software development worlds that I studied.  
However, other conventions exist for all three organizations. 
 
As software development organizations such as Tool Corp. and Computer Corp. embrace open 
systems they must provide integrations to new products that appear on the market.  They cannot 
control vendor dependencies; usually they must react to them.  For example, when a vendor 
changes a product that the system under development relies on, Tool Corp. or Computer Corp. 
must revise their development schedule to take account of the new release.  Usually this means 
carrying on with the old version development to capture the segment of the market that will not 
upgrade, and beginning a new product variant to appeal to customers of the new release.  At the 
same time that Tool Corp. and Computer Corp. depend on other vendors, they also influence 
what other vendors do by releasing new versions of their products.  Recently, some software 
development organizations have formed partnerships and coalitions with others to try to organize 
how and when products change so that they can regain control of their own development 
schedule. 
 
These dependencies may not be news to economists studying technological change, but they 
certainly do not appear in software engineering literature.  The model of software development 
proposed in project management literature does not question who controls the development 
schedule.  Even authors like Cusumano and Selby (1995) who studied Microsoft did not see, or 
at least did not report, any affects of other vendors on Microsoft's development schedule. 
 
Customers also influence decisions Tool Corp. and Computer Corp. make.  Customers influence 
the development trajectory of the products by either directly telling the organizations or through 
the marketplace.  Customers may also influence the organizations through consultants, user 
groups, and more recently the Internet.26   They also depend on the organizations for support and 
on-going compatibility.  Organizations also use focus groups, where customers provide feedback 
on the product and marketing analyses, to determine their future directions.  Their concern with 
maintaining their market share encourages them to provide good support and on-going upgrades. 
 
 

7.5  Understanding Dependency Management 
 
Four causes of dependencies have been identified: the need to integrate the system, the on-going 
changes, the existence of multiple products, and external demands on the development process.  
However, these causes have intricate relationships.  The connections between the causes are 
described in this section. 
                                                
26  Intel was forced to revise their Pentium chip after a mathematician posted the bug to a USENET group.  Soon 
word passed around the Internet that the chip has a problem and that they were not going to fix it.  The Internet 
served as means to complain about Intel's decision and soon the company reversed its decision.  The president of 
Intel, Andrew Groves, also posted a message to the USENET group explaining Intel's decision reversal. 



119 

 
This study initially focused exclusively on the development process as it occurred within 
organizations, under the incorrect assumption that they had full control over the life-cycle.  In 
addition to impacting the life-cycle, external demands also shape some of the other causes of 
dependencies.  For example, clearly external demands influence the evolution of the system, and 
create the need for multiple products.  However, demands generated within the development 
organization also affect the evolution of the system, and produce multiple products. 
 
Both the need to make the whole out of the parts and the need to manage multiple products 
involve integrating the components.  As described assembling one product involves physically 
putting the product together, and also using the understanding of what the whole does to continue 
working on the parts.  Managing multiple products requires keeping those assemblies distinct 
even though one code module may fit into more than one product. 
 
Finally systems evolution, the on-going changes to the product, implies that integration must 
occur more than once during the life cycle.  Every time a change gets made the system needs 
recompiling to see whether that change works with the rest of the system and whether it produces 
the desired outcomes.  Systems evolution forces integration to become an on-going activity. 
 
The two single most important causes underlying dependencies are the need to integrate systems 
and the external demands placed on software development.  The latter should come as no 
surprise to researchers who have studied software development.  However, their studies have 
focused on the early stages of development: requirements analysis and design.  This work looks 
at development and suggests that outside forces influence development.  These effects show up 
as new demands on the system and provide an explanation of why requirements elicitation 
occurs throughout the development life-cycle rather than being isolated to the few stages.  This 
study contributes to the understanding of how external demands influence software development. 
 
Another contribution of this work has concerns integration.  Integration dependencies reveal a 
fundamental challenge faced by software developers, how to build a system.  Unlike systems 
decomposition, which may only occur once, developers must continually integrate their system 
whether or not the components change.  I call this recomposition, and the final chapter focuses 
on its significance. 
 
