
Demonstrating Interactive Multi-resolution Large Graph Exploration

Zhiyuan Lin
College of Computing

Georgia Tech
Atlanta, GA, USA
zlin48@gatech.edu

Fei Wang
IBM T. J. Watson Research Center

Yorktown Heights, NY USA
fwang@us.ibm.com

Nan Cao
IBM T. J. Watson Research Center

Yorktown Heights, NY USA
nancao@us.ibm.com

U Kang
Computer Science Department

KAIST
Republic of Korea

ukang@cs.kaist.ac.kr

Hanghang Tong
Computer Science Department

City College of New York
New York, NY USA

tong@cs.ccny.cuny.edu

Duen Horng (Polo) Chau
College of Computing

Georgia Tech
Atlanta, GA, USA
polo@gatech.edu

Abstract—We present a scalable, interactive graph visu-
alization system to support multi-resolution exploration of
million-node graphs in real time. By adapting a state-of-the-art
graph algorithm, called Slash & Burn, our prototype system
generates a multi-resolution view of graphs with up to 69
million edges under a few seconds. We are experimenting with
interaction techniques that help users interactively explore this
overview and drill down into details. While many visualization
systems for million-node graphs require dedicated servers to
process the graphs, our prototype runs on a commodity laptop
computer. We aim to handle graphs that are at least an order
of magnitude (100M edges) larger than what current systems
can support.

We demonstrate our system’s usage, benefits, and scalability
using two large graphs: a LiveJournal friendship network with
69 million edges, and a related-movies network from Rotten
Tomatoes with 200K edges.

Keywords-interactive graph visualization; multi-resolution;
hubs and spokes; graph decomposition

I. INTRODUCTION

Given a large graph with million or billion nodes and
edges, how to visualize it? Showing every single node and
edge will not work, due to limited screen size. Further-
more, this may not be the right approach, since the visual
complexity will be overwhelming. Recent research [1], [2],
[3] investigated how to create overviews of large graphs,
visualize those views, and allow users to interactively drill
down. However, they often only work for graphs with well-
defined hierarchies (e.g., graphs that are trees), or need to
first transform the graphs into hierarchies.

How do we visualize more general kinds of graphs with-
out depending on or assuming any hierarchical structures?
Can we visualize such graphs at scale, say with 100 million
nodes and edges (order of magnitude larger than what
current systems support)? Can we support all these by using
one commodity computer, without requiring the graph to
fit in the main memory [2], or a dedicated client-server

architecture [1]? These are the foci of our investigation. To
summarize, we aim to make the following contributions:

• We present a prototype system that supports multi-
resolution exploration of large graphs with up to 69
million edges.

• We adapt a fast, state-of-the-art graph algorithm, called
Slash & Burn (Section III) that can create a multi-
resolution graph overview under a few seconds.

• We present techniques that help users interactively
explore the multi-resolution view via prioritized visu-
alization (Section III), which helps the user determine
what to visualize and explore.

II. SCENARIO

Here, we introduce the major visualization and interaction
features of our prototype in a brief scenario. We will prepare
a guided tour that is based on this scenario to introduce the
demonstration audience to our system.

Alice is a data scientist at Rotten Tomatoes (RT), who
wants to better understand which movies are considered sim-
ilar by RT users. She has constructed a graph from her data
of related movies, where each node in the graph is a movie,
and an edge connects two movies if a user has suggested
that they are similar. Crawled from Rotten Tomatoes, this
graph has roughly 200,000 nodes and 150,000 edges.

Our tool first presents an overview to Alice (Fig. 1a). It
shows the top 10 movies (called bridges) with the highest
degrees (they have the highest number of related movies).
It also shows the top 10 components (called bubbles) which
have the largest number of movies within them. This first
overview gives Alice some idea about what the most popular
movies are, how they are connected among themselves,
and to the rest of the movies (“hidden” within the com-
ponents/bubbles). Among the top 10 movies, Alice sees
some popular ones, such as Titanic and the Dark Knight.
She is intrigued that all of them are connected to the large



Figure 1. (a) Overview of the top 10 movies and top 10 components (bubbles) of the Rotten Tomatoes related movies graph; largest component shown in
the center. Node are movies; an edge connects two movies if they are similar. (b) Previewing a component (bubble) shows only a few, most “important”,
movies and components within in, to reduce visual complexity; the user can expand the bubble further to show more nodes. (c) A broken-down bubble
showing all edges within a bubble and across bubble boundary; here, only edges connected to a selected movie is shown. (d) Bubble preview works across
levels.

component in the center (with many movies in it), even for
horror movie Carrie and comedy movie Click. She decides
to check out what are inside the bubble.

