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Outline 
•  Historical context about Computer Vision 

•  CloudCV 
–  A mix of 

•  Research in my group 
•  Deployment and demos at cloudcv.org 
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Computer Vision: 
Making Computers See 

3 Image from: http://kirkh.deviantart.com/art/BioMech-Eye-168367549 



Slide credit: Devi Parikh 

“Color College Avenue”, Blacksburg, VA, May 2012 
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Computer Vision 

“spend the summer linking a camera to a 

computer and getting the computer to 
describe what it saw”  

 

- Marvin Minsky (1966), MIT 

 … 45 years later 
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Computer Vision 

OR 

Vision is HARD! 
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A Brief History of AI 
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A Brief History of AI 
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•  “We propose that a 2 month, 10 man study of artificial 
intelligence be carried out during the summer of 1956 at 
Dartmouth College in Hanover, New Hampshire.” 

•  The study is to proceed on the basis of the conjecture that 
every aspect of learning or any other feature of 
intelligence can in principle be so precisely described that 
a machine can be made to simulate it.  

•  An attempt will be made to find how to make machines 
use language, form abstractions and concepts, solve 
kinds of problems now reserved for humans, and improve 
themselves.  

•  We think that a significant advance can be made in one or 
more of these problems if a carefully selected group of 
scientists work on it together for a summer.” 



AI Predictions: Experts 
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AI Predictions: Non-Experts 
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AI Predictions: Failed 
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What humans see 
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What computers see 
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We’ve come a long way… 
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We’ve come a long way… 
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We’ve come a long way… 

[Fischler and Elschlager, 1973] 
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We’ve come a long way… 
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Datasets	  and	  computer	  vision	  

UIUC	  Cars	  (2004)	  
S.	  Agarwal,	  A.	  Awan,	  D.	  Roth	  

3D Textures (2005) 
S. Lazebnik, C. Schmid, J. 

Ponce 

CuRRET	  	  Textures	  (1999)	  
K.	  Dana	  B.	  Van	  Ginneken	  S.	  Nayar	  J.	  

Koenderink	  

CAVIAR	  Tracking	  (2005)	  
R.	  Fisher,	  J.	  Santos-‐Victor	  J.	  Crowley	  	  

FERET Faces 
(1998) 

P. Phillips, H. Wechsler, J. 
Huang, P. Raus 

CMU/VASC Faces (1998) 
H. Rowley, S. Baluja, T. Kanade 

MNIST	  	  digits	  (1998-‐10)	  
Y	  LeCun	  &	  C.	  Cortes	  

KTH	  human	  acCon	  (2004)	  
I.	  Leptev	  &	  B.	  Caputo	  

Sign	  Language	  (2008)	  
P.	  Buehler,	  M.	  Everingham,	  A.	  

Zisserman	  	  

SegmentaCon	  (2001)	  
D.	  MarVn,	  C.	  Fowlkes,	  D.	  Tal,	  J.	  

Malik.	  

Middlebury	  Stereo	  (2002)	  
D.	  Scharstein	  R.	  Szeliski	  	  

COIL	  Objects	  (1996)	  
S.	  Nene,	  S.	  Nayar,	  H.	  Murase	  
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Backpack 
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Backpack 

Flute Strawberry Traffic light 

Bathing 
cap 

Matchstick 

Racket 

Sea lion 
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Large-scale recognition 
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PASCAL VOC 2005-2012 

Classification: person, motorcycle 
Detection Segmentation 

Person 

Motorcycle 

Action: riding bicycle 

Everingham, Van Gool, Williams, Winn and Zisserman. 

The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010. 