 

7.6  Summary 
 
In this chapter I have done three things.  First, I reviewed and synthesized each specific 
dependency that I described in the data chapters previously.  I illustrated the technical and social 
aspects of those dependencies as people who work with them understand them.  Second, I 
classified them by their causes.  System change, integration and external influences create 
dependencies between the code modules that form a software system and at the same time 
among the individuals, groups and organizations that work with them.  Third, I described how 
the underlying causes relate to each other and identified the contributions that this work makes 
particularly in understanding software recomposition. 



120 

 
I started this thesis work with the ideas about the way that people work together based on the 
theories of articulation work and social worlds.  I have discovered that developers engage in 
articulation work to manage dependencies.  Developers need to work with each other to track 
changes through the system, build the whole from the parts, control the affects of external 
influences in their work, manage the multiple product life cycles.  They either do this alone, as a 
group, or with the help of organizational and technological coordination mechanisms, like job 
functions, departments, and tools.  What gets done in the name of configuration management at 
all three organizations arises from the need to manage these social and technical dependencies.  
To add further complexity to these dependencies all development organizations find themselves 
in a social world with conventions that may or may not be clearly articulated.  At the same time 
as they coordinate their internal development efforts they must align their efforts with vendors 
and customers. 
 



121 

Chapter 8 
 

Conclusions: Contributions, Limitations, and Future Work 
 
 
 

Most software projects are group activities, involving all the complexities of 
group dynamics, communications networks, and organizational politics.  The 
study of group behavior in software development is in its infancy, but like the 
study of individuals, it promises to improve our understanding of the development 
process, particularly at the front end.  Many observers believe that improving this 
phase of development could have the most impact on software quality and 
productivity.  (Basili and Musa, 1991; 94) 

 
This thesis began with a question: how do software dependencies affect the development of 
systems?  The argument that dependencies are technical relationships among code that create and 
reflect social relationships among individuals, groups, and organizations.  This chapter 
summarizes the line of reasoning in the thesis.  It also examines what this thesis has to offer our 
collective understanding of systems decomposition.  Limitations and future work are described. 
 
 

8.1  Summary of Thesis 
 
Sometimes software fails.  One of the reasons why it fails is because it is hard to manage the 
dependencies between the individual software components. Dependencies are relationships 
among software and people working on that code.  These problems come into focus when you 
study configuration management activities as they happen in practice.  Configuration 
management involves identifying the components of a software system and tracking how they 
change over time.  It also involves maintaining information about how to assemble the 
components into systems. 
 
In practice configuration management is the domain of software development practice where 
managing the dependencies between system components becomes necessary.  Configuration 
management is concerned with building systems from their parts, over and over again, as the 
system evolves during development. The hardest part of this is managing the dependencies 
among the software components.  The individuals and teams responsible for sections of the code 
must engage in articulation work to manage these dependencies.  At the same time the 
organization must participate in the social world of software development so that they can 
continue to integrate their product with others. 
 
I began this thesis with a question: how do software dependencies affect the development of 
systems?  The answer to the question is then: software dependencies affect the development of 
systems by creating situations where developers and groups must engage in articulation work, 
and organizations must participate in social worlds. 



122 

 
 
 
 
 

8.2  Decomposition Implies Recomposition 
 
The argument presented in this thesis clearly suggests that configuration management should be 
repositioned within practical software development and academic software engineering.  When 
developers, teams, and organizations engage in configuration management activities they find 
themselves managing complex dependencies.  However, the explanation also reveals a more 
fundamental challenge for researchers interested in software engineering issues.  It suggests that 
decomposition implies recomposition. 
 
Chapter 1 introduced the concept of decomposing systems into modules that exhibited low 
coupling.  Coupling is a measurement of the dependencies among modules.  The more 
dependencies modules have the more highly coupled they are.  The solution proposed by 
software engineers has consisted of designing systems with modules that have as few 
dependencies as possible. 
 
The underlying philosophy is to decompose systems to eliminate recomposition issues.  This is 
clearly illustrated by the following quote, 
 

The benefits expected of modular programming are: (1) managerial — 
development time should be shortened because separate groups would work on 
each module with little need for communication: (2) product flexibility — it 
should be possible to make drastic changes to one module without a need to 
change others; (3) comprehensibility — it should be possible to study the system 
one module at a time.  The whole system can therefore be better designed because 
it is better understood. (Parnas, 1972; 1054) 

 
Parnas clearly believes that good decomposition would eliminate the complexity of 
recomposition. 
 