By pressing the “+” key on her keyboard, Alice can
preview (visualize) the contents of the component, while
keeping the nodes and edges outside the component in
place. At first, only a few, most “important” movies (highest
degrees) and sub-components are shown. Alice wants to see
a few more, so she pressed “+” a few more times; more
nodes and components show up inside the big component
(Fig. 1b).

Alice sees that Lord of the Rings is in this component
and she remembers a few horror scenes in this chivalric
movie. This seems to be a good clue for tracing the hidden
relationship between the movies Carrie and Click. She
double clicks the previewed components to break it down,
which reveals all edges between the nodes inside and outside
of the component.

Now the screen is cluttered with too many edges. To
reduce visual complexity, Alice selects The Lord of the
Rings, and invoke an action (not shown in figure) to fade
away the unselected nodes (shown in gray color). Now, she



sees only The Lord of the Rings and the names of movies
directly connected to it. It turns out Pirates of the Caribbean
is one of those neighbors and she cannot help but smile
about Jack Sparrow’s witty humor. Then she holds down
the shift key and select Pirates of the Caribbean too. This
reveals that Carrie is similar to The Lord of the Rings; The
Lord of the Rings and Pirates of the Caribbean share some
characteristics; and finally, humor connects Pirates of the
Caribbean and Click (Fig. 1c) .

Now Alice moves on to other movies. She interactively
previews and breaks down a few more bubbles, at different
parts of the graph, at various levels of abstraction (Fig. 1d).

III. DESIGN RATIONALE AND ALGORITHM OVERVIEW

A. Algorithm to generate graph overview

The general design principle that drives our design is to
prioritize what to visualize, since the graph is large, but
our screen real estate is limited. While this idea is implicit
in recent works (e.g., [1], [4]), we use it as our first principle
to guide our design.

In the visualization community, one common approach is
to transform the graph into a tree (or tree-like structure),
which is simpler to visualize and interact with, since nodes
will then have well-defined parent-child relationships. In the
visualization, we can then treat a parent node as the high-
level representation of its children. However, this approach
unavoidably changes the semantics of the original graph
(e.g., from graph with cycles into a tree). Can we generate
an explorable overview for more general kinds of graphs
without such transformation?

Zinsmaier et al. [5] explored an alternative approach,
to render million-node graphs by exploiting density-based
node aggregation, assuming a given graph layout. However,
it is unclear how it would work for real-world scale-free
graphs, since their high-degree nodes would pull many nodes
towards them, making the graph look like a “hair ball”.

We surveyed data mining literature for solutions, and
identified a state-of-the-art graph algorithm, called Slash &
Burn [6], that could help use reduce visual complexity in
a scalable and principled manner. Its design is based on
the observation that most real-world graphs have power law
degree distributions; such a graph have few hub nodes with
very high degrees, while the majority of the nodes have
low degrees. This means if we remove these highest degree
hub nodes (e.g., top 25) and their edges, we will shatter
the graph into smaller components, each being a meta node
that may contain many nodes and edges—we call these
nodes “bubbles”, and visually we treat them as a higher-
level representation of the nodes within it.

Due to its power law degree distribution, a graph can be
quickly shattered by iteratively applying the above algorithm
to components at each round. (All components eventually
contain few number of nodes, say 50.) Here, we could only

give a high-level description of the Slash & Burn algorithm
due to limited space. We refer the readers to [6] for details.

A desirable effect of adapting this algorithm is that now
we can rank both the nodes and components by their
“importance”. In our description above, we defined the “top”
nodes as those having the highest degrees; but we can
flexibly use “highest PageRank scores”, or something else,
instead. Similarly, components may be ranked by the number
of nodes that they contain, or by other statistics.

B. Interaction technique to “preview” component

It is not sufficient to only create an overview visualization.
We also need to provide interaction techniques for the user
to explore and drill down. But, a component can contain tens
of thousands of nodes and edges (as in the largest connected
component of a million-node graph). We would not want to
show all of them.

Fortunately, as we described above, nodes within a com-
ponent are ranked (e.g., by node degrees). This inspires us to
design an interaction technique that allow the user to choose
how many nodes and edges they may want to visualize,
based on how large they expanded a bubble (component),
as if previewing or taking a glimpse into the contents of a
component. The user can preview multiple bubbles that at
different levels at the same time (Fig. 1d).

C. Scaling to large graphs

Current visualization systems often require dedicated
servers to process their graphs (even for million-node scale),
to run algorithms on them, and to compute their layouts
[4], [1]. Is this always necessary? This question drives us
to explore how much we can do with a single commodity
machine. With our prototype, we are able to create a multi-
resolution views for graphs from up to 69 million edge
graph, in under 5 seconds. These views can be interactively
explored, in real time. A main technique that we use to
scale to such large graphs, is to avoid storing the graph in
memory; specifically, we keep the graph’s “edge list” on the
hard drive, which would otherwise take up a lot of memory.
We are now testing our prototype on even larger graphs,
with 100 million edges and more.