20 object classes   22,591 images 
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20 object classes   22,591 images 

1000 object classes         1.4M/50k/100k images 

Dalmatian 

http://image-net.org/challenges/LSVRC/{2010,…,2014} 
Slide Credit: Li Fei-Fei (C) Dhruv Batra  23 

ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 

Classification: 

Detection: 
200 object classes       400k/20k/40k images 



Data Enabling Richer Models 
•  [Krizhevsky et al. NIPS12, Donahue ICML14] 

–  54 million parameters 
–  Trained on 1.4M images in ImageNet 
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Data Enabling Richer Models 
•  DistBelief [Dean et al. NIPS12] 
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Data Enabling Richer Models 
•  [Le et al. ICML12] 

–  2,000 machines / 32,000 cores for 1 week 

•  DistBelief [Dean et al. NIPS12] 
–  16 million images and 21k categories 
–  1.7 Billion parameters 
–  12,000 cores 
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Historical Perspective 
•  Challenges in computer vision research:  

future directions of research.  
Shahriar Negahdaripour and Anil K. Jain.  
NSF Workshop 1991 

•  Panel stressed the need for: 
–  more experimental validation of models on large datasets 
–  sharing of images, algorithms, and models between 

research groups 
–  greater interaction between academia and industry 
–  the need for complete computer vision systems that perform 

real world tasks  
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Back to Present 
•  Frontiers in Computer Vision.  

Alan Yuille and Aude Oliva.  
NSF Workshop Nov 2010 

•  Noticeable changes since 1991: 
–  Computers are much faster, have far greater memory, and 

are much cheaper. 
–  Computer vision researchers have continued to learn, adapt, 

develop, and apply tools from mathematics, statistics, 
computer science, and engineering.  

–  New tools specific to vision (e.g., SIFT and HOG) 
–  The use of benchmarked image databases and learning 

algorithms has become common 
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Back to Present 
•  Frontiers in Computer Vision.  

Alan Yuille and Aude Oliva.  
NSF Workshop Nov 2010 

•  Remaining concerns: 
–  increased the fragmentation of the field 
–  there remains lack of scholarship and little progress made on 

building on research done by others.  
–  computer vision datasets do not compare yet to the 

complexity of the natural world 
–  academic research is seen as being neither realistic enough 

to help develop practical real world systems nor insightful 
enough to yield new theories 
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Challenges 
•  Big data is an enabler and an isolator! 
•  All researchers repeatedly solving the same problems 

–  Build and maintain a cluster 
•  Job scheduler (PBS, Torque) 
•  Distributed storage (Hadoop FS) 

–  Scale vision algorithms 
•  Identify model/data parallelism 
•  Design & implement multi-threaded vision primitives 

–  Distributed computing 
•  Implement mechanisms to avoid race conditions & dead-locks 
•  Ensure data consistency, locking, good scheduling 
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Logistical 

Computer 
Vision 

Distributed 
Computing 



CloudCV 
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Users	  /	  Developers	  /	  Mobile	  Apps	  

h]p://CloudCV.org	  

CloudCV-‐API	  

Cloud	  /	  	  
Cluster	  Frameworks	  

CloudCV-‐API	  

Front-‐End	  

Back-‐End	  

CV	  &	  other	  researchers	  
	  

Caffe 



CloudCV: Architecture 
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CloudCV: Big Picture 
•  Goal: For developers 

–  Reduced barrier to entry 
–  Democratize Computer Vision 

•  Goal: For researchers 
–  Easy comparison to baselines 
–  Access to state-of-art techniques “off-the-shelf” 

•  Mini-steps 
–  What we have today 
–  A few algorithms 
–  A few ways to reach CloudCV 
–  Where we are headed 
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CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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“Demo” 1 
•  ImageNet Challenge (ILSVRC13) 

–  Training: 1.4 million 
–  Val: 50k 
–  Test: 100k 

•  Features 
–  16 “industry standard”  

•  DeCAF, GIST, HOG2x2, Dense/Sparse SIFT, LBP, Self-Similarity …  

•  Webpage 
–  http://cloudcv.org/objdetect/#features 

•  Total: 400 GB, 19 months or 1.5 years of CPU-time 
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CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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Demo 2 
•  [Krizhevsky et al. NIPS12, Donahue ICML14] 

–  Trained on 1.4M images in ImageNet 
–  1000 categories 
–  Available in Caffe framework from BVLC 
–  http://cloudcv.org/classify/ 
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Pooling Layer Fully-Connected MLP 



Demo 2 
•  Drop-box integration 

–  Files can live on dropbox 
–  http://cloudcv.org/decaf-server/ 
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Demo 2 
•  How about if you want to write code? 