The data presented in this thesis challenges this assertion.  Clearly the three organizations studied 
did not have the managerial, product flexibility, or comprehensibility gains that Parnas describes.  
This raises two questions: did Parnas get this wrong or did the organizations do bad 
decomposition? 
 
The answer is neither.  In proposing criteria for good systems decomposition Parnas identified a 
set of key issues, that until that time had remained hidden.  He provided a compelling argument 
that trying hard to decompose systems into functionality separate pieces would have the 
advantage of making recomposition easier.  The data presented here do not contradict that 
conclusion; perhaps different systems decomposition would reduce the complexities of managing 
software dependencies. 



123 

 
Software engineering researchers know the problems of working with legacy code.  The three 
organizations described were all developing existing software by enhancing, modifying, and 
extending it.  The systems decomposition had taken place some time ago, and now they were 
working with a design that had produced successful versions of their products.  Research tells us 
that as systems evolve during development they change their character.  It is extremely likely 
that during that evolution that coupling changes; modules that once exhibited low coupling, may 
come to have high coupling. 
 
The answer begins with the data; clearly successful software development organizations have 
dependencies among software components they build.  Parnas's expected benefits of modularity 
have not happened inside the successful development organizations studied.  A major 
contribution of this research has been to assert that systems recomposition ought to become a 
research topic, and in a sense it already is, because configuration management researchers are 
currently learning about recomposition issues. 
 
This thesis makes an important step to setting a research agenda for understanding and 
supporting systems' recomposition.  Recomposition has two aspects.  First, product needs to be 
reassembled when changes take place.  These changes may come from inside the organization or 
from external demands made on the company.  Second, most product development organizations 
must assemble multiple variants of the their product for different platforms.  This data suggests 
that currently this takes time and requires developers, teams, and organizations to align their 
work with each other just to recompose their systems. 
 
 

8.3  Limitations 
 
This work has some limitations.  Currently this data only covers two kinds of software 
development that are product development and government contracting.  Other kinds of software 
development environments exist as Grudin (1989) has described.  Future work ought to examine 
in-house software development, where the customers and developers inhabit the same 
organization.  Another kind of development context to consider would be commercial 
contracting.  Some of the large product software development organizations use contractors to 
help them meet release deadlines.  These kinds of work arrangements might reveal more 
complex dependency relationships between the main organization and the contractor. 
 
This study has focused on software during its development.  Currently it does not make any 
connections to the work being done in understanding how to elicit systems requirements and 
model them.  Requirements drive systems evolution.  Understanding how these requirements 
evolve may help to understand how dependencies arise, and may also provide potential sources 
for better dependency management strategies. 
 
This thesis divided dependencies into three levels: individual, group, and inter-organizational.  
The individual level and inter-organizational level dependencies seem  intuitive.  Individual level 
dependencies involve individuals engaging in articulation work.  Inter-organizational level 



124 

dependencies focus on the social worlds that software development organizations find 
themselves in.  Group level proves more problematic to define. 
 
The first difficulty arises from the difficulty of the concept of a group.  What defines a group?  I 
have tried to separate dependencies that require the participation of the entire group or span 
functional divisions.  However, some of the individual dependencies also span groups.  When 
special builders take on the build management role for a team does that constitute a group-level 
dependency?  The model is a beginning for sorting out the different kinds of dependency 
management.  Further research that explores software dependencies may reveal a better way to 
organize and categorize the results. 
 
 

8.4  Conclusions 
 
This thesis has presented a sociological understanding of the practice of software development.  
It has provided an explanation of how dependencies affect the development of software.  
Specifically it has shown how technical dependencies among code modules create and reflect 
social dependencies between the developers, teams, and organizations working on them. 
 
This chapter began with a quote from Victor Basili and John Musa about the need to study the 
social aspects of software development.  It appeared under the heading "software sociology."  
This work contributes to the broad enterprise of software sociology by offering an explanation of 
one reason why developers need to coordinate their activities.  However, it raises far more 
questions than it has answered; for example: how can we build technological support for 
dependency management, what other dependencies exist, and can we design systems to improve 
dependency management?  None of these questions have been explicitly addressed in research 
yet, but successful software development organizations find themselves resolving these issues 
temporarily every day of their operation.  Software sociology has much to offer both basic 
research and the development communities. 
 