IV. DEMONSTRATION PLAN

A. Present State of Demo

Our current prototype system, as described above, is ready
for use and exhibition in a demonstration. It can already
handle graphs with tens of millions of edges in real time.
However, we will continue to improve and polish it.

B. Datasets

In our demo, we will use the Rotten Tomatoes related-
movies graph, as described in Section II. It contains about
150,000 edges; nodes are movies and an edge connects two
movies if some Rotten Tomatoes users have voted them to



be similar. For this graph, we have a dictionary to translate
the node IDs to movie names, so when the user mouse over a
node, he would be able to find out which movie it represents;
also, since movie datasets are generally easy to understand,
our audience will be more engaged.

To demonstrate our system’s capability in handling big
graphs in real time, we will use a LiveJournal network,
which consists of around 69 million edges. In this graph,
nodes are people and edges between nodes indicate friend-
ship links [7].

C. Demonstration Details

We will prepare two ways for the audience to try and learn
about our system. One way is through a guided tour based
on the scenario we described in Section II, which covers
the major interaction and visualization features. The second
way is to allow the audience to explore the system on their
own, while accompanied by our presenters. Through either
approach, the audience will learn about the main methods
for exploring and navigating a graph with our system, which
include:

• How to break down large bubbles into smaller ones
via the intuitive interaction techniques we previously
described.

• How to preview bubbles how this functionality helps
select the most important or interesting nodes to avoid
visually overwhelming the user.

• How to collapse previewed bubbles to revert entire or
part of the visualized graph to previous state.

• Basic operations that we support in the graph visual-
ization, such as panning and zooming.

We will explain visualized elements such as shapes of
nodes/edges, colors for different levels, shaded areas, etc.
We will also show the audience how to load and visualize
their own graph with our system.

D. Equipment and Setup

1) What we plan to bring:
• A laptop running our software
• A monitor to provide the audience with better viewing

experience
• A poster to describe the high-level ideas of our ap-

proach, and to attract and engage potential audience
2) Requested Setup:
• A table and two chairs
• A poster board (for our A0-sized, 3 feet by 4 feet

poster) and poster pins
• A power strip with at least two sockets

V. CONCLUSIONS AND WORK IN PROGRESS

We will demonstrate a scalable, interactive graph visu-
alization system to support multi-resolution exploration of
million-node graphs in real time. Thus far, our prototype
can handle graphs up to 69 million edges on a laptop

computer. We are experimenting with various visualization
and interaction techniques to allow users to fluidly navigate
and explore and drill down in the graphs.

We will demonstrate our system’s usage, benefits, and
scalability using two large graphs: a LiveJournal friendship
network with 69 million edges, and a related-movies network
from Rotten Tomatoes with 200K edges.

ACKNOWLEDGMENT

This work is supported in part by the National Sci-
ence Foundation under Grant No. IIS1017415, by the U.S.
Army Research Office (ARO), by the Army Research Lab-
oratory under Cooperative Agreement Number W911NF-
09-2-0053, and by Defense Advanced Research Projects
Agency (DARPA) under Contract Number W911NF-11-C-
0088, W911NF-11-C-0200 and W911NF-12-C-0028.

REFERENCES

[1] J. Abello, F. Van Ham, and N. Krishnan, “Ask-graphview:
A large scale graph visualization system,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 12, no. 5, pp.
669–676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber, “Grouse: Feature-
based, steerable graph hierarchy exploration,” in Proceedings
of the 9th Joint Eurographics/IEEE VGTC conference on
Visualization. Eurographics Association, 2007, pp. 67–74.

[3] C. Tominski, J. Abello, and H. Schumann, “Cgvan interactive
graph visualization system,” Computers & Graphics, vol. 33,
no. 6, pp. 660–678, 2009.

[4] F. Van Ham and A. Perer, “search, show context, expand on
demand: Supporting large graph exploration with degree-of-
interest,” Visualization and Computer Graphics, IEEE Trans-
actions on, vol. 15, no. 6, pp. 953–960, 2009.

[5] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt, “Inter-
active level-of-detail rendering of large graphs,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 18, no. 12,
pp. 2486–2495, 2012.

[6] U. Kang and C. Faloutsos, “Beyond’caveman communities’:
Hubs and spokes for graph compression and mining,” in Data
Mining (ICDM), 2011 IEEE 11th International Conference on.
IEEE, 2011, pp. 300–309.

[7] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan,
“Group formation in large social networks: membership,
growth, and evolution,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2006, pp. 44–54.