–  Python-API: https://github.com/batra-mlp-lab/pcloudcv 
•  “python run.py myconfig.json –nologin“ 

–  Matlab-API: https://github.com/batra-mlp-lab/mcloudcv 
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CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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Demo 3 
•  [Krizhevsky et al. NIPS12, Donahue ICML14] 

–  Trained on 1.4M images in ImageNet 
–  1000 categories 
–  Available in Caffe framework from BVLC 
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Input Image 1k output  
units 

How about adding a 1001th category? 
Your company logo classifier?  
In a few seconds, not weeks? 

Convolution Layer 
+ Non-Linearity 

Pooling Layer Convolution Layer 
+ Non-Linearity 

Pooling Layer Fully-Connected MLP 

http://cloudcv.org/trainaclass/ 



CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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Who is the most important 
person in the photo? 
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Why is this useful? 
•  Better image descriptions 
•  Automatic photo cropping 
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Two people walking past a crowd 



Why is this useful? 
•  Better image descriptions 
•  Automatic photo cropping 
•  Sort consumer photos 
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How do we do this? 
•  Collect a large dataset 

–  VT Person Importance Dataset 
–  Images scraped from Flickr 
–  Annotations using Mechanical Turk 

•  For each face measure: 
–  Distance from center 
–  Scale 
–  Sharpness 
–  Face Pose 
–  Face Occlusion 

•  Train a relative importance predictor 



Results 
•  http://cloudcv.org/vip/ 

•  Technical Details: 
–  VIP: Finding Important People in Images 
–  Clint S. Mathialagan, Andrew C. Gallagher, Dhruv Batra 
–  http://arxiv.org/abs/1502.05678 

Method Accuracy 
Our Approach 78.91% 

Center Baseline 68.46% 
Scale Baseline 67.86% 

Sharpness Baseline 71.03% 



CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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Parallelization 
•  Some steps in vision embarrassingly parallel 

–  Ideal for MapReduce 

•  However 
–  Most pipelines in Computer Vision are not! 
–  Example 

•  Image Stitching 
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GigaPixel Image Stitching 
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GigaPixel Image Stitching 
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GigaPixel Image Stitching 
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Feature  
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Vertex Parallel 



GigaPixel Image Stitching 
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GigaPixel Image Stitching 
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Feature  
Extraction 

Image/Feature 
Matching 

Global Camera 
Refinement 

Vertex Parallel Edge Parallel 

min
ˆPi, ˆXp

X

image i

X

point p

d(xip, P̂iX̂p)

Bundle Adjustment 

Non-linear optimization 
over camera parameters Pi 

and 3D locations of points Xp 



GigaPixel Image Stitching 
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GigaPixel Image Stitching 
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Feature  
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image i

X

point p
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Levenberg–Marquard Updates 

Graph-Parallel 

Bundle Adjustment 



GigaPixel Image Stitching 
•  http://cloudcv.org/image-stitch/ 
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CloudCV 
•  Demo 1 

–  Support for ImageNet Challenge 

•  Demo 2 
–  Image Classification 

•  Demo 3 
–  Training a new classifier for your categories 

•  Demo 4 
–  Finding Important People in Images 

•  Demo 5 
–  GigaPixel Image Stitching 
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Where is CloudCV headed? 
•  Back-end  

–  Open model for contributing code 

•  Dynamic Database 
–  If “familiar” image, we can get you results without computing 
–  If new image, we’ll cache the results for the next person 

•  Lots of challenges unsolved 
–  Bandwidth, optimal compression 
–  Computation on front end vs back end 
–  Compressions on front end that bound performance? 

•  Coresets, summarization, etc 
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Where is CloudCV headed? 
•  Long way to go 

•  But we think this is exciting! 

•  Think about the first APIs for 
–  Designing webpages 
–  User authentication, Credit-card processing 
–  Search, Maps, Twitter feeds, …  

•  We want to do that for the scientific research and 
development community.  
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