 



125 

References 
 
 

Ackerman, M. (1994).  Augmenting the Organizational Memory: A Field Study of Answer 
Garden. In Malone, T. (eds.), Proceedings of the Computer Supported Cooperative Work '94,  
243-252.  New York, N.Y.:  ACM Press. 

Anderson, R., and Sharrock, W. (1993).  Can Organisations Afford Knowledge?  Computer 
Supported Cooperative Work (CSCW): An International Journal, vol. 1, no. 3, 143-161. 

Babich, W. A. (1986). Software Configuration Management: Coordination for Team 
Productivity.  Reading, MA:  Addison-Wesley.   

Basili, V. R., and Musa, J. D. (1991).  The Future Engineering of Software: A Management 
Perspective.  IEEE Computer, vol. 24, no. 9, 90-96. 

Becker, H. S. (1982). Art Worlds.  Los Angeles, CA:  University of California Press.   

Bendifallah, S., and Scacchi, W. (1987).  Understanding Software Maintenance Work.  IEEE 
Transactions on Software Engineering, vol. 13, no. 3, 311-323. 

Bernard, H. R. (1988). Research Methods in Cultural Anthropology.  Newbury Park, CA:  Sage.   

Bersoff, E. H. (1984).  Elements of Software Configuration Management.  IEEE Transactions on 
Software Engineering, vol. 10, no. 1, 79-87. 

Bersoff, E. H., Henderson, V. D., and Siegel, S. G. (1980). Software Configuration 
Management: An Investment in Product Integrity.  Englewood Cliffs, N.J.:  Prentice-Hall.   

Boehm, B. W. (1981). Software Engineering Economics.  Englewood Cliffs, N.J.:  Prentice-Hall.   

Boehm, B. W. (1988).  A Spiral Model of Software Development and Enhancement.  IEEE 
Computer, vol. 21, no. 5, 61-72. 

Bowers, J. (1994).  The Work to Make a Network Work: Studying CSCW in Action. In Furuta, 
R., and Neuwirth, C. (eds.), Proceedings of the Computer Supported Cooperative Work '94,  
287-298.  New York, N. Y.:  ACM Press. 

Brooks Jr., F. P. (1975). The Mythical Man-Month: Essays on Software Engineering.  Reading, 
MA:  Addison-Wesley.   

Brooks Jr., F. P. (1987).  No Silver Bullet: Essence and Accidents of Software Engineering.  
IEEE Computer, vol. 20, no. 4, 10-19. 

Brooks Jr., F. P. (1995). The Mythical Man-Month: Essays on Software Engineering. (20th 
Anniversary Edition ed.)  Reading, MA:  Addison-Wesley.   



126 

Button, G., and Dourish, P. (1996).  Technomethodology: Paradoxes and Possibilities. In Tauber, 
M. J. (eds.), Proceedings of the ACM CHI'96 Conference on Human Factors in Computing 
Systems,  19-26.  ACM Press. 

Button, G., and Sharrock, W. (1994).  Occassioned Practices in the Work of Software Engineers 
In Goguen, J., and Jirotka, M. (eds.), Requirements Engineering , 217-240. London, U.K.:  
Academic Press Ltd. 

Caballero, C. (1994). Life Cycle: Now the Focus in UNIX CM Market. Application Development 
Trends.  August, 1994. 49-54, 64,86. 

Compton, S. B., and Conner, G. R. (1994). Configuration Management for Software.  New York, 
N. Y.:  Van Nostrand Reinhold.   

Curtis, B. (1995).  Can Speech Acts Walk the Talk?  Computer Supported Cooperative Work 
(CSCW): An International Journal, vol. 3, no. 1, 61-64. 

Curtis, B., Krasner, H., and Iscoe, N. (1986).  A Field Study of the Software Design Process for 
Large Systems.  Communications of the ACM, vol. 31, no. 11, 1268-1287. 

Cusumano, M. A., and Selby, R. W. (1995). Microsoft Secrets:  How the World's Most Powerful 
Software Company Creates Technology, Shapes Markets, and Manages People.  New York, 
N. Y.:  The Free Press.   

Dart, S. A. (1992). The Past, Present, and Future of Configuration Management.  Technical 
Report No. CMU/SEI-92-TR-8. Software Engineering Institute. 

Davies, L., and Nielsen, S. (1992).  An Ethnographic Study of Configuration Management and 
Documentation Practices In Kendall, K. E., Lyytinen, K., and De Gross, J. I. (eds.), The 
Impact of Computer Supported Technologies on Information Systems Development , 179-
192. Amsterdam:  Elsevier Science Publishers B.V. 

Department of Defense (1970).  Configuration Management Practices, Equipment, Munitions, 
and Computer Programs.  United States Department of Defense, MIL-STD 483.  December 
31, 1970. 

Department of Defense (1985).  Defense Systems Software Development.  United States 
Department of Defense, DOD-STD 2167, June 4, 1985. 

Dowson, M. (1993).  Software Process Themes and Issues. In Proceedings of the Proceedings of 
2nd International Conference on the Software Process,   IEEE Computer Society Press. 

Fischer, G., Grudin, J., Lemke, A., McCall, R., Ostwald, J., Reeves, B., and Shipman, F. (1992).  
Supporting Indirect Collaborative Design with Integrated Knowledge-Based Design 
Environments.  Human-Computer Interaction, vol. 7, no. 3, 281-314. 

Fromme, B. (1994). CM Hit List. Advanced Systems.  November, 1994. 72,74,76-77. 



127 

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: elements of 
reusable object-oriented software.  Reading, Massachusetts:  Addison-Wesley Publishing 
Company.   

Garlan, D., and Perry, D. (1994).  Software Architecture: Practice, Potential, and Pitfalls. In 
Proceedings of the 16th International Conference on Software Engineering,  363-364.  
Washington, D.C.:  IEEE Press. 

Gerson, E. M., and Star, S. L. (1986).  Analyzing Due Process in the Workplace.  ACM 
Transactions on Office Systems, vol. 4, no. 3, 257-270. 

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (1991). Fundamentals of Software Engineering.  
Englewood Cliffs, N. J.:  Prentice-Hall.   

Gibbs, W. W. (1994).  Software's Chronic Crisis.  Scientific American, vol. 271, no. 3, 86-95. 

Giddens, A. (1989). Sociology.  Cambridge, UK:  Polity Press.   

Glaser, B. G., and Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for 
Qualitative Research.  Hawthorne, N. Y.:  Aldine de Gruyter.   

Goguen, J. A., and Jirotka, M. (1994). Requirements Engineering: Social and Technical Issues.  
London:  Academic Press Ltd.   

Green-Armytage, J. (1993). Why Taurus was always Ill-Starred. Computer Weekly.  March, 18, 
1993. 10. 

Grinter, R. (1995).  Using a Configuration Management Tool to Coordinate Software 
Development. In Proceedings of the ACM Conference on Organizational Computing 
Systems,  168-177.  New York, N. Y.:  ACM Press. 

Grudin, J. (1988).  Why CSCW Applications Fail: Problems in the Design and Evaluation of 
Organizational Interfaces. In Proceedings of the Conference on Computer-Supported 
Cooperative Work '88,  85-93.  New York, N. Y.:  ACM Press. 

Grudin, J. (1991).  Interactive Systems: Bridging the Gaps Between Developers and Users.  
IEEE Computer, vol. 24, no. 4, 59-69. 

Grudin, J. (1994).  Groupware and Social Dynamics: Eight Challenges for Developers.  
Communications of the ACM, vol. 37, no. 1, 92-105. 

Grudin, J., and Palen, L. (1995).  Why Groupware Succeeds: Discretion or Mandate? In 
Marmolin, H., Sundblad, Y., and Schmidt, K. (eds.), Proceedings of the Proceedings of the 
Fourth European Conference on Computer-Supported Cooperative Work,  263-278.  
Dordrecht:  Kluwer Academic Publishers. 



128 

Heath, C., and Luff, P. (1991).  Collaborative Activity and Technological Design: Task 
Coordination in London Underground Control Rooms. In Proceedings of the European 
Conference on Computer Supported Cooperative Work,  65-80.   

Hughes, J. A., Randall, D., and Shapiro, D. (1993).  From Ethnographic Record to System 
Design: Some Experiences from the Field.  Computer Supported Cooperative Work (CSCW): 
An International Journal, vol. 1, no. 3, 123-141. 

Ingram, P. (1994).  The Market for CM Tools. In Proceedings of the UNICOM Conference.  
October, 1994. London. U.K.    

Jorgenson, D. L. (1989). Participant Observation.  Newbury Park, CA:  Sage.   

Leblang, D. B. (1994).  The CM Challenge: Configuration Management that Works In Tichy, W. 
F. (eds.), Configuration Management , 1-37. Chichester, UK:  John Wiley & Sons Ltd. 

Lofland, J., and Lofland, L. (1984). Analyzing Social Settings: A Guide to Qualitative 
Observation and Analysis. (2nd ed.)  Belmont, CA:  Wadsworth.   

Lubars, M., Potts, C., and Richter, C. (1993).  A Review of the State of the Practice in 
Requirements Modeling. In Fickas, S., and Finkelstein, A. (eds.), Proceedings of the 
Requirements Engineering 1993,  2-14.  IEEE Computer Society Press. 

Lubkin, D. C. (1991).  DSEE: A Software Configuration Management Tool.  The Hewlett-
Packard Journal, vol. 42, no. 3, 77-83. 

Mahler, A. (1994).  Variants: Keeping Things Together and Telling Them Apart In Tichy, W. F. 
(eds.), Configuration Management , 73-97. Chichester, UK:  John Wiley & Sons, Ltd. 

Markus, M. L., and Connolly, T. (1990).  Why CSCW Applications Fail: Problems in the 
Adoption of Interdependent Work Tools. In Proceedings of the Conference on Computer 
Supported Cooperative Work '90,   ACM Press. 

Marshall, C., and Roseman, G. B. (1989). Designing Qualitative Research.  Newbury Park, CA:  
Sage.   

McCabe, T. J. (1976).  A Complexity Measure.  IEEE Transactions on Software Engineering, 
vol. 2, no. 4, 308-320. 

Nato Science Committee (1969). Working Conference on Software Engineering.  No.  Nato 
Scientific Affairs Division. 

Nix, K. (1994). Using CM. Software Development.  December, 1994. 61-65. 

Orlikowski, W. J. (1992).  Learning from Notes: Organizational Issues in Groupware 
Implementation. In Proceedings of the Conference on Computer-Supported Cooperative 
Work '92,  362-369.  New York, N.Y.:  ACM Press. 



129 

Parnas, D. L. (1972).  A Technique for Software Module Specification with Examples.  
Communications of the ACM, vol. 15, no. 5, 330-336. 

Parnas, D. L., and Clements, P. C. (1986).  A Rational Design Process: How and Why to Fake It.  
IEEE Transactions on Software Engineering, vol. 12, no. 2, 251-257. 

Perin, C. (1991).  Electronic Social Fields in Bureaucracies.  Communications of the ACM, vol. 
34, no. 12, 75-82. 

Perry, D. E., Staudenmayer, N. A., and Votta, L. G. (1994).  People, Organizations, and Process 
Improvement.  IEEE Software, vol. 11, no. 4, 36-45. 

Pickering, J. M., and Grinter, R. E. (1995).  Software Engineering and CSCW: A Common 
Research Ground In Taylor, R. N., and Coutaz, J. (eds.), Software Engineering and Human-
Computer Interaction: ICSE'94 Workshop on SE-HCI Joint Research Issues , 241-250. 
Heidelberg:  Springer-Verlag. 

Pickering, J. M., and King, J. L. (1995).  Hardwiring Weak Ties: Interorganizational Computer-
Mediated Communication, Occupational Communities and Organizational Change.  
Organization Science, vol. 6, no. 4, 479-486. 

Potts, C. (1993).  Software Engineering Research Revisited.  IEEE Software, vol. 10, no. 5, 19-
28. 

Quintas, P. (1993). Social Dimensions of Systems Engineering: People, Processes, Policies and 
Software Development.  New York, N. Y.:  E. Horwood.   

Rogers, Y. (1993).  Coordinating Computer-Mediated Work.  Computer Supported Cooperative 
Work (CSCW): An International Journal, vol. 1, no. 4, 295-315. 

Rosenberg, N. (1982). Inside the black box : technology and economics.  Cambridge, UK:  
Cambridge University Press.   

Samaras, T. T., and Czerwinski, F. L. (1971). Fundamentals of Configuration Management.  
New York, N.Y.:  John Wiley & Sons.   

Scacchi, W. (1984).  Managing Software Engineering Projects: A Social Analysis.  IEEE 
Transactions on Software Engineering, vol. 10, no. 1, 45-59. 

Schach, S. (1990). Software Engineering.  Homewood, IL:  Aksen Associates.   

Schmidt, K., and Bannon, L. (1992).  Taking CSCW Seriously: Supporting Articulation Work.  
Computer Supported Cooperative Work (CSCW): An International Journal, vol. 1, no. 1-2, 
7-40. 

Schwartz, H., and Jacobs, J. (1979). Qualitative Sociology: A Method to the Madness.  New 
York, N. Y.:  The Free Press.   



130 

Sharrock, W., and Anderson, B. (1993).  Working Towards Agreement In Button, G. (eds.), 
Technology in Working Order , London, UK:  Routledge. 

Simone, C., Divitini, M., and Schmidt, K. (1995).  A Notation for Malleable and Interoperable 
Coordination Mechanisms for CSCW Systems. In Comstock, N., and Ellis, C. (eds.), 
Proceedings of the Conference on Organizational Computing Systems,  44-54.  New York, 
N.Y.:  ACM Press. 

Sommerville, I. (1989). Software Engineering. (3rd ed.)  Wokingham, UK:  Addison-Wesley.   

Strauss, A. (1985).  Work and the Division of Labor.  The Sociological Quarterly, vol. 26, no. 1, 
1-19. 

Strauss, A. (1987). Qualitative Analysis for Social Scientists.  New York: N.Y.:  Cambridge 
University Press.   

Strauss, A. (1988).  The Articulation of Project Work: An Organizational Process.  The 
Sociological Quarterly, vol. 29, no. 2, 163-178. 

Strauss, A., and Corbin, J. (1990). Basics of Qualitative Research: Grounded Theory Procedures 
and Techniques.  Newbury Park, CA:  Sage.   

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine 
Communication.  Cambridge, UK:  Cambridge University Press.   

Suchman, L. (1992).  Technologies of Accountability: Of Lizards and Aeroplanes In Button, G. 
(eds.), Technology in Working Order: Studies of Work, Interaction, and Technology , 
London, UK:  Routledge. 

Suchman, L. (1994).  Do Categories Have Politics? The Language/Action Perspective 
Reconsidered.  Computer Supported Cooperative Work (CSCW): An International Journal, 
vol. 2, no. 3, 177-190. 

Suchman, L. A. (1983).  Office Procedure as Practical Action: Models of Work and System 
Design.  ACM Transaction s on Office Information Systems, vol. 1, no. 4, 320-328. 

Tichy, W. (1985).  RCS: A system for Version Control.  Software Practice and Experience, vol. 
15, no. 7, 637-654. 

Tichy, W. F. (1992).  Programming-in-the-large: Past, Present, and Future. In Proceedings of the 
14th International Conference on Software Engineering,  362-367.   

van der Hoek, A., Heimbigner, D., and Wolf, A. (1996).  A Generic Peer-to-Peer Repository for 
Distributed Configuration Management. In Rombach, D. (eds.), Proceedings of the 18th 
International Conference on Software Engineering,   Los Alamitos, CA:  IEEE Press. 

Whitgift, D. (1991). Methods and Tools for Software Configuration Management.  Chichester, 
UK:  John Wiley & Sons.   



131 

Whittaker, S., and Schwarz, H. (1995).  Back to the Future: Pen and Paper Technology Supports 
Complex Group Coordination. In Proceedings of the ACM CHI'95 Conference on Human 
Factors in Computing Systems,  495-502.  New York, N.Y.:  ACM Press. 

Winograd, T. (1994).  Categories, Disciplines, and Social Coordination.  Computer Supported 
Cooperative Work (CSCW): An International Journal, vol. 2, no. 3, 191-197. 

Woolgar, S. (1994).  Rethinking Requirements Analysis: Some Implications of Recent Research 
into Producer-Consumer Relationships in IT Development In Goguen, J. A., and Jirotka, M. 
(eds.), Requirements Engineering: Social and Technical Issues , 201-216. London, UK:  
Academic Press Ltd. 

 
 